Development of a UHPLC-MS/MS Method for Quantitative Analysis of Aflatoxin B1 in Scutellaria baicalensis
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of UHPLC-MS/MS Parameters
2.1.1. Ionization Mode Selection and Collision Energy Optimization
2.1.2. Optimization of Collision Energy
2.1.3. Selection of Precursor and Product Ions
2.1.4. MRM Parameter Configuration
2.2. Optimization and Evaluation of Extraction Conditions
2.2.1. Effect of Stirring Time on Extraction Efficiency
2.2.2. Optimization of Extraction Solvent Composition
2.2.3. Optimization of Solid-to-Liquid Ratio
2.3. Method Validation Results
2.4. AFB1 Contamination in Commercial Samples
3. Conclusions
4. Materials and Methods
4.1. Materials and Reagents
4.2. Instruments and Equipment
4.3. Preparation of Standard Solutions and Sample Pretreatment
4.4. Chromatographic and Mass Spectrometric Conditions
4.5. Single-Factor Experiments
- 1.
- Magnetic Stirring Time
- 2.
- Water Ratio in Acetonitrile-Water Solution
- 3.
- Solid-to-Liquid Ratio
4.6. Method Validation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Institutes for Food and Drug Control. Pharmacopoeia of the People’s Republic of China; National Institutes for Food and Drug Control: Beijing, China, 2020; Volume 1. [Google Scholar]
- Wang, H.-S.; Liu, L.; Chen, W.-B. Investigation of mold and mycotoxin contamination in Chinese medicinal herbs and decoction pieces. China J. Chin. Mater. Medica 2005, 30, 678–681. [Google Scholar]
- Yang, K.-B.; Huang, S.-F. Research progress on mildew and prevention of Chinese medicinal materials. China J. Chin. Mater. Medica 2011, 36, 645–648. [Google Scholar]
- European Commission. Commission Regulation (EU) No 2021/1317 of 10 August 2021 on maximum levels for mycotoxins in foodstuffs. Off. J. Eur. Union 2021, 286, 1–4. [Google Scholar]
- Li, Y.; Wu, Y.-P. Research progress in immunoassays for mycotoxin detection. Food Sci. 2012, 33, 319–323. [Google Scholar]
- Li, F.; Zhang, J.-G. Research progress on mycotoxin detection methods. Food Ind. 2015, 36, 280–284. [Google Scholar]
- Liu, W.-B.; Hao, J.; Liu, L. Application of electronic nose in mycotoxin detection. Food Ferment. Ind. 2019, 45, 289–294. [Google Scholar]
- Lyu, Y.-Y.; Wang, H.; Liu, X.-L. Research progress in application of liquid chromatography-tandem mass spectrometry in mycotoxin detection. Chin. J. Food Hyg. 2020, 32, 424–429. [Google Scholar]
- Wang, S.-M.; Xu, Y.; Mao, D.; Zheng, R.; Wang, K.; Ji, S. Determination of aflatoxins G2, G1, B2 and B1 in Semen Persicae by HPLC-MS/MS. Chin. J. Pharm. Anal. 2005, 26, 610–632. [Google Scholar]
- Chen, Y.; Chen, C.-J.; Li, J.; Luan, L.; Liu, X.; Wu, Y. Determination of 10 mycotoxins in Panax notoginseng by ultra performance liquid chromatography-tandem mass spectrometry. Chin. J. Pharm. Anal. 2015, 34, 81–85. [Google Scholar]
- Wu, H.-T.; Li, M.-M.; Guan, E.-Q.; Zhang, L.; Chen, Y.-X.; Liu, Z.-F.; Wang, J.-K.; Zhao, Q.; Yang, P.; Xu, R.; et al. Simultaneous determination of four mycotoxins in corn by Q-Orbitrap liquid chromatography-mass spectrometry. Food Ferment. Ind. 2022, 48, 245–251. [Google Scholar]
- Zhao, P.; Zhang, Y.Y.; Zhou, J.H.; Chen, F. Optimization of Aflatoxin Extraction from Peanuts Using Response Surface Methodology and Its Application in Rapid Detection Evaluation. J. Nanjing Norm. Univ. (Eng. Technol. Ed.) 2022, 22, 72–82. [Google Scholar]
- Li, J.; Li, X.; Qi, Y.; Tian, T.X.; Zhang, Z.J.; Long, L.S. Detection of Aflatoxin B1 in Soy Sauce by Enzyme-Linked Immunosorbent Assay. J. Food Saf. Qual. 2016, 7, 4736–4740. [Google Scholar]
- Wen, H.-J.; Liao, Z.-Q.; Jin, G.-Y. Advances in mycotoxin detection methods. Drug Stand. China 2023, 24, 465–475. [Google Scholar]
- Huang, Q.-W. Study on Analytical Methods and Risk Assessment of Mycotoxins. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- Luo, X.; Sun, Z.-X. Research progress on detection methods of aflatoxins. Carcinog. Teratog. Mutagen. 2024, 36, 417–420. [Google Scholar]
- Duan, F.-F.; Li, J.-Y.; Li, X.-Q. Detection of six common mycotoxins in grains by immunoaffinity column clean-up and HPLC. Grain Storage 2024, 53, 74–79. [Google Scholar]
- Shan, L.-N.; Wang, Y.-D.; Dou, X.-W.; Duan, Y.; Yang, S.; Wang, J.; Yang, M. Comparative study on aflatoxin contamination in four commonly used bulk traditional Chinese medicinal slices. Mod. Tradit. Chin. Med. Mater. Medica-World Sci. Technol. 2020, 22, 3718–3725. [Google Scholar]
- Yang, H. Study on Detection Methods for Pesticide Residues and Mycotoxins in Citrus Medicinal Materials Based on High-Resolution Mass Spectrometry. Master’s Thesis, Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2023. [Google Scholar]
- Chu, H.-Q.; Zhuge, N.-J.; Chen, S.-S.; Wu, Q.; Yu, X.; Yang, C. Research progress on common detection methods for mycotoxins in grain and oil foods. J. Food Saf. Qual. 2025, 16, 1–9. [Google Scholar]
- Fang, J.-H.; Pan, X.-J.; Yin, F. Simultaneous determination of eight mycotoxins in Coix seed by QuEChERS-UPLC-MS/MS. J. Zhejiang Sci-Tech Univ. (Nat. Sci.) 2025, 53, 254–262. [Google Scholar]
- Yi, X.-J. Study on Detection Methods and Degradation Products of Aflatoxins in Food. Master’s Thesis, Yantai University, Yantai, China, 2020. [Google Scholar]
- Guan, L.-J. Study on LC-MS/MS Method for Detection of 24 Mycotoxins in Honey. Master’s Thesis, Yantai University, Yantai, China, 2019. [Google Scholar]
- Deng, X.-Y.; Zhang, J.-X.; Zhang, J.-H. Determination of 15 mycotoxins in food by UPLC-MS/MS. China Food Saf. Mag. 2021, 1, 69–74. [Google Scholar]
Parameter | LOD | LOQ | Precision (RSD) | Recovery Rate | Operational Complexity |
---|---|---|---|---|---|
ELISA | 0.10–0.50 μg/kg | 0.50–2.00 μg/kg | 8.0–15% | 60–100% | Moderate |
TLC | 1.00–5.00 μg/kg | 5.00–10.00 μg/kg | 15–25% | 60–110% | Low |
SERS | 0.01–0.10 μg/kg | 0.05–5.00 μg/kg | 10–18% | 75–110% | High |
Electrochemical Sensor | 0.005–0.051 μg/kg | 0.02–0.20 μg/kg | 12–20% | 70–120% | Medium |
GC-MS | 0.02–0.10 μg/kg | 0.05–0.50 μg/kg | 5.0–10% | 80–110% | High |
Collision Energy (V) | Ion Abundance |
---|---|
105 | 40,786.76 |
110 | 41,467.34 |
115 | 41,769.26 |
120 | 43,745.19 |
125 | 8130.21 |
130 | 8234.21 |
135 | 8596.15 |
Analyte | Retention Time (min) | Ionization Form | Precursor Ion (m/z) | Quantifier Ion (m/z) | Qualifier Ion (m/z) | Fragmentor Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|---|---|
AFB1 | 1.8 | [M+H]+ | 313.1 | 285.1 | 241.1 | 120 | 24/32 |
Linear Range | LOD (μg/kg) | LOQ (μg/kg) | Precision (RSD) | Accuracy | |
---|---|---|---|---|---|
AFB1 | 0.05–50.00 μg/kg | 0.01 | 0.03 | 1.9% | 3.7% |
Original Concentration/(μg/kg) | Sample Volume /mL | Spiked Amount /(μg/kg) | Spiked Volume /mL | Measured Value /(μg/kg) | Recovery Rate/% | Average Recovery Rate/% | (RSD)/% |
---|---|---|---|---|---|---|---|
14.60 | 1.00 | 0.10 | 1.00 | 14.69 | 94.03 | 96.10 | 1.9 |
14.60 | 1.00 | 2.00 | 1.00 | 16.56 | 97.84 | ||
14.60 | 1.00 | 10.00 | 1.00 | 24.24 | 96.43 |
Origin | Sample Appearance | AFB1 Content (μg/kg) | Exceedance Multiple | Contamination Level |
---|---|---|---|---|
Ji’an, Jiangxi | Yellow | 27.40 | 5.48 | Severe contamination |
Yan’an, Shanxi | Yellow | 14.60 | 2.92 | Moderate contamination |
Baotou, Inner Mongolia | Yellow | 24.70 | 4.94 | Severe contamination |
Taiyuan, Shanxi | Yellow-brown | 8.10 | 1.62 | Mild contamination |
Lanzhou, Gansu | Light yellow | Not detected (ND) | Not detected (ND) | No contamination |
Huaibei, Anhui | Yellow | 20.40 | 4.08 | Severe contamination |
Sample Number | Product Appearance | Place of Origin |
---|---|---|
1 | Yellow | Ji’an City, Jiangxi Province |
2 | Yellow | Yan’an City, Shaanxi Province |
3 | Yellow | Baotou City, Inner Mongolia |
4 | Yellow-brown | Taiyuan City, Shanxi Province |
5 | Light yellow | Lanzhou City, Gansu Province |
6 | Yellow | Huaibei City, Anhui Province |
Time (min) | A (%) | B (%) |
---|---|---|
0 | 75 | 25 |
1.5 | 5 | 95 |
4.2 | 5 | 95 |
4.3 | 75 | 25 |
6.0 | 75 | 25 |
Parameter Name | Parameter Value |
---|---|
Sheath Gas Pressure (arb) | 25 |
Auxiliary Gas Pressure (arb) | 5 |
Sweep Gas Pressure (arb) | 0 |
Spray Voltage (kV) | 3.00 |
Ion Transfer Tube Temp. (°C) | 300 |
Auxiliary Heater Temp. (°C) | 350 |
Scan Range (m/z) | 50–800 |
Resolution | 100,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zeng, C.; Li, Y.-Y.; Guo, J.; Xu, J. Development of a UHPLC-MS/MS Method for Quantitative Analysis of Aflatoxin B1 in Scutellaria baicalensis. Toxins 2025, 17, 473. https://doi.org/10.3390/toxins17090473
Liu Y, Zeng C, Li Y-Y, Guo J, Xu J. Development of a UHPLC-MS/MS Method for Quantitative Analysis of Aflatoxin B1 in Scutellaria baicalensis. Toxins. 2025; 17(9):473. https://doi.org/10.3390/toxins17090473
Chicago/Turabian StyleLiu, Yuanfang, Cuiping Zeng, Ying-Ying Li, Jiayu Guo, and Jinming Xu. 2025. "Development of a UHPLC-MS/MS Method for Quantitative Analysis of Aflatoxin B1 in Scutellaria baicalensis" Toxins 17, no. 9: 473. https://doi.org/10.3390/toxins17090473
APA StyleLiu, Y., Zeng, C., Li, Y.-Y., Guo, J., & Xu, J. (2025). Development of a UHPLC-MS/MS Method for Quantitative Analysis of Aflatoxin B1 in Scutellaria baicalensis. Toxins, 17(9), 473. https://doi.org/10.3390/toxins17090473