OnabotulinumtoxinA in the Management of Pain in Adult Patients with Spasticity: A Systematic Literature Review
Abstract
1. Introduction
2. Results
2.1. Study Characteristics
2.2. Study Population
2.3. Treatment Characteristics
2.4. Clinical Efficacy
2.4.1. Visual Analog Scale
2.4.2. Numerical Rating Scale
2.4.3. Disability Assessment Scale
2.4.4. Additional Measures of Pain
2.4.5. Clinically Meaningful Reductions in Pain
2.5. Risk of Bias
3. Discussion
4. Conclusions
- The key findings highlight consistent positive effects of onabotA on pain reduction across different pain scales and diverse patient populations with spasticity, e.g., stroke, MS, and CP.
- OnabotA intramuscular injections are an effective, well-tolerated treatment in the management of spasticity-related pain.
- Time points of assessment varied considerably across studies (1 to 96 weeks, with 12 weeks most commonly assessed), but this had no observable impact on the effect of onabotA on pain.
- Overall, 17 publications demonstrated a clinically meaningful (≥30%) reduction in pain with onabotA compared to baseline at some or all time points, ranging from 1 to 84 weeks.
- Studies were heterogeneous and used a range of subjective measures of pain. There is a need for future research to identify a standardized measure of spasticity-associated pain.
5. Materials and Methods
5.1. Search Methods
5.2. Study Selection
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lance, J.W. What is spasticity? Lancet 1990, 335, 606. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Wijck, F.V.; Burridge, J.; Hermens, H.; Johnson, G. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Ghosh, N.; Yanni, D.; Lee, S.; Alexandru, D.; Mozaffar, T. A Review of Spasticity Treatments: Pharmacological and Interventional Approaches. Crit. Rev. Phys. Rehabil. Med. 2013, 25, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, V.; Playford, D. Neurological rehabilitation and the management of spasticity. Medicine 2016, 40, 513–517. [Google Scholar] [CrossRef]
- Wissel, J.; Manack, A.; Brainin, M. Toward an epidemiology of poststroke spasticity. Neurology 2013, 80 (Suppl. 2), S13–S19. [Google Scholar] [CrossRef]
- Klit, H.; Finnerup, N.B.; Overvad, K.; Andersen, G.; Jensen, T.S. Pain following stroke: A population-based follow-up study. PLoS ONE 2011, 6, e27607. [Google Scholar] [CrossRef]
- Martinelli Boneschi, F.; Colombo, B.; Annovazzi, P.; Martinelli, V.; Bernasconi, L.; Solaro, C.; Comi, G. Lifetime and actual prevalence of pain and headache in multiple sclerosis. Mult. Scler. J. 2008, 14, 514–521. [Google Scholar] [CrossRef]
- Shaikh, A.; Phadke, C.P.; Ismail, F.; Boulias, C. Relationship Between Botulinum Toxin, Spasticity, and Pain: A Survey of Patient Perception. Can. J. Neurol. Sci. 2016, 43, 311–315. [Google Scholar] [CrossRef]
- Sjölund, B.H. Pain and rehabilitation after spinal cord injury: The case of sensory spasticity? Brain Res. Brain Res. Rev. 2002, 40, 250–256. [Google Scholar] [CrossRef]
- Van Der Slot, W.M.; Nieuwenhuijsen, C.; Van Den Berg-Emons, R.J.; Bergen, M.P.; Hilberink, S.R.; Stam, H.J.; Roebroeck, M.E. Chronic pain, fatigue, and depressive symptoms in adults with spastic bilateral cerebral palsy. Dev. Med. Child Neurol. 2012, 54, 836–842. [Google Scholar] [CrossRef]
- Wissel, J.; Schelosky, L.D.; Scott, J.; Christe, W.; Faiss, J.H.; Mueller, J. Early development of spasticity following stroke: A prospective, observational trial. J. Neurol. 2010, 257, 1067–1072. [Google Scholar] [CrossRef]
- Ward, A.B.; Kadies, M. The management of pain in spasticity. Disabil. Rehabil. 2002, 24, 443–453. [Google Scholar] [CrossRef]
- Mense, S. Neurobiological basis for the use of botulinum toxin in pain therapy. J. Neurol. 2004, 251 (Suppl. 1), I1–I7. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, C.; Harvey, R.; Gagnon, C.; Duraski, S.; Denby, F.; McCarty, S.; Bravi, L.; Polo, K.; Fierstein, K. Does Botulinum Toxin Type A Decrease Pain and Lessen Disability in Hemiplegic Survivors of Stroke with Shoulder Pain and Spasticity? A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Phys. Med. Rehabil./Assoc. Acad. Physiatr. 2012, 91, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Peck, J.; Urits, I.; Kassem, H.; Lee, C.; Robinson, W.; Cornett, E.M.; Berger, A.A.; Herman, J.; Jung, J.W.; Kaye, A.D.; et al. Interventional Approaches to Pain and Spasticity Related to Cerebral Palsy. Psychopharmacol. Bull. 2020, 50 (Suppl. 1), 108–120. [Google Scholar] [PubMed]
- Beard, S.; Hunn, A.; Wight, J. Treatments for spasticity and pain in multiple sclerosis: A systematic review. Health Technol. Assess. 2003, 7, iii, ix–x, 1–111. [Google Scholar] [CrossRef]
- Turner-Stokes, L.; Ward, A. Botulinum toxin in the management of spasticity in adults. Clin. Med. 2002, 2, 128–130. [Google Scholar] [CrossRef]
- Brin, M.F. Dosing, administration, and a treatment algorithm for use of botulinum toxin A for adult-onset spasticity. Spasticity Study Group. Muscle Nerve Suppl. 1997, 6, S208–S220. [Google Scholar] [CrossRef]
- Esquenazi, A.; Albanese, A.; Chancellor, M.B.; Elovic, E.; Segal, K.R.; Simpson, D.M.; Smith, C.P.; Ward, A.B. Evidence-based review and assessment of botulinum neurotoxin for the treatment of adult spasticity in the upper motor neuron syndrome. Toxicon 2013, 67, 115–128. [Google Scholar] [CrossRef]
- Esquenazi, A.; Jost, W.H.; Turkel, C.C.; Wein, T.; Dimitrova, R. Treatment of adult spasticity with Botox (onabotulinumtoxinA): Development, insights, and impact. Medicine 2023, 102, e32376. [Google Scholar] [CrossRef]
- Pathak, M.S.; Nguyen, H.T.; Graham, H.K.; Moore, A.P. Management of spasticity in adults: Practical application of botulinum toxin. Eur. J. Neurol. 2006, 13 (Suppl. 1), 42–50. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.M. Botulinum toxin type A therapy in chronic pain disorders. Arch. Phys. Med. Rehabil. 2003, 84 (Suppl. 1), S69–S73, quiz S74–S75. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, A.; Evans, R.W. OnabotulinumtoxinA for Chronic Migraine. Headache 2017, 57, E10–E16. [Google Scholar] [CrossRef] [PubMed]
- Kermen, R. Botulinum toxin for chronic pain conditions. Dis. Mon. 2016, 62, 353–357. [Google Scholar] [CrossRef]
- Burstein, R.; Zhang, X.; Levy, D.; Aoki, K.R.; Brin, M.F. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: Therapeutic implications for migraine and other pains. Cephalalgia 2014, 34, 853–869. [Google Scholar] [CrossRef]
- Jankovic, J.; Adler, C.H.; Charles, D.; Comella, C.; Stacy, M.; Schwartz, M.; Manack Adams, A.; Brin, M.F. Primary results from the cervical dystonia patient registry for observation of onabotulinumtoxina efficacy (CD PROBE). J. Neurol. Sci. 2015, 349, 84–93. [Google Scholar] [CrossRef]
- Marciniec, M.; Szczepanska-Szerej, A.; Papuc, E.; Rejdak, K. Targeting pain in the long-term treatment of cervical dystonia with botulinum toxin A. Int. J. Neurosci. 2022, 132, 1026–1030. [Google Scholar] [CrossRef]
- Aoki, K.R. Evidence for antinociceptive activity of botulinum toxin type A in pain management. Headache 2003, 43 (Suppl. 1), S9–S15. [Google Scholar] [CrossRef]
- Matak, I.; Bolcskei, K.; Bach-Rojecky, L.; Helyes, Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins 2019, 11, 459. [Google Scholar] [CrossRef]
- Brin, M.F. Entering the 4th decade of Botox (onabotulinumtoxinA): A narrative review of its development and impact on patients and medicine. Medicine 2023, 102, e32370. [Google Scholar] [CrossRef]
- Electronic Medicines Compendium. Summary of Product Characteristics, BOTOX 100 Units. Available online: https://www.medicines.org.uk/emc/medicine/112 (accessed on 5 August 2025).
- Electronic Medicines Compendium. Summary of Product Characteristics, Dysport 300 Units. Available online: https://www.medicines.org.uk/emc/medicine/870# (accessed on 5 August 2025).
- Electronic Medicines Compendium. Summary of Product Characteristics, Xeomin 200 Units, Powder for Solution for Injection. Available online: https://www.medicines.org.uk/emc/product/2162/smpc (accessed on 5 August 2025).
- Agenzia Italiana dei Farmaco. Foglio Illustrativo, Tossina Botulinica di Tipo A. 2024. Available online: https://api.aifa.gov.it/aifa-bdf-eif-be/1.0.0/organizzazione/3732/farmaci/34883/stampati?ts=FI (accessed on 9 August 2025).
- Government of Canada. New Labelling Information for all Botulinum Toxin Products: Botox/Botox Cosmetic, Dysport, Xeomin/Xeomin Cosmetic and Myobloc. 2013. Available online: https://healthycanadians.gc.ca/recall-alert-rappel-avis/hc-sc/2013/16787a-eng.php?_ga=1.42483045.1158135760.1472153358 (accessed on 9 August 2025).
- National Institute for Health and Care Excellence. BoNT-A for Treating Children and Young People with Spasticity. 2016. Available online: https://www.nice.org.uk/guidance/cg145/resources/spasticity-in-under-19s-management-pdf-35109572514757 (accessed on 9 August 2025).
- Brin, M.F.; Nelson, M.; Ashourian, N.; Brideau-Andersen, A.; Maltman, J. Update on Non-Interchangeability of Botulinum Neurotoxin Products. Toxins 2024, 16, 266. [Google Scholar] [CrossRef]
- Nasb, M.; Shah, S.Z.A.; Chen, H.; Youssef, A.S.; Li, Z.; Dayoub, L.; Noufal, A.; Allam, A.E.S.; Hassanien, M.; El Oumri, A.A.; et al. Constraint-Induced Movement Therapy Combined with Botulinum Toxin for Post-stroke Spasticity: A Systematic Review and Meta-Analysis. Cureus 2021, 13, e17645. [Google Scholar] [CrossRef] [PubMed]
- Bergfeldt, U.; Borg, K.; Kullander, K.; Julin, P. Focal spasticity therapy with botulinum toxin: Effects on function, activities of daily living and pain in 100 adult patients. J. Rehabil. Med. 2006, 38, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Childers, M.K.; Brashear, A.; Jozefczyk, P.; Reding, M.; Alexander, D.; Good, D.; Walcott, J.M.; Jenkins, S.W.; Turkel, C.; Molloy, P.T. Dose-dependent response to intramuscular botulinum toxin type A for upper-limb spasticity in patients after a stroke. Arch. Phys. Med. Rehabil. 2004, 85, 1063–1069. [Google Scholar] [CrossRef]
- De Boer, K.; Arwert, H.; De Groot, J.; Meskers, C.; Mishre, A.R.; Arendzen, J. Shoulder pain and external rotation in spastic hemiplegia do not improve by injection of botulinum toxin A into the subscapular muscle. J. Neurol. Neurosurg. Psychiatry 2008, 79, 581–583. [Google Scholar] [CrossRef]
- De Icco, R.; Perrotta, A.; Berra, E.; Allena, M.; Alfonsi, E.; Tamburin, S.; Serrao, M.; Sandrini, G.; Tassorelli, C. OnabotulinumtoxinA Reduces Temporal Pain Processing at Spinal Level in Patients with Lower Limb Spasticity. Toxins 2019, 11, 359. [Google Scholar] [CrossRef]
- Devier, D.; Harnar, J.; Lopez, L.; Brashear, A.; Graham, G. Rehabilitation plus OnabotulinumtoxinA Improves Motor Function over OnabotulinumtoxinA Alone in Post-Stroke Upper Limb Spasticity: A Single-Blind, Randomized Trial. Toxins 2017, 9, 216. [Google Scholar] [CrossRef]
- Esquenazi, A.; Bavikatte, G.; Bandari, D.S.; Jost, W.H.; Munin, M.C.; Tang, S.F.T.; Largent, J.; Adams, A.M.; Zuzek, A.; Francisco, G.E. Long-Term Observational Results from the ASPIRE Study: OnabotulinumtoxinA Treatment for Adult Lower Limb Spasticity. PM R 2021, 13, 1079–1093. [Google Scholar] [CrossRef]
- Francisco, G.E.; Jost, W.H.; Bavikatte, G.; Bandari, D.S.; Tang, S.F.T.; Munin, M.C.; Largent, J.; Adams, A.M.; Zuzek, A.; Esquenazi, A. Individualized OnabotulinumtoxinA Treatment for Upper Limb Spasticity Resulted in High Clinician- and Patient-Reported Satisfaction: Long-Term Observational Results from the ASPIRE Study. PM R 2020, 12, 1120–1133. [Google Scholar] [CrossRef]
- Gordon, M.F.; Brashear, A.; Elovic, E.; Kassicieh, D.; Marciniak, C.; Liu, J.; Turkel, C.; Group, B.P.S.S. Repeated dosing of botulinum toxin type A for upper limb spasticity following stroke. Neurology 2004, 63, 1971–1973. [Google Scholar] [CrossRef]
- Jog, M.; Wein, T.; Bhogal, M.; Dhani, S.; Miller, R.; Ismail, F.; Beauchamp, R.; Trentin, G. Real-World, Long-Term Quality of Life Following Therapeutic OnabotulinumtoxinA Treatment. Can. J. Neurol. Sci. 2016, 43, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Kaji, R.; Osako, Y.; Suyama, K.; Maeda, T.; Uechi, Y.; Iwasaki, M.; Group, G.S.K.S.S. Botulinum toxin type A in post-stroke upper limb spasticity. Curr. Med. Res. Opin. 2010, 26, 1983–1992. [Google Scholar] [CrossRef] [PubMed]
- Lannin, N.A.; Ada, L.; English, C.; Ratcliffe, J.; Faux, S.G.; Palit, M.; Gonzalez, S.; Olver, J.; Cameron, I.; Crotty, M. Effect of additional rehabilitation after botulinum toxin-A on upper limb activity in chronic stroke: The InTENSE trial. Stroke 2020, 51, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Lannin, N.A.; Ada, L.; English, C.; Ratcliffe, J.; Faux, S.; Palit, M.; Gonzalez, S.; Olver, J.; Schneider, E.; Crotty, M. Long-term effect of additional rehabilitation following botulinum toxin-A on upper limb activity in chronic stroke: The InTENSE randomised trial. BMC Neurol. 2022, 22, 154. [Google Scholar] [CrossRef]
- Lee, J.; Chun, M.H.; Ko, Y.J.; Lee, S.U.; Kim, D.Y.; Paik, N.J.; Kwon, B.S.; Park, Y.G. Efficacy and Safety of MT10107 (Coretox) in Poststroke Upper Limb Spasticity Treatment: A Randomized, Double-Blind, Active Drug-Controlled, Multicenter, Phase III Clinical Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1485–1496. [Google Scholar] [CrossRef]
- Lim, J.Y.; Koh, J.H.; Paik, N.J. Intramuscular botulinum toxin-A reduces hemiplegic shoulder pain: A randomized, double-blind, comparative study versus intraarticular triamcinolone acetonide. Stroke 2008, 39, 126–131. [Google Scholar] [CrossRef]
- Maanum, G.; Jahnsen, R.; Stanghelle, J.K.; Sandvik, L.; Keller, A. Effects of botulinum toxin A in ambulant adults with spastic cerebral palsy: A randomized double-blind placebo controlled-trial. J. Rehabil. Med. 2011, 43, 338–347. [Google Scholar] [CrossRef]
- Mancini, F.; Sandrini, G.; Moglia, A.; Nappi, G.; Pacchetti, C. A randomised, double-blind, dose-ranging study to evaluate efficacy and safety of three doses of botulinum toxin type A (Botox) for the treatment of spastic foot. Neurol. Sci. 2005, 26, 26–31. [Google Scholar] [CrossRef]
- Marciniak, C.; Rader, L.; Gagnon, C. The Use of Botulinum Toxin for Spasticity After Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2008, 87, 312–317. [Google Scholar] [CrossRef]
- Miscio, G.; Del Conte, C.; Pianca, D.; Colombo, R.; Panizza, M.; Schieppati, M.; Pisano, F. Botulinum toxin in post-stroke patients: Stiffness modifications and clinical implications. J. Neurol. 2004, 251, 189–196. [Google Scholar] [CrossRef]
- Reiter, F.; Danni, M.; Ceravolo, M.G.; Provinciali, L. Disability Changes After Treatment of Upper Limb Spasticity with Botulinum Toxin. J. Neurol. Rehabil. 1996, 10, 47–52. [Google Scholar] [CrossRef]
- Restivo, D.A.; Tinazzi, M.; Patti, F.; Palmeri, A.; Maimone, D. Botulinum toxin treatment of painful tonic spasms in multiple sclerosis. Neurology 2003, 61, 719–720. [Google Scholar] [CrossRef]
- Rousseaux, M.; Kozlowski, O.; Froger, J. Efficacy of botulinum toxin A in upper limb function of hemiplegic patients. J. Neurol. 2002, 249, 76–84. [Google Scholar] [CrossRef]
- Rousseaux, M.; Daveluy, W.; Kozlowski, O.; Allart, E. Onabotulinumtoxin-A injection for disabling lower limb flexion in hemiplegic patients. NeuroRehabilitation 2014, 35, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, C.; Ferreira, J.J.; Pinto, A.A.; Crespo, M.; Ferro, J.M.; Castro-Caldas, A. Botulinum toxin type A for the treatment of arm and hand spasticity in stroke patients. Clin. Rehabil. 1997, 11, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.G.; Paik, N.J.; Lee, S.U.; Oh, B.M.; Chun, M.H.; Kwon, B.S.; Bang, M.S. Neuronox versus BOTOX in the Treatment of Post-Stroke Upper Limb Spasticity: A Multicenter Randomized Controlled Trial. PLoS ONE 2015, 10, e0128633. [Google Scholar] [CrossRef]
- Simpson, D.M.; Alexander, D.N.; O’Brien, C.F.; Tagliati, M.; Aswad, A.S.; Leon, J.M.; Gibson, J.; Mordaunt, J.M.; Monaghan, E.P. Botulinum toxin type A in the treatment of upper extremity spasticity: A randomized, double-blind, placebo-controlled trial. Neurology 1996, 46, 1306–1310. [Google Scholar] [CrossRef]
- Slawek, J.; Bogucki, A.; Reclawowicz, D. Botulinum toxin type A for upper limb spasticity following stroke: An open-label study with individualised, flexible injection regimens. Neurol. Sci. 2005, 26, 32–39. [Google Scholar] [CrossRef]
- Suputtitada, A. Local botulinum toxin type A injections in the treatment of spastic toes. Am. J. Phys. Med. Rehabil. 2002, 81, 770–775. [Google Scholar] [CrossRef]
- Turhanoglu, A.D.; Karabulut, Z.; Bayram, H.; Turhanoglu, S.; Erdogan, F.; Apak, I.; Yayla, V. Botulinum toxin A in the treatment of spasticity—An open label study. J. Back Musculoskelet. Rehabil. 2002, 16, 51–56. [Google Scholar] [CrossRef]
- Wang, H.C.; Hsieh, L.F.; Chi, W.C.; Lou, S.M. Effect of intramuscular botulinum toxin injection on upper limb spasticity in stroke patients. Am. J. Phys. Med. Rehabil. 2002, 81, 272–278. [Google Scholar] [CrossRef]
- Wissel, J.; Müller, J.; Dressnandt, J.; Heinen, F.; Naumann, M.; Topka, H.; Poewe, W. Management of spasticity associated pain with botulinum toxin A. J. Pain Symptom Manag. 2000, 20, 44–49. [Google Scholar] [CrossRef]
- Wissel, J.; Ganapathy, V.; Ward, A.B.; Borg, J.; Ertzgaard, P.; Herrmann, C.; Haggstrom, A.; Sakel, M.; Ma, J.; Dimitrova, R.; et al. OnabotulinumtoxinA Improves Pain in Patients with Post-Stroke Spasticity: Findings from a Randomized, Double-Blind, Placebo-Controlled Trial. J. Pain Symptom Manag. 2016, 52, 17–26. [Google Scholar] [CrossRef]
- Zeuner, K.E.; Knutzen, A.; Kühl, C.; Möller, B.; Hellriegel, H.; Margraf, N.G.; Deuschl, G.; Stolze, H. Functional impact of different muscle localization techniques for Botulinum neurotoxin A injections in clinical routine management of post-stroke spasticity. Brain Inj. 2017, 31, 75–82. [Google Scholar] [CrossRef]
- Rowbotham, M.C. What is a “clinically meaningful” reduction in pain? Pain 2001, 94, 131–132. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 5 August 2025).
- Dong, Y.; Wu, T.; Hu, X.; Wang, T. Efficacy and safety of botulinum toxin type A for upper limb spasticity after stroke or traumatic brain injury: A systematic review with meta-analysis and trial sequential analysis. Eur. J. Phys. Rehabil. Med. 2017, 53, 256–267. [Google Scholar] [CrossRef]
- Hallett, M. Explanation of timing of botulinum neurotoxin effects, onset and duration, and clinical ways of influencing them. Toxicon 2015, 107 Pt A, 64–67. [Google Scholar] [CrossRef]
- Blackford, J.U. Leveraging Statistical Methods to Improve Validity and Reproducibility of Research Findings. JAMA Psychiatry 2017, 74, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Glaess-Leistner, S.; Ri, S.J.; Audebert, H.J.; Wissel, J. Early clinical predictors of post stroke spasticity. Top. Stroke Rehabil. 2021, 28, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Katoozian, L.; Tahan, N.; Zoghi, M.; Bakhshayesh, B. The Onset and Frequency of Spasticity After First Ever Stroke. J. Natl. Med. Assoc. 2018, 110, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Pundik, S.; McCabe, J.; Skelly, M.; Tatsuoka, C.; Daly, J.J. Association of spasticity and motor dysfunction in chronic stroke. Ann. Phys. Rehabil. Med. 2019, 62, 397–402. [Google Scholar] [CrossRef]
- Brashear, A.; Zafonte, R.; Corcoran, M.; Galvez-Jimenez, N.; Gracies, J.M.; Gordon, M.F.; McAfee, A.; Ruffing, K.; Thompson, B.; Williams, M.; et al. Inter- and intrarater reliability of the Ashworth Scale and the Disability Assessment Scale in patients with upper-limb poststroke spasticity. Arch. Phys. Med. Rehabil. 2002, 83, 1349–1354. [Google Scholar] [CrossRef]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. 11), S240–S252. [Google Scholar] [CrossRef]
- Kremer, E.; Atkinson, H.J.; Ignelzi, R.J. Measurement of pain: Patient preference does not confound pain measurement. Pain 1981, 10, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Phan, N.Q.; Blome, C.; Fritz, F.; Gerss, J.; Reich, A.; Ebata, T.; Augustin, M.; Szepietowski, J.C.; Ständer, S. Assessment of pruritus intensity: Prospective study on validity and reliability of the visual analogue scale, numerical rating scale and verbal rating scale in 471 patients with chronic pruritus. Acta Dermato-Venereol. 2012, 92, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Price, C.I.; Curless, R.H.; Rodgers, H. Can stroke patients use visual analogue scales? Stroke 1999, 30, 1357–1361. [Google Scholar] [CrossRef]
- Rosas, S.; Paço, M.; Lemos, C.; Pinho, T. Comparison between the Visual Analog Scale and the Numerical Rating Scale in the perception of esthetics and pain. Int. Orthod. 2017, 15, 543–560. [Google Scholar] [CrossRef]
- Scott, J.; Huskisson, E.C. Vertical or horizontal visual analogue scales. Ann. Rheum. Dis. 1979, 38, 560. [Google Scholar] [CrossRef]
- Bavikatte, G.; Francisco, G.E.; Jost, W.H.; Baricich, A.; Duarte, E.; Tang, S.F.T.; Schwartz, M.; Nelson, M.; Musacchio, T.; Esquenazi, A. Pain, disability, and quality of life in participants after concurrent onabotulinumtoxinA treatment of upper and lower limb spasticity: Observational results from the ASPIRE study. PM R 2024, 16, 1175–1189. [Google Scholar] [CrossRef]
- Ye, D.H.; Chun, M.H.; Park, Y.G.; Paik, N.J.; Lee, S.U.; Yoo, S.D.; Kim, D.Y. A Randomized, Double-Blind, Active Control, Multicenter, Phase 3 Study to Evaluate the Efficacy and Safety of Liztox((R)) versus Botox((R)) in Post-Stroke Upper Limb Spasticity. Toxins 2023, 15, 697. [Google Scholar] [CrossRef]
- Cameron, I.D.; Ada, L.; Crotty, M.; Palit, M.; Huang, L.; Olver, J.; Faux, S.G.; Gonzales, S.; Anthonisz, B.; Bowman, M.; et al. The Lack of Effect of Botulinum Toxin-A on Upper Limb Activity in Chronic Stroke: A Short Report from the InTENSE Trial. Toxins 2024, 16, 510. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
Criteria | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Adults (≥18 years) with (any) spasticity (upper and/or lower limb) |
|
Intervention | Studies involving onabotulinumtoxinA (BOTOX®, onabotulinum, onabotA, OBT-A) | Studies not evaluating onabotA |
Comparator | Any comparator | None |
Outcomes | Studies reporting on the following clinical outcomes for the population of interest were included:
| Studies not reporting at least one of the outcomes of interest |
Study design/publication type |
|
|
Timeframe |
|
|
Author, Year | Study Design | Population | Cohort | Country | Pain Scale Description |
---|---|---|---|---|---|
Bergfeldt 2006 [39] | Observational (retrospective analysis) | Focal spasticity in patients with CP, stroke, and TBI | Overall cohort (n = 100) | Sweden | VAS (details NR) |
Childers 2004 [40] | RCT (double-blind, placebo-controlled) | Post-stroke focal upper limb spasticity | Placebo (n = 26) OnabotA 90U (n = 21) OnabotA 180U (n = 23) OnabotA 360U (n = 21) | United States | 5-point frequency of pain scale (0 = never, 4 = constant) 5-point severity of pain scale (0 = none, 4 = very severe/intolerable) |
deBoer 2008 [41] | RCT (double-blind, placebo-controlled) | Stroke patients with spastic hemiplegia | OnabotA (n = 10) Placebo (n = 11) | The Netherlands | VAS (0–10 cm, 0 = no pain, 10 = worst pain) |
De Icco 2019 [42] | Observational (open-label study) | Stroke, MS, and SCI with spasticity and pain with neuropathic features | Overall cohort (n = 25) Stroke (n = 10) MS (n = 10) SCI (n = 5) | Italy | NPSI NRS (0–10, 0 = no sensation, 10 = unbearable pain, with pain threshold verbally anchored to 5) |
Devier 2017 [43] | RCT (single-blind) | Post-stroke upper limb spasticity | OnabotA + Rehab (n = 15) OnabotA (n = 16) | United States | Fugl-Meyer subscale rating pain during passive ROM |
ASPIRE, Esquenazi 2021 * [44] | Observational (multicenter, prospective, observational registry) | Adults across multiple etiologies with lower limb spasticity related to upper motor neuron syndrome | Overall cohort (n = 530) | France, Germany, Italy, Spain, Taiwan, United States, United Kingdom | DAS (0–3, 0 = no disability, 3 = severe disability) NRS (0–10, 0 = no sensation, 10 = unbearable pain) |
ASPIRE, Francisco 2020 * [45] | Observational (multicenter, prospective, observational registry) | Adults across multiple etiologies with upper limb spasticity related to upper motor neuron syndrome | Overall cohort (n = 484) | France, Germany, Italy, Spain, Taiwan, United States, United Kingdom | DAS (0–3, 0 = no disability, 3 = severe disability) NRS (0–10, 0 = no sensation, 10 = unbearable pain) |
Gordon 2004 [46] | Observational (open label) | Post-stroke spasticity | Overall cohort (n = 111) | United States | DAS (0–3, 0 = no disability, 3 = severe disability) |
Jog 2016 [47] | Observational (prospective) | Adult focal spasticity, blepharospasm, cerebral palsy, cervical dystonia, hemifacial spasm, and hyperhidrosis | Adult focal spasticity: OnabotA naïve (n = 151) OnabotA maintenance (n = 247) CP: OnabotA naïve (n = 4) OnabotA maintenance (n = 18) | Canada | SF-6D (bodily pain sub-domain) |
Kaji 2010 [48] | RCT (double-blind, parallel-group, placebo-controlled) | Post-stroke upper limb spasticity | High-dose onabotA (n = 51) High-dose placebo (n = 26) Low-dose onabotA (n = 21) Low-dose placebo (n = 11) | Japan | DAS (0–3, 0 = no disability, 3 = severe disability) |
InTENSE, Lannin 2020 ** [49] Lannin 2022 ** [50] | RCT (phase III, single-blind) | Post-stroke patients with upper limb spasticity | Overall cohort (n = 140) | Australia | VAS (0–10 cm, 0 = no pain, 10 = worst pain) |
Lee 2020 [51] | RCT (double-blind, active drug-controlled, phase III clinical) | Post-stroke upper limb spasticity | OnabotA (n = 109) Coretox® (n = 110) | Republic of Korea | DAS (0–3, 0 = no disability, 3 = severe disability) |
Lim 2008 [52] | RCT (double-blind, comparative) | Patients with hemiplegic shoulder pain | OnabotA (n = 16) Triamcinolone acetonide (n = 13) | South Korea | NRS (on a scale of 0–10, where 0 = no pain and 10 = highest pain level) during passive ROM of the shoulder in four planes (forward flexion, abduction, external and internal rotation) |
Maanum 2011 [53] | RCT (double-blind, placebo-controlled) | Adults with spastic cerebral palsy | OnabotA (n = 33) Placebo (n = 33) | Norway | SF-36 (bodily pain sub-domain) |
Mancini 2005 [54] | RCT (double-blind, dose-ranging) | Lower limb post-stroke spasticity | Low-dose onabotA (n = 15) Medium-dose onabotA (n = 15) High-dose onabotA (n = 15) | Italy | VAS (0–10 cm, 0 = no pain, 10 = worst pain) |
Marciniak 2008 [55] | Observational (retrospective chart review) | SCI receiving their first injection of onabotA for spasticity control | Overall cohort (n = 28) | United States | Patient-reported improvement |
Marciniak 2012 [14] | RCT (double-blind, placebo-controlled) | Post-stroke patients reporting pain associated with tightness of the shoulder muscles | OnabotA (n = 10) Control (saline) (n = 11) | United States | DAS (0–3, 0 = no disability, 3 = severe disability) MPQ (0–78, 0 = no pain, 78 = excruciating pain) VAS (0–10 cm, 0 = no pain, 10 = worst pain; assessing pain at its best, worst, pain with upper body dressing, and sleep interference caused by pain) |
Miscio 2004 [56] | Observational | Chronic post-stroke patients with wrist spasticity | OnabotA (n = 12) AbobotulinumtoxinA (Dysport®) (n = 6) | Italy | VAS (0–10 cm, 0 = no pain, 10 = worst pain) |
Reiter 1996 [57] | Observational (open-label, single-arm, single-blind) | Patients with post-stroke spasticity | Overall cohort (n = 17) | Italy | VAS (details NR) |
Restivo 2003 [58] | Observational | Patients with MS and painful tonic spasms | Overall cohort (n = 5) | Italy | 4-point intensity of pain score (0 = no pain, 1 = mild, 2 = moderate, 3 = severe) |
Rousseaux 2002 [59] | Observational | Hemiplegic patients resulting from stroke | Overall cohort (n = 20) | France | NRS (0–6, 0 = no pain, 6 = permanent and unbearable pain) |
Rousseaux 2014 [60] | Observational (open-label) | Patients who had suffered a unilateral stroke or TBI with disabling lower limb flexion | Overall cohort (n = 11) | France | VAS (0–10, 0 = no pain, 10 = unbearable pain) |
Sampaio 1997 [61] | Observational (phase III, open-label) | Patients with arm spasticity due to stroke | Overall cohort (n = 19) | Portugal | NRS of pain severity (0 = best score, 5 = worst score) |
Seo 2015 [62] | RCT (double-blind, active drug-controlled, phase III) | Stroke patients with moderate to severe upper limb spasticity | OnabotA (n = 98) Neuronox® (n = 94) | South Korea | DAS (0–3, 0 = no disability, 3 = severe disability) |
Simpson 1996 [63] | RCT (graduated dose, double-blind, parallel-group, placebo-controlled) | Patients at least 9 months post-stroke with upper limb spasticity | Low-dose onabotA (75U) (n = 9) Medium-dose onabotA (150U) (n = 9) High-dose onabotA (300U) (n = 9) Placebo (n = 10) | United States | Pain assessment † |
Slawek 2005 [64] | Observational (open-label, prospective) | Stroke patients with upper limb spasticity | Overall cohort (n = 21) | Poland | VAS (details NR) |
Suputtitada 2002 [65] | Observational (open-label, prospective) | Hemiplegic patients with spastic toes | Overall cohort (n = 20) | Thailand | VAS (0–100, 0 = no pain and 100 = maximum pain) |
Turhanoglu 2002 [66] | Observational (open-label) | Patients with spasticity from stroke-related hemiplegia, transverse myelitis, and MS | Overall cohort (n = 23) | Turkey | VAS (0–10, 0 = no pain and 10 = worst pain imaginable) |
Wang 2002 [67] | Observational (open-label, non-controlled) | Patients with post-stroke upper limb spasticity and dysfunction undergoing rehabilitation | Overall cohort (n = 16) | China | Limb pain (0–10, 0 = no pain and 10 = maximum pain) |
Wissel 2000 [68] | Observational (prospective) | Patients with upper and/or lower limb spasticity due to upper motor neuron syndrome and pain as the primary spasticity-related complaint | Overall cohort (n = 60) Acute spasticity (n = 17) Chronic spasticity (n = 43) | Germany, Austria | Patient Evaluation of Global Response to OnabotA Treatment: -4 = Marked worsening in severity of pain and functioning -3 = Moderate worsening severity of pain causing decline in function -2 = Moderate worsening severity of pain, no change in function -1 = Mild worsening in severity of pain, no change in function 0 = No effect +1 = Mild improvement in severity of pain, no change in function +2 = Moderate improvement in severity of pain, no change in function +3 = Moderate improvement in severity of pain causing functional improvement +4 = Marked improvement in severity of pain and in function |
Wissel 2016 [69] | RCT (double-blind, placebo-controlled) | Patients with post-stroke spasticity | OnabotA + standard care (n = 139) Placebo + standard care (n = 134) | Germany, Sweden, United Kingdom, Canada | NRS (0–10, 0 = no pain and 10 = worst imaginable pain) |
Zeuner 2017 [70] | RCT (single-blind) | Patients with post-stroke spasticity | Ultrasound-guided injection (n = 5) Electromyographic-guided injection (n = 7) Control (n = 11) | Germany | DAS (0–3, 0 = no disability, 3 = severe disability), EQ-5D |
Author, Year | Randomization Process | Deviations from Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Results | Overall Bias |
---|---|---|---|---|---|---|
Childers 2004 [40] | ||||||
De Boer 2008 [41] | ||||||
Devier 2017 [43] | ||||||
Kaji 2020 [48] | ||||||
Lannin 2020 [49] | ||||||
Lannin 2022 [50] | ||||||
Lee 2020 [51] | ||||||
Lim 2008 [52] | ||||||
Maanum 2011 [53] | ||||||
Mancini 2005 [54] | ||||||
Marciniak 2012 [14] | ||||||
Seo 2015 [62] | ||||||
Simpson 1996 [63] | ||||||
Wissel 2016 [69] | ||||||
Zeuner 2017 [70] | ||||||
High risk | Some concerns | Low risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, F.; Nelson, M.; Wissel, J.; Kim, H.; Traut, A.; Shah, D.; Musacchio, T.; Jabbari, B. OnabotulinumtoxinA in the Management of Pain in Adult Patients with Spasticity: A Systematic Literature Review. Toxins 2025, 17, 418. https://doi.org/10.3390/toxins17080418
Bianchi F, Nelson M, Wissel J, Kim H, Traut A, Shah D, Musacchio T, Jabbari B. OnabotulinumtoxinA in the Management of Pain in Adult Patients with Spasticity: A Systematic Literature Review. Toxins. 2025; 17(8):418. https://doi.org/10.3390/toxins17080418
Chicago/Turabian StyleBianchi, Francesca, Mariana Nelson, Jörg Wissel, Heakyung Kim, Alexandra Traut, Darshini Shah, Tiziana Musacchio, and Bahman Jabbari. 2025. "OnabotulinumtoxinA in the Management of Pain in Adult Patients with Spasticity: A Systematic Literature Review" Toxins 17, no. 8: 418. https://doi.org/10.3390/toxins17080418
APA StyleBianchi, F., Nelson, M., Wissel, J., Kim, H., Traut, A., Shah, D., Musacchio, T., & Jabbari, B. (2025). OnabotulinumtoxinA in the Management of Pain in Adult Patients with Spasticity: A Systematic Literature Review. Toxins, 17(8), 418. https://doi.org/10.3390/toxins17080418