Regulation of Pseudomonas sp. PSC001 on the Artificial Rumen Environment Contaminated by Zearalenone
Abstract
1. Introduction
2. Results
2.1. Effects of PSC001 and ZEN on Artificial Rumen Fermentation Parameters
2.2. Effects of PSC001 and ZEN on VFA in Artificial Rumen
2.3. Effects of PSC001 and ZEN on the Microbes in Artificial Rumen
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Experimental Animals and Experimental Design
5.2. Simulated Rumen Fermentation Technology
5.3. The Counting and Treatment of Pseudomonas
5.4. The Configuration of ZEN Working Fluid
5.5. Determination of Environmental Indicators in Artificial Rumen
5.5.1. Determination of pH
5.5.2. Determination of NH3-N, MCP, and VFA
5.5.3. Detection of Microbial Community Composition in Rumen Fluid
5.6. Statistical Analysis of Data
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Chhaya, R.S.; O’Brien, J.; Nag, R.; Cummins, E. Prevalence and concentration of mycotoxins in bovine feed and feed components: A global systematic review and meta-analysis. Sci. Total Environ. 2024, 929, 172323. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.K.; Cheng, Y.H.; Tsai, W.T.; Liao, R.W.; Chang, C.S.; Chien, W.C.; Jhang, J.C.; Yu, Y.H. Prevalence of mycotoxins in feed and feed ingredients between 2015 and 2017 in Taiwan. Environ. Sci. Pollut. Res. Int. 2019, 26, 23798–23806. [Google Scholar] [CrossRef]
- Rivera-Chacon, R.; Hartinger, T.; Castillo-Lopez, E.; Lang, C.; Penagos-Tabares, F.; Mühleder, R.; Atif, R.M.; Faas, J.; Zebeli, Q.; Ricci, S. Duration of zearalenone exposure has implications on health parameters of lactating cows. Toxins 2024, 16, 116. [Google Scholar] [CrossRef]
- Riccio, M.B.; Tapia, M.O.; Martínez, G.; Aranguren, S.M.; Dieguez, S.N.; Soraci, A.L.; Rodríguez, E. Effect of the combination of crude extracts of Penicillium griseofulvum and Fusarium graminearum containing patulin and zearalenone on rumen microbial fermentation and on their metabolism in continuous culture fermenters. Arch. Anim. Nutr. 2014, 68, 309–319. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Faas, J.; Doupovec, B.; Aleschko, M.; Stoiber, C.; Höbartner-Gußl, A.; Schöndorfer, K.; Killinger, M.; Zebeli, Q.; Schatzmayr, D. Metabolism of Zearalenone in the Rumen of Dairy Cows with and without Application of a Zearalenone-Degrading Enzyme. Toxins 2021, 13, 84. [Google Scholar] [CrossRef]
- Shier, W.T.; Shier, A.C.; Xie, W.; Mirocha, C.J. Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon 2001, 39, 1435–1438. [Google Scholar] [CrossRef]
- Huwig, A.; Freimund, S.; Käppeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef]
- Chang, J.; Dong, W.; Gao, S.; Hou, L.; Dong, J.; Qiu, H.; Chen, F. Biodegradation of ZEN by Bacillus mojavensis L-4: Analysis of degradation conditions, products, degrading enzymes, and whole-genome sequencing, and its application in semi-solid-state fermentation of contaminated cornmeal. Front. Microbiol. 2025, 16, 1512781. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Avantaggiato, G.; Solfrizzo, M.; Visconti, A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Addit. Contam. 2005, 22, 379–388. [Google Scholar] [CrossRef]
- McKenzie, K.S.; Sarr, A.B.; Mayura, K.; Bailey, R.H.; Miller, D.R.; Rogers, T.D.; Norred, W.P.; Voss, K.A.; Plattner, R.D.; Kubena, L.F.; et al. Oxidative degradation and detoxification of mycotoxins using a novel source of ozone. Food Chem. Toxicol. 1997, 35, 807–820. [Google Scholar] [CrossRef]
- Hathout, A.S.; Aly, S.E. Biological detoxification of mycotoxins: A review. Ann. Microbiol. 2014, 64, 905–919. [Google Scholar] [CrossRef]
- Liu, L.; Xie, M.; Wei, D. Biological detoxification of mycotoxins: Current status and future advances. Int. J. Mol. Sci. 2022, 23, 1064. [Google Scholar] [CrossRef]
- Udaondo, Z.; Ramos, J.L.; Abram, K. Unraveling the genomic diversity of the Pseudomonas putida group: Exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol. Rev. 2024, 48, fuae025. [Google Scholar] [CrossRef]
- Mao, Z.; Li, S.; Li, Y.; Jia, T. The bacterial pathogen Pseudomonas plecoglossicida, its epidemiology, virulence factors, vaccine development, and host–pathogen interactions. J. Aquat. Anim. Health 2024, 36, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Swain, J.; Askenasy, I.; Rudland Nazeer, R.; Ho, P.-M.; Labrini, E.; Mancini, L.; Xu, Q.; Hollendung, F.; Sheldon, I.; Dickson, C.; et al. Pathogenicity and virulence of Pseudomonas aeruginosa: Recent advances and under-investigated topics. Virulence 2025, 16, 2503430. [Google Scholar] [CrossRef]
- Xin, X.F.; Kvitko, B.; He, S.Y. Pseudomonas syringae: What it takes to be a pathogen. Nat. Rev. Microbiol. 2018, 16, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.J.; Zhao, N.L.; Dai, D.R.; Bao, R. Prospects of Pseudomonas in microbial fuel, bioremediation, and sustainability. ChemSusChem 2025, 18, 202401324. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, S.; Zhang, C.; Mi, X.; Zhang, W.; Wang, L.; Liu, W.; Jiang, Y. Escherichia coli O157: H7 is challenged by the presence of Pseudomonas, but successfully co-existed in dual-species microbial communities. Food Microbiol. 2022, 106, 104034. [Google Scholar] [CrossRef]
- Patel, M.; Patel, H.M.; Vohra, N.; Dave, S. Complete genome sequencing and comparative genome characterization of the lignocellulosic biomass degrading bacterium Pseudomonas stutzeri MP4687 from cattle rumen. Biotechnol. Rep. 2020, 28, 00530. [Google Scholar] [CrossRef] [PubMed]
- Papp, D.A.; Kocsubé, S.; Farkas, Z.; Szekeres, A.; Vágvölgyi, C.; Hamari, Z.; Varga, M. Aflatoxin B1 Control by Various Pseudomonas isolates. Toxins 2024, 16, 367. [Google Scholar] [CrossRef]
- Tan, H.; Hu, Y.; He, J.; Wu, L.; Liao, F.; Luo, B.; He, Y.; Zuo, Z.; Ren, Z.; Zhong, Z.; et al. Zearalenone degradation by two Pseudomonas strains from soil. Mycotoxin Res. 2014, 30, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Hartinger, T.; Grabher, L.; Pacífico, C.; Angelmayr, B.; Faas, J.; Zebeli, Q. Short-term exposure to the mycotoxins zearalenone or fumonisins affects rumen fermentation and microbiota, and health variables in cattle. Food Chem. Toxicol. 2022, 16, 112900. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, W.; Yang, S.; Huang, Z.; Li, C.; Yu, X.; Qi, R.; Liu, W.; Loor, J.J.; Wang, M.; et al. Regulation of dietary protein solubility improves ruminal nitrogen metabolism in vitro: Role of bacteria–protozoa interactions. Nutrients 2022, 14, 2972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Zheng, N.; Zhao, S.; Li, S.; Wang, J. The biochemical and metabolic profiles of dairy cows with mycotoxins-contaminated diets. PeerJ 2020, 8, 8742. [Google Scholar] [CrossRef]
- Johnson, R.R. Influence of carbohydrate solubility on non-protein nitrogen utilization in the ruminant. J. Anim. Sci. 1976, 43, 184–191. [Google Scholar] [CrossRef]
- National Academies of Sciences; Medicine, Division on Earth. Nutrient Requirements of Beef Cattle; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Sijpesteijn, A.K. Cellulose-decomposing bacteria from the rumen of cattle. Antonie Van Leeuwenhoek 1949, 15, 49–52. [Google Scholar] [CrossRef]
- Aschenbach, J.R.; Kristensen, N.B.; Donkin, S.S.; Hammon, H.M.; Penner, G.B. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life 2010, 62, 869–877. [Google Scholar] [CrossRef]
- Aguilar, J.A.; Zavala, A.N.; Diaz-Perez, C.; Cervantes, C.; Diaz-Perez, A.L.; Campos-Garcia, J. The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2006, 72, 2070–2079. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Huang, Y.X.; Dong, K.H.; Yang, W.Z.; Zhang, S.L.; Wang, H. Effects of isovalerate on ruminal fermentation, urinary excretion of purine derivatives and digestibility in steers. J. Anim. Physiol. Anim. Nutr. 2009, 93, 716–725. [Google Scholar] [CrossRef]
- Gharechahi, J.; Vahidi, M.F.; Sharifi, G.; Ariaeenejad, S.; Ding, X.Z.; Han, J.L.; Salekdeh, G.H. Lignocellulose degradation by rumen bacterial communities: New insights from metagenome analyses. Environ. Res. 2023, 229, 115925. [Google Scholar] [CrossRef] [PubMed]
- da Silva Pereira, M.; Alcantara, L.M.; de Freitas, L.M.; de Oliveira Ferreira, A.L.; Leal, P.L. Microbial Rumen proteome analysis suggests Firmicutes and Bacteroidetes as key producers of lignocellulolytic enzymes and carbohydrate-binding modules. Braz. J. Microbiol. 2025, 56, 817–833. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, H.; Chen, J.; Duan, C.; Guo, Y.; Liu, Y.; Zhang, Y.; Ji, S. Correlation of ruminal fermentation parameters and rumen bacterial community by comparing those of the goat, sheep, and cow in vitro. Fermentation 2022, 8, 427. [Google Scholar] [CrossRef]
- Qiu, X.; Qin, X.; Chen, L.; Chen, Z.; Hao, R.; Zhang, S.; Yang, S.; Wang, L.; Cui, Y.; Li, Y.; et al. Serum biochemical parameters, rumen fermentation, and rumen bacterial communities are partly driven by the breed and sex of cattle when fed high-grain diet. Microorganisms 2022, 10, 323. [Google Scholar] [CrossRef]
- Betancur-Murillo, C.L.; Aguilar-Marín, S.B.; Jovel, J. Prevotella: A key player in ruminal metabolism. Microorganisms 2022, 11, 1. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, H.; Gao, Z.; Xu, J.; Liu, B.; Guo, M.; Yang, X.; Niu, J.; Zhu, X.; Ma, S.; et al. Whole-plant corn silage improves rumen fermentation and growth performance of beef cattle by altering rumen microbiota. Appl. Microbiol. Biotechnol. 2022, 106, 4187–4198. [Google Scholar] [CrossRef]
- Romance, M.; Polash, M.A.-U.-Z.; Zahan, N.; Raihan, J.; Ali, M.S.; Khan, M.U.; Sarker, S.; Haque, M.H. Draft genome sequence of multidrug-resistant Kurthia gibsonii strain Hakim RU_BHWE isolated from sewage water in Bangladesh. Microbiol. Resour. Announc. 2024, 13, 0054624. [Google Scholar] [CrossRef]
- Ruan, Z.; Wang, Y.; Song, J.; Jiang, S.; Wang, H.; Li, Y.; Zhao, B.; Jiang, R.; Zhao, B. Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int. J. Syst. Evol. Microbiol. 2014, 64, 518–521. [Google Scholar] [CrossRef]
- Kamiura, R.; Sato, S.; Wang, S.; Takanashi, Y.; Nishiwaki, R.; Shibai, A.; Furusawa, C. Complete genome sequence of a bacterial strain, Kurthia intestinigallinarum. Microbiol. Resour. Announc. 2025, 14, e00008-25. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, E.T.; Kim, S.B.; Jeong, H.Y.; Park, B.Y.; Srinivasan, S. Kurthia ruminicola sp. nov., isolated from the rumen contents of a Holstein cow. J. Microbiol. 2018, 56, 36–41. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, B.; Zhang, J.; Kong, L.; Muhammad, I.; Liang, X.; Yu, X.; Gao, Y. Efficient degradation of tylosin by Kurthia gibsonii TYL-A1: Performance, pathway, and genomics study. Microbiol. Spectr. 2025, 13, e00025-25. [Google Scholar] [CrossRef] [PubMed]
- Lozica, L.; Maurić Maljković, M.; Mazić, M.; Gottstein, Ž. Kurthia gibsonii, a novel opportunistic pathogen in poultry. Avian Pathol. 2022, 51, 26–33. [Google Scholar] [CrossRef] [PubMed]
- McDougall, E.I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Sedmak, J.J.; Grossberg, S.E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal. Biochem. 1977, 79, 544–552. [Google Scholar] [CrossRef]
- Olagunju, L.K.; Isikhuemhen, O.S.; Dele, P.A.; Anike, F.N.; Ike, K.A.; Shaw, Y.; Brice, R.M.; Orimaye, O.E.; Wuaku, M.; Essick, B.G.; et al. Effects of the incubation period of Pleurotus ostreatus on the chemical composition and nutrient availability of solid-state-fermented corn stover. Animals 2023, 13, 2587. [Google Scholar] [CrossRef]
Item | Group | |||||
---|---|---|---|---|---|---|
CON | PS | ZEN | PS + ZEN | SEM | p | |
pH | 6.45 | 6.37 | 6.37 | 6.72 | 0.01 | 0.62 |
NH3-N/(mg/L) | 126.08 A | 119.24 B | 150.29 C | 116.59 B | 0.40 | <0.001 |
MCP/(mg/L) | 9.37 Ab | 9.52 Aab | 8.83 Bc | 9.56 Aa | 0.01 | <0.001 |
Item | Group | |||||
---|---|---|---|---|---|---|
CON | PS | ZEN | PS + ZEN | SEM | p | |
Acetic | 1.84 | 2.01 | 2.10 | 2.17 | 0.09 | 0.69 |
Propionic | 0.98 a | 1.38 b | 1.04 a | 1.13 ab | 0.06 | 0.03 |
Valeric | 0.13 Aa | 0.38 Bb | 0.25 Ac | 0.20 Bd | 0.03 | <0.001 |
Butyrate | 0.70 A | 0.90 B | 0.96 B | 0.95 B | 0.04 | 0.004 |
Isobutyric | 0.047 A | 0.047 A | 0.054 B | 0.052 B | 0.001 | 0.003 |
Isovaleric | 0.16 A | 0.13 B | 0.18 C | 0.16 A | 0.01 | <0.001 |
Acetic/Propionic | 1.88 A | 1.45 B | 2.01 A | 1.91 A | 0.07 | <0.001 |
TVFA | 3.86 | 4.84 | 4.58 | 4.66 | 0.18 | 0.22 |
Item | Group | |||||
---|---|---|---|---|---|---|
CON | PS | ZEN | PS + ZEN | SEM | p | |
Firmicutes | 39.91 Aa | 48.98 Bb | 47.19 Bbc | 43.72 Bac | 1.17 | 0.003 |
Bacteroidota | 31.85 | 34.58 | 34.07 | 36.60 | 0.70 | 0.10 |
Proteobacteria | 23.77 A | 8.11 B | 11.39 C | 14.65 D | 1.77 | <0.001 |
Spirochaetota | 0.82 Aa | 1.03 Aa | 2.07 Bb | 1.41 Ba | 0.16 | 0.01 |
Actinobacteriota | 0.23 A | 3.21 B | 2.41 C | 1.32 D | 0.34 | <0.001 |
Verrucomicrobiota | 1.16 | 0.95 | 0.65 | 0.48 | 0.12 | 0.17 |
Other | 2.26 Aa | 3.15 Bb | 2.22 Aa | 1.81 Ac | 0.15 | <0.001 |
Item | Group | |||||
---|---|---|---|---|---|---|
CON | PS | ZEN | PS + ZEN | SEM | p | |
Prevotella | 23.31 ab | 19.99 bc | 19.00 c | 24.25 a | 0.82 | 0.03 |
Succinivibrionaceae_UCG-002 | 16.16 A | 1.60 B | 3.74 C | 5.33 D | 1.7 | <0.001 |
Succinivibrio | 5.02 Aa | 5.06 Ab | 5.96 Ac | 7.49 Bc | 0.32 | <0.001 |
Rikenellaceae_RC9_gut_group | 3.66 Aa | 5.83 Bb | 4.85 Ac | 4.00 Ad | 0.26 | <0.001 |
Kurthia | 11.63 Aa | 2.51 Bb | 10.60 Aa | 2.01 Bb | 1.46 | 0.002 |
Treponema | 0.72 Aa | 0.89 Aa | 1.94 Bb | 1.26 Ba | 0.16 | 0.004 |
Succiniclasticum | 4.43 Aa | 2.74 Bc | 3.56 Ab | 3.10 Bbc | 0.21 | <0.001 |
Christensenellaceae_R-7_group | 1.97 Aa | 3.77 Bb | 3.52 Bb | 2.78 Ac | 0.22 | <0.001 |
NK4A214_group | 1.73 Aa | 4.31 Bb | 3.07 Ac | 1.97 Aa | 0.32 | <0.001 |
Ruminococcus | 1.18 Aa | 2.80 Bb | 1.23 Aa | 1.34 Aa | 0.21 | <0.001 |
Clostridium_sensu_stricto_1 | 0.61 A | 4.44 B | 1.16 A | 0.93 A | 0.47 | <0.001 |
norank_F082 | 1.11 Aa | 2.73 Bb | 2.21 Ac | 1.27 Aa | 0.2 | <0.001 |
norank_Muribaculaceae | 0.79 Aa | 1.36 Ab | 2.26 Bc | 1.79 Ad | 0.17 | <0.001 |
norank_Clostridia_UCG-014 | 1.18 Aa | 2.12 Bb | 1.54 Ac | 1.31 Aac | 0.12 | <0.001 |
Butyrivibrio | 1.01 | 1.26 | 0.68 | 1.21 | 0.13 | 0.414 |
UCG-005 | 1.12 Aa | 2.58 Bb | 1.72 Ac | 1.34 Aa | 0.17 | <0.001 |
Lachnospiraceae_XPB1014_group | 1.18 Aa | 2.12 Bb | 0.89 Ac | 1.52 Ad | 0.14 | <0.001 |
possible_genus_Sk018 | 0.78 Aa | 1.49 Bbc | 1.25 Ab | 1.63 Bc | 0.1 | <0.001 |
Eubacterium_ruminantium_group | 0.65 Aa | 0.46 Ab | 0.81 Ac | 2.44 Bd | 0.24 | <0.001 |
Saccharofermentans | 1.20 Aa | 1.41 Ab | 1.78 Bc | 0.70 Ad | 0.12 | <0.001 |
Prevotellaceae_UCG-001 | 0.74 Aa | 1.20 Bb | 0.82 Aa | 0.84 Aa | 0.05 | <0.001 |
Bifidobacterium | 0.05 A | 2.32 B | 1.33 C | 1.11 C | 0.25 | <0.001 |
Shuttleworthia | 0.08 Aa | 0.12 Aa | 0.49 Bb | 1.17 Ac | 0.13 | <0.001 |
UCG-002 | 0.51 Aa | 0.59 Aa | 0.61 Ba | 0.86 Bb | 0.05 | 0.01 |
norank_WCHB1-41 | 0.91 | 0.71 | 0.52 | 0.35 | 0.09 | 0.15 |
Prevotella_7 | 0.08 Aa | 0.11 Aa | 1.82 Ab | 2.62 Bc | 0.33 | <0.001 |
Pseudobutyrivibrio | 0.62 A | 0.24 B | 0.24 B | 0.59 A | 0.06 | <0.001 |
norank_Eubacterium_coprostanoligenes_group | 0.41 Aa | 0.98 Bb | 0.68 Ac | 0.51 Aa | 0.07 | <0.001 |
Lachnospira | 0.05 A | 0.13 A | 0.14 A | 1.24 B | 0.15 | <0.001 |
norank_Selenomonadaceae | 0.02 A | 0.17 A | 0.07 A | 1.76 B | 0.22 | <0.001 |
Olsenel | 0.07 A | 0.67 B | 0.86 B | 0.08 A | 0.11 | <0.001 |
Solibacillus | 0.08 | 0.01 | 0.01 | 0.26 | 0.05 | 0.20 |
Lysinibacillus | 0.01 | 0.001 | 0.01 | 0.84 | 0.15 | 0.10 |
unclassified_Lachnospiraceae | 2.29 Aa | 2.75 Ab | 2.54 Aab | 4.22 Bc | 0.23 | <0.001 |
Other | 14.63 Aa | 20.52 Ab | 18.06 Bc | 15.91 Aa | 0.7 | <0.001 |
Ingredients | Contents | Nutrient Components | Contents |
---|---|---|---|
Corn silage | 49.60 | NEL/(MJ/kg) ② | 6.64 |
Pressed corn | 14.60 | DM | 95.70 |
Bean meal | 10.30 | CP | 13.30 |
Brewery mash | 8.30 | EE | 3.66 |
Moisture | 6.20 | Ca | 0.79 |
Domestic oats | 3.30 | P | 0.38 |
Imported alfalfa | 4.10 | NDF | 33.30 |
Wheat bran | 1.80 | ADF | 22.60 |
Premix ① | 1.40 | ||
NaHCO3 | 0.40 | ||
Total | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Li, X.; Ren, X.; Song, C.; Zhang, Z.; Gao, Y.; Shi, D.; Deng, H.; Huangfu, H.; Wang, J. Regulation of Pseudomonas sp. PSC001 on the Artificial Rumen Environment Contaminated by Zearalenone. Toxins 2025, 17, 471. https://doi.org/10.3390/toxins17090471
Han Y, Li X, Ren X, Song C, Zhang Z, Gao Y, Shi D, Deng H, Huangfu H, Wang J. Regulation of Pseudomonas sp. PSC001 on the Artificial Rumen Environment Contaminated by Zearalenone. Toxins. 2025; 17(9):471. https://doi.org/10.3390/toxins17090471
Chicago/Turabian StyleHan, Yiming, Xinfeng Li, Xiaoli Ren, Chao Song, Zhaojie Zhang, Yufeng Gao, Dongmei Shi, Hongyu Deng, Heping Huangfu, and Jinming Wang. 2025. "Regulation of Pseudomonas sp. PSC001 on the Artificial Rumen Environment Contaminated by Zearalenone" Toxins 17, no. 9: 471. https://doi.org/10.3390/toxins17090471
APA StyleHan, Y., Li, X., Ren, X., Song, C., Zhang, Z., Gao, Y., Shi, D., Deng, H., Huangfu, H., & Wang, J. (2025). Regulation of Pseudomonas sp. PSC001 on the Artificial Rumen Environment Contaminated by Zearalenone. Toxins, 17(9), 471. https://doi.org/10.3390/toxins17090471