Phytochemistry, Mode of Action Predictions, and Synergistic Potential of Hypenia irregularis Essential Oil Mixtures for Controlling Aedes aegypti
Abstract
1. Introduction
2. Results
2.1. Identification of Peaks in GC–MS of Essential Oils
2.2. Toxicity of Essential Oils to Aedes aegypti Third-Instar Larvae
2.3. Molecular Modeling Predictions
2.4. Repellence of Essential Oils Against Aedes aegypti Adults
2.5. Oviposition Deterrence Effects in Aedes aegypti Mediated by Essential Oils
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Essential Oil Extraction
5.2. Gas Chromatography (GC) Analysis
5.3. Origin and Maintenance of Aedes aegypti Mosquitoes
5.4. Bioassays of Toxicity
5.5. Molecular Modeling Analysis
5.6. Repellence Test
5.7. Oviposition Deterrence Test
5.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Dimethyl sulfoxide | DMSO |
N,N-diethyl-meta-toluamide | DEET |
Hypenia iregularis | Hypt. irregularis |
Morinda citrifolia | M. citrifolia |
Hyptis crenata | Hypt. crenata |
Cymbopogom citratus | C. citratus |
Aedes aegypti | A. aegypti |
Acetylcholinesterase | AChE |
Glutathione S-transferase | GST |
γ-aminobutyric acid | GABA |
Transient receptor potential | TRP |
Gas Chromatography coupled with Mass Spectrometry | GC–MS |
References
- Suresh, Y.; Azil, A.H.; Abdullah, S.R. A scoping review on the use of different blood sources and components in the artificial membrane feeding system and its effects on blood-feeding and fecundity rate of Aedes aegypti. PLoS ONE 2024, 19, e0295961. [Google Scholar] [CrossRef]
- Alves, L. Brazil to start widespread dengue vaccinations. Lancet 2024, 403, 133. [Google Scholar] [CrossRef]
- Taylor, L. Dengue fever: Brazil rushes out vaccine as climate change fuels unprecedented surge. BMJ 2024, 384, q483. [Google Scholar] [CrossRef]
- Haris, A.; Azeem, M.; Binyameen, M. Mosquito Repellent Potential of Carpesium abrotanoides Essential Oil and Its Main Components Against a Dengue Vector, Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2022, 59, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Soonwera, M.; Moungthipmalai, T.; Aungtikun, J.; Sittichok, S. Combinations of plant essential oils and their major compositions inducing mortality and morphological abnormality of Aedes aegypti and Aedes albopictus. Heliyon 2022, 8, e09346. [Google Scholar] [CrossRef] [PubMed]
- Sanei-Dehkordi, A.; Hatami, S.; Zarenezhad, E.; Montaseri, Z.; Osanloo, M. Efficacy of nanogels containing carvacrol, cinnamaldehyde, thymol, and a mix compared to a standard repellent against Anopheles stephensi. Ind. Crops Prod. 2022, 189, 115883. [Google Scholar] [CrossRef]
- Norris, E.J.; Bloomquist, J.R. Co-Toxicity factor analysis reveals numerous plant essential oils are synergists of natural pyrethrins against Aedes aegypti mosquitoes. Insects 2021, 12, 154. [Google Scholar] [CrossRef]
- Haddi, K.; Tomé, H.V.V.; Du, Y.; Valbon, W.R.; Nomura, Y.; Martins, G.F.; Dong, K.; Oliveira, E.E. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: A potential challenge for mosquito control. Sci. Rep. 2017, 7, 46549. [Google Scholar] [CrossRef]
- Moungthipmalai, T.; Puwanard, C.; Aungtikun, J.; Sittichok, S.; Soonwera, M. Ovicidal toxicity of plant essential oils and their major constituents against two mosquito vectors and their non-target aquatic predators. Sci. Rep. 2023, 13, 2119. [Google Scholar] [CrossRef]
- Radhakrishnan, N.; Karthi, S.; Raghuraman, P.; Ganesan, R.; Srinivasan, K.; Edwin, E.-S.; Ganesh-Kumar, S.; Mohd Esa, N.; Senthil-Nathan, S.; Vasantha-Srinivasan, P.; et al. Chemical screening and mosquitocidal activity of essential oil derived from Mikania scandens (L.) Willd. against Anopheles gambiae Giles and their non-toxicity on mosquito predators. All Life 2023, 16, 2169959. [Google Scholar] [CrossRef]
- Pavela, R.; Govindarajan, M. The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J. Pest Sci. 2017, 90, 369–378. [Google Scholar] [CrossRef]
- Costa, L.T.M.; Smagghe, G.; Viteri Jumbo, L.O.; Santos, G.R.; Aguiar, R.W.S.; Oliveira, E.E. Selective actions of plant-based biorational insecticides: Molecular mechanisms and reduced risks to non-target organisms. Curr. Opin. Environ. Sci. Health. 2025, 44, 100601. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Toledo, P.F.S.; Viteri Jumbo, L.O.; Rezende, S.M.; Haddi, K.; Silva, B.A.; Mello, T.S.; Della Lucia, T.M.C.; Aguiar, R.W.S.; Smagghe, G.; Oliveira, E.E. Disentangling the ecotoxicological selectivity of clove essential oil against aphids and non-target ladybeetles. Sci. Total Environ. 2020, 718, 137328. [Google Scholar] [CrossRef]
- Jumbo, L.O.V.; Corrêa, M.J.M.; Gomes, J.M.; Armijos, M.J.G.; Valarezo, E.; Mantilla-Afanador, J.G.; Machado, F.P.; Rocha, L.; Aguiar, R.W.S.; Oliveira, E.E. Potential of Bursera graveolens essential oil for controlling bean weevil infestations: Toxicity, repellence, and action targets. Ind. Crops Prod. 2022, 178, 114611. [Google Scholar] [CrossRef]
- Shaaya, E.; Rafaeli, A. Essential Oils as Biorational Insecticides–Potency and Mode of Action. In Insecticides Design Using Advanced Technologies; Ishaaya, I., Horowitz, A.R., Nauen, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 249–261. [Google Scholar]
- Duque, J.E.; Urbina, D.L.; Vesga, L.C.; Ortiz-Rodríguez, L.A.; Vanegas, T.S.; Stashenko, E.E.; Mendez-Sanchez, S.C. Insecticidal activity of essential oils from American native plants against Aedes aegypti (Diptera: Culicidae): An introduction to their possible mechanism of action. Sci. Rep. 2023, 13, 2989. [Google Scholar] [CrossRef] [PubMed]
- Chebbac, K.; Benziane Ouaritini, Z.; Allali, A.; Tüzün, B.; Zouirech, O.; Chalkha, M.; El Moussaoui, A.; Lafraxo, S.; Nafidi, H.-A.; Bin Jardan, Y.A.; et al. Promising insecticidal properties of essential oils from Artemisia aragonensis Lam. and Artemisia negrei L. (Asteraceae) by targeting gamma-aminobutyric aacid and Ryanodine Receptor Proteins: In vitro and in silico approaches. Separations 2023, 10, 329. [Google Scholar] [CrossRef]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules 2018, 23, 34. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Awad, M.; Alfuhaid, N.A.; Amer, A.; Hassan, N.N.; Moustafa, M.A.M. Towards sustainable Pest Management: Toxicity, biochemical effects, and molecular Docking analysis of Ocimum basilicum (Lamiaceae) essential Oil on Agrotis ipsilon and Spodoptera littoralis (Lepidoptera: Noctuidae). Neotrop. Entomol. 2024, 53, 669–681. [Google Scholar] [CrossRef]
- da Cruz Araujo, S.H.; Mantilla-Afanador, J.G.; Svacina, T.; Nascimento, T.F.; da Silva Lima, A.; Camara, M.B.P.; Viteri Jumbo, L.O.; dos Santos, G.R.; da Rocha, C.Q.; de Oliveira, E.E. Contributions of γ-Aminobutyric Acid (GABA) Receptors for the Activities of Pectis brevipedunculata Essential Oil against Drosophila suzukii and Pollinator Bees. Plants 2024, 13, 1392. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Plata-Rueda, A.; Martínez, L.C.; Rolim, G.d.S.; Coelho, R.P.; Santos, M.H.; Tavares, W.d.S.; Zanuncio, J.C.; Serrão, J.E. Insecticidal and repellent activities of Cymbopogon citratus (Poaceae) essential oil and its terpenoids (citral and geranyl acetate) against Ulomoides dermestoides. Crop. Prot. 2020, 137, 105299. [Google Scholar] [CrossRef]
- Possel, R.D.; Souza, T.P.; Oliveira, D.M.; Ferreira, M.O.; Dias, D.P.; Moraes, G.K.A.; Ferraz, L.F.; Ferreira, T.P.; Fernandes, A.C.; Didonet, J. Larvicide and repellent activity of Hypenia irregularis (Benth.) Harley in the alternative control of mosquito Aedes aegypti. J. Med. Plants Res. 2020, 14, 535–543. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S.; Oyebamiji, A.K.; Olugbeko, S.C. Mosquito repellent and antibacterial efficiency of facile and low-cost silver nanoparticles synthesized using the leaf extract of Morinda citrifolia. Plasmonics 2021, 16, 1645–1656. [Google Scholar] [CrossRef]
- Nelson, S.C. Morinda citrifolia L. Rubiaceae (Rubioideae) Coffee Family; Permanent Agriculture Resources: Holualoa, HI, USA, 2003. [Google Scholar]
- Kovendan, K.; Murugan, K.; Shanthakumar, S.P.; Vincent, S.; Hwang, J.-S. Larvicidal activity of Morinda citrifolia L. (Noni) (Family: Rubiaceae) leaf extract against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. Parasitol. Res. 2012, 111, 1481–1490. [Google Scholar] [CrossRef]
- Violante, I.M.P.; Garcez, W.S.; da Silva Barbosa, C.; Garcez, F.R. Chemical composition and biological activities of essential oil from Hyptis crenata growing in the Brazilian cerrado. Nat. Prod. Commun. 2012, 7, 1934578X1200701037. [Google Scholar] [CrossRef]
- Nazzi, F.; Bortolomeazzi, R.; Della Vedova, G.; Del Piccolo, F.; Annoscia, D.; Milani, N. Octanoic acid confers to royal jelly varroa-repellent properties. Naturwissenschaften 2009, 96, 309–314. [Google Scholar] [CrossRef]
- Tabari, M.A.; Youssefi, M.R.; Maggi, F.; Benelli, G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet. Parasitol. 2017, 245, 86–91. [Google Scholar] [CrossRef]
- Diabate, S.; Martin, T.; Murungi, L.K.; Fiaboe, K.K.M.; Subramanian, S.; Wesonga, J.; Deletre, E. Repellent activity of Cymbopogon citratus and Tagetes minuta and their specific volatiles against Megalurothrips sjostedti. J. Appl. Entomol. 2019, 143, 855–866. [Google Scholar] [CrossRef]
- Lü, J.; Liu, S. The behavioral response of Lasioderma serricorne (Coleoptera: Anobiidae) to citronellal, citral, and rutin. SpringerPlus 2016, 5, 798. [Google Scholar] [CrossRef]
- Hou, X.-Q.; Zhang, D.-D.; Powell, D.; Wang, H.-L.; Andersson, M.N.; Löfstedt, C. Ionotropic receptors in the turnip moth Agrotis segetum respond to repellent medium-chain fatty acids. BMC Biology 2022, 20, 34. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.T.; Costa, D.P.; Vilela, E.C.; Ribeiro, D.G.; Ferreira, H.D.; Santos, S.C.; Seraphin, J.C.; Ferri, P.H. Chemotaxonomic markers in essential oils of Hypenia (Mart. ex Benth.) R. Harley. J. Braz. Chem. Soc. 2012, 23, 1844–1852. [Google Scholar] [CrossRef]
- Lima, M.N.N.d.; Costa, J.S.d.; Guimarães, B.A.; Freitas, J.J.S.; Setzer, W.N.; Silva, J.K.R.d.; Maia, J.G.S.; Figueiredo, P.L.B. Chemometrics of the composition and antioxidant capacity of Hyptis crenata essential oils from Brazil. Molecules 2023, 28, 3371. [Google Scholar] [CrossRef]
- Almeida, É.S.; de Oliveira, D.; Hotza, D. Properties and Applications of Morinda citrifolia (Noni): A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 883–909. [Google Scholar] [CrossRef]
- Mwithiga, G.; Maina, S.; Muturi, P.; Gitari, J. Lemongrass Cymbopogon flexuosus growth rate, essential oil yield and composition as influenced by different soil conditioners under two watering regimes. Heliyon 2024, 10, e25540. [Google Scholar] [CrossRef]
- Santana, A.d.S.; Baldin, E.L.L.; Santos, T.L.B.d.; Baptista, Y.A.; dos Santos, M.C.; Lima, A.P.S.; Tanajura, L.S.; Vieira, T.M.; Crotti, A.E.M. Synergism between essential oils: A promising alternative to control Sitophilus zeamais (Coleoptera: Curculionidae). Crop. Prot. 2022, 153, 105882. [Google Scholar] [CrossRef]
- Dalcin, M.S.; Dias, B.L.; Viteri Jumbo, L.O.; Oliveira, A.C.S.S.; Araújo, S.H.C.; Moura, W.S.; Mourão, D.S.C.; Ferreira, T.P.S.; Campos, F.S.; Cangussu, A.S.R.; et al. Potential action mechanism and inhibition efficacy of Morinda citrifolia essential oil and octanoic acid against Stagonosporopsis cucurbitacearum infestations. Molecules 2022, 27, 5173. [Google Scholar] [CrossRef]
- Osorio, P.R.A.; Dias, F.R.; Mourão, D.S.C.; Araujo, S.H.C.; Toledo, P.F.S.; Silva, A.C.F.; Viera, W.A.S.; Câmara, M.P.S.; Moura, W.S.; Aguiar, R.W.A.; et al. Essential oil of Noni, Morinda citrifolia L., fruits controls the rice stem-rot disease without detrimentally affect beneficial fungi and ladybeetles. Ind. Crops Prod. 2021, 170, 113728. [Google Scholar] [CrossRef]
- de Lima, M.N.N.; Guimarães, B.A.; de Castro, A.L.S.; Ribeiro, K.B.; Miller, D.C.; da Silva, P.I.C.; Freitas, J.J.S.; de Lima, A.B.; Setzer, W.N.; da Silva, J.K.R.; et al. Chemical composition and antinociceptive and anti-inflammatory activity of the essential oil of Hyptis crenata Pohl ex Benth. from the Brazilian Amazon. J. Ethnopharmacol. 2023, 300, 115720. [Google Scholar] [CrossRef]
- Loko, Y.L.E.; Medegan Fagla, S.; Kassa, P.; Ahouansou, C.A.; Toffa, J.; Glinma, B.; Dougnon, V.; Koukoui, O.; Djogbenou, S.L.; Tamò, M.; et al. Bioactivity of essential oils of Cymbopogon citratus (DC) Stapf and Cymbopogon nardus (L.) W. Watson from Benin against Dinoderus porcellus Lesne (Coleoptera: Bostrichidae) infesting yam chips. Int. J. Trop. Insect Sci. 2021, 41, 511–524. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Wrońska, A.K.; Kazek, M.; Boguś, M.I. Octanoic ccid—An insecticidal metabolite of Conidiobolus coronatus (Entomopthorales) that affects two majors antifungal protection systems in Galleria mellonella (Lepidoptera): Cuticular lipids and hemocytes. Int. J. Mol. Sci. 2022, 23, 5204. [Google Scholar] [CrossRef]
- Zhang, H.; Dolan, H.L.; Ding, Q.; Wang, S.; Tikekar, R.V. Antimicrobial action of octanoic acid against Escherichia coli O157:H7 during washing of baby spinach and grape tomatoes. Food Res. Int. 2019, 125, 108523. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Li, Q.-Y.; Ren, L.; Guo, C.; Qu, J.-P.; Gao, Z.; Wang, H.-F.; Zhang, Q.; Zhou, B. Transcriptomic and physiological analysis of the effect of octanoic acid on Meloidogyne incognita. Pestic. Biochem. Physiol. 2023, 193, 105432. [Google Scholar] [CrossRef]
- Holanda, L.; Bezerra, G.B.; Ramos, C.S. Potent antifungal activity of essential oil from Morinda citrifolia fruits rich in short-chain fatty acids. Int. J. Fruit Sci. 2020, 20, S448–S454. [Google Scholar] [CrossRef]
- Rani, S.; Singh, H.; Ram, C. Efficacy and mechanism of carvacrol with octanoic acid against mastitis causing multi-drug-resistant pathogens. Braz. J. Microbiol. 2022, 53, 385–399. [Google Scholar] [CrossRef]
- Owolabi, M.S.; Lajide, L.; Villanueva, H.E.; Setzer, W.N. Essential oil composition and insecticidal activity of Blumea perrottetiana growing in Southwestern Nigeria. Nat. Prod. Commun. 2010, 5, 1135–1138. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; Rajeswary, M.; Senthilmurugan, S.; Vijayan, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M. Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: The promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol. Res. 2017, 116, 1175–1188. [Google Scholar] [CrossRef]
- Getahun, T.; Sharma, V.; Kumar, D.; Gupta, N. Chemical composition, and antibacterial and antioxidant activities of essential oils from Laggera tomentosa Sch. Bip. ex Oliv. et Hiern (Asteraceae). Turk. J. Chem. 2020, 44, 1539–1548. [Google Scholar] [CrossRef]
- Gonfa, Y.H.; Tessema, F.B.; Gelagle, A.A.; Getnet, S.D.; Tadesse, M.G.; Bachheti, A.; Bachheti, R.K. Chemical compositions of essential oil from aerial parts of Cyclospermum leptophyllum and its application as antibacterial activity against some food spoilage bacteria. J. Chem. 2022, 2022, 5426050. [Google Scholar] [CrossRef]
- Park, J.-H.; Jeon, Y.-J.; Lee, C.-H.; Chung, N.; Lee, H.-S. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci. Rep. 2017, 7, 40902. [Google Scholar] [CrossRef]
- Youssefi, M.R.; Tabari, M.A.; Esfandiari, A.; Kazemi, S.; Moghadamnia, A.A.; Sut, S.; Dall’Acqua, S.; Benelli, G.; Maggi, F. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the west nile vector Culex pipiens. Molecules 2019, 24, 1867. [Google Scholar] [CrossRef]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of Carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef]
- Kessler, A.; Sahin-Nadeem, H.; Lummis, S.C.R.; Weigel, I.; Pischetsrieder, M.; Buettner, A.; Villmann, C. GABAA receptor modulation by terpenoids from Sideritis extracts. Mol. Nutr. Food Res. 2014, 58, 851–862. [Google Scholar] [CrossRef]
- Trailović, S.M.; Marjanović, D.S.; Nedeljković Trailović, J.; Robertson, A.P.; Martin, R.J. Interaction of carvacrol with the Ascaris suum nicotinic acetylcholine receptors and gamma-aminobutyric acid receptors, potential mechanism of antinematodal action. Parasitol. Res. 2015, 114, 3059–3068. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.X.; Song, B. Pesticidal activity and mode of action of monoterpenes. J. Agric. Food Chem. 2022, 70, 4556–4571. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Gross, A.D.; Dolan, M.C.; Coats, J.R. The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor. Pest Manag. Sci 2013, 69, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Gad, H.A.; Ramadan, G.R.M.; El-Bakry, A.M.; El-Sabrout, A.M.; Abdelgaleil, S.A.M. Monoterpenes: Promising natural products for public health insect control- A review. Int. J. Trop. Insect Sci. 2022, 42, 1059–1075. [Google Scholar] [CrossRef]
- Khanikor, B.; Parida, P.; Yadav, R.; Bora, D. Comparative mode of action of some terpene compounds against octopamine receptor and acetyl cholinesterase of mosquito and human system by the help of homology modeling and docking studies. J. Appl. Pharm. Sci. 2013, 3, 006–012. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1,8-cineole). Parasitol. Res. 2013, 112, 69–76. [Google Scholar] [CrossRef]
- Dancewicz, K.; Szumny, A.; Wawrzeńczyk, C.; Gabryś, B. Repellent and antifeedant activities of Citral-Derived lactones against the peach potato aphid. Int. J. Mol. Sci. 2020, 21, 8029. [Google Scholar] [CrossRef]
- Leng, P.H.; Reddy, G.V.P. Bioactivity of selected eco-friendly pesticides against Cylas formicarius (Coleoptera: Brentidae). Fla. Entomol. 2012, 95, 1040–1047. [Google Scholar] [CrossRef]
- Chauhan, N.; Malik, A.; Sharma, S. Repellency potential of essential oils against housefly, Musca domestica L. Environ. Sci. Pollut. Res. Int. 2018, 25, 4707–4714. [Google Scholar] [CrossRef]
- Evergetis, E.; Bellini, R.; Balatsos, G.; Michaelakis, A.; Carrieri, M.; Veronesi, R.; Papachristos, D.P.; Puggioli, A.; Kapsaski-Kanelli, V.-N.; Haroutounian, S.A. From bio-prospecting to field assessment: The case of Carvacrol rich essential oil as a potent mosquito larvicidal and repellent agent. Front. Ecol. Evol. 2018, 6, 204. [Google Scholar] [CrossRef]
- Paudel, P.; Shah, F.M.; Guddeti, D.K.; Ali, A.; Chen, J.; Khan, I.A.; Li, X.-C. Repellency of Carvacrol, Thymol, and their acetates against imported fire ants. Insects 2023, 14, 790. [Google Scholar] [CrossRef]
- Leal, W.S.; Uchida, K. Application of GC-EAD to the determination of mosquito repellents derived from a plant, Cymbopogon citratus. J. Asia-Pac. Entomol. 1998, 1, 217–221. [Google Scholar] [CrossRef]
- Pascual-Villalobos, M.J.; Cantó-Tejero, M.; Vallejo, R.; Guirao, P.; Rodríguez-Rojo, S.; Cocero, M.J. Use of nanoemulsions of plant essential oils as aphid repellents. Ind. Crops Prod. 2017, 110, 45–57. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: Muscidae). Ecotoxicol. Environ. Saf. 2014, 100, 1–6. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, S.; Wang, Q.; Wang, F.; Zhang, Y. Key amino acids in odorant-binding protein OBP7 enable Bradysia odoriphaga to recognize host plant volatiles. Int. J. Biol. Macromol. 2025, 284, 138179. [Google Scholar] [CrossRef]
- Leite, N.R.; Krogh, R.; Xu, W.; Ishida, Y.; Iulek, J.; Leal, W.S.; Oliva, G. Structure of an Odorant-Binding Protein from the Mosquito Aedes aegypti Suggests a Binding Pocket Covered by a pH-Sensitive “Lid”. PLoS ONE 2009, 4, e8006. [Google Scholar] [CrossRef] [PubMed]
- Thireou, T.; Kythreoti, G.; Tsitsanou, K.E.; Koussis, K.; Drakou, C.E.; Kinnersley, J.; Kröber, T.; Guerin, P.M.; Zhou, J.-J.; Iatrou, K.; et al. Identification of novel bioinspired synthetic mosquito repellents by combined ligand-based screening and OBP-structure-based molecular docking. Insect Biochem. Mol. Biol. 2018, 98, 48–61. [Google Scholar] [CrossRef]
- Kröber, T.; Koussis, K.; Bourquin, M.; Tsitoura, P.; Konstantopoulou, M.; Awolola, T.S.; Dani, F.R.; Qiao, H.; Pelosi, P.; Iatrou, K.; et al. Odorant-binding protein-based identification of natural spatial repellents for the African malaria mosquito Anopheles gambiae. Insect Biochem. Mol. Biol. 2018, 96, 36–50. [Google Scholar] [CrossRef]
- Liggri, P.G.V.; Tsitsanou, K.E.; Stamati, E.C.V.; Saitta, F.; Drakou, C.E.; Leonidas, D.D.; Fessas, D.; Zographos, S.E. The structure of AgamOBP5 in complex with the natural insect repellents Carvacrol and Thymol: Crystallographic, fluorescence and thermodynamic binding studies. Int. J. Biol. Macromol. 2023, 237, 124009. [Google Scholar] [CrossRef]
- Guo, J.; Liu, P.; Zhang, X.; An, J.; Li, Y.; Zhang, T.; Gao, Z. Characterization of the ligand-binding properties of odorant-binding protein 38 from Riptortus pedestris when interacting with soybean volatiles. Front. Physiol. 2025, 15, 1475489. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Q.; Xu, P.; Andreazza, F.; Valbon, W.R.; Bandason, E.; Chen, M.; Yan, R.; Feng, B.; Smith, L.B.; et al. A dual-target molecular mechanism of pyrethrum repellency against mosquitoes. Nat. Commun. 2021, 12, 2553. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, P.; Andreazza, F.; Liu, Y.; Nomura, Y.; Duran, P.; Jiang, L.; Chen, M.; Takamatsu, G.; Ihara, M.; et al. Identification of multiple odorant receptors essential for pyrethrum repellency in Drosophila melanogaster. PLOS Genet. 2021, 17, e1009677. [Google Scholar] [CrossRef]
- Aungtikun, J.; Soonwera, M.; Sittichok, S. Insecticidal synergy of essential oils from Cymbopogon citratus (Stapf.), Myristica fragrans (Houtt.), and Illicium verum Hook. f. and their major active constituents. Ind. Crops Prod. 2021, 164, 113386. [Google Scholar] [CrossRef]
- Soonwera, M.; Sittichok, S. Adulticidal activities of Cymbopogon citratus (Stapf.) and Eucalyptus globulus (Labill.) essential oils and of their synergistic combinations against Aedes aegypti (L.), Aedes albopictus (Skuse), and Musca domestica (L.). Environ. Sci. Pollut. Res. Int. 2020, 27, 20201–20214. [Google Scholar] [CrossRef]
- Shezryna, S.; Anisah, N.; Saleh, I.; Syamsa, R. Acaricidal activity of the essential oils from Citrus hystrix (Rutaceae) and Cymbopogon citratus (Poaceae) on the cattle tick Rhipicephalus (Boophilus) microplus larvae (Acari: Ixodidae). Trop. Biomed. 2020, 37, 433–442. [Google Scholar]
- Santos, L.M.M.; Nascimento, J.S.; Santos, M.A.G.; Marriel, N.B.; Bezerra-Silva, P.C.; Rocha, S.K.L.; Silva, A.G.; Correia, M.T.S.; Paiva, P.M.G.; Martins, G.F.; et al. Fatty acid-rich volatile oil from Syagrus coronata seeds has larvicidal and oviposition-deterrent activities against Aedes aegypti. Physiol. Mol. Plant Pathol. 2017, 100, 35–40. [Google Scholar] [CrossRef]
- Grant, G.G.; Zhao, B.; Langevin, D. Oviposition response of spruce budworm (Lepidoptera: Tortricidae) to aliphatic carboxylic acids. Environ. Entomol. 2000, 29, 164–170. [Google Scholar] [CrossRef]
- Roh, G.H.; Kendra, P.E.; Zhu, J.J.; Roda, A.; Loeb, G.M.; Tay, J.-W.; Cha, D.H. Coconut oil derived five-component synthetic oviposition deterrent for oriental fruit fly, Bactrocera dorsalis. Pest Manag. Sci. 2023, 79, 3852–3859. [Google Scholar] [CrossRef]
- Álvarez-Ocaña, R.; Shahandeh, M.P.; Ray, V.; Auer, T.O.; Gompel, N.; Benton, R. Odor-regulated oviposition behavior in an ecological specialist. Nat. Commun. 2023, 14, 3041. [Google Scholar] [CrossRef]
- R’Kha, S.; Capy, P.; David, J.R. Host-plant specialization in the Drosophila melanogaster species complex: A physiological, behavioral, and genetical analysis. Proc. Natl. Acad. Sci. USA 1991, 88, 1835–1839. [Google Scholar] [CrossRef]
- Andrade-Ochoa, S.; Sánchez-Aldana, D.; Chacón-Vargas, K.F.; Rivera-Chavira, B.E.; Sánchez-Torres, L.E.; Camacho, A.D.; Nogueda-Torres, B.; Nevárez-Moorillón, G.V. Oviposition deterrent and larvicidal and pupaecidal activity of seven essential oils and their major components against Culex quinquefasciatus Say (Diptera: Culicidae): Synergism–antagonism Effects. Insects 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Allsopp, E.; Prinsloo, G.J.; Smart, L.E.; Dewhirst, S.Y. Methyl salicylate, thymol and carvacrol as oviposition deterrents for Frankliniella occidentalis (Pergande) on plum blossoms. Arthropod-Plant Interact. 2014, 8, 421–427. [Google Scholar] [CrossRef]
- Damtie, D.; Mekonnen, Y. Toxicity and oviposition deterrent activities of thyme essential oils against Anopheles arabiensis. Psyche J. Entomol. 2021, 2021, 6684156. [Google Scholar] [CrossRef]
- Saxena, K.N.; Basit, A. Inhibition of oviposition by volatiles of certain plants and chemicals in the leafhopper Amrasca devastons (distant). J. Chem. Ecol. 1982, 8, 329–338. [Google Scholar] [CrossRef]
- Fagbemi, K.O.; Aina, D.A.; Olajuyigbe, O.O. Soxhlet Extraction versus Hydrodistillation Using the Clevenger Apparatus: A Comparative Study on the Extraction of a Volatile Compound from Tamarindus indica Seeds. Sci. World J. 2021, 2021, 5961586. [Google Scholar] [CrossRef]
- Yang, N.-Y.; Li, Q.-R.; Zhang, X.; Zeng, F.-L.; Shen, X.-C.; Long, Q.-D. Spectrum-Efficacy Relationships between GC-MS Fingerprints of Essential Oil from Valerianae Jatamansi Rhizoma et Radix and the Efficacy of Inhibiting Microglial Activation. eCAM 2022, 2022, 9972902. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry (ed. 4.1); Allured Publ Crop: Carol Steam, IL, USA, 2017; Available online: http://essentialoilcomponentsbygcms.com/ (accessed on 1 November 2020).
- Montaño-Campaz, M.L.; Oliveira, E.E.; Toro-Restrepo, B.; Bacca, T.; Feuillet-Hurtado, C.; Afanador, J.G.M.; Moreira, R.P.L.; Mendes, L.A.; Aguiar, R.W.S.; Dias, L.G. Siparuna gesnerioides and Siparuna guianensis Essential Oils in Aedes aegypti Control: Phytoanalysis, Molecular Insights for Larvicidal Activity and Selectivity to Non-Target Organisms. Plants 2025, 14, 1322. [Google Scholar] [CrossRef]
- Aguiar, R.W.S.; dos Santos, S.F.; da Silva Morgado, F.; Ascencio, S.D.; de Mendonça Lopes, M.; Viana, K.F.; Didonet, J.; Ribeiro, B.M. Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PLoS ONE 2015, 10, e0116765. [Google Scholar] [CrossRef]
- WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T. A P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.N.; Sasisekharan, V. Conformation of Polypeptides and Proteins. In Advances in Protein Chemistry; Anfinsen, C.B., Anson, M.L., Edsall, J.T., Richards, F.M., Eds.; Academic Press: Cambridge, MA, USA, 1968; Volume 23, pp. 283–437. [Google Scholar]
- Haas, J.; Barbato, A.; Behringer, D.; Studer, G.; Roth, S.; Bertoni, M.; Mostaguir, K.; Gumienny, R.; Schwede, T. Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12. Proteins:Struct., Funct., Bioinf. 2018, 86, 387–398. [Google Scholar] [CrossRef]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2010, 27, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph Model 1999, 17, 57–61. [Google Scholar]
- Souza Moura, W.; de Souza, S.R.; Campos, F.S.; Sander Rodrigues Cangussu, A.; Macedo Sobrinho Santos, E.; Silva Andrade, B.; Borges Gomes, C.H.; Fernandes Viana, K.; Haddi, K.; Oliveira, E.E.; et al. Antibacterial activity of Siparuna guianensis essential oil mediated by impairment of membrane permeability and replication of pathogenic bacteria. Ind. Crops Prod. 2020, 146, 112142. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Schrodinger, LLC. The PyMOL Molecular Graphics System Version 1.8; Schrödinger LLC: New York, NY, USA, 2015. [Google Scholar]
- Biovia, D.S. Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, CA, USA, 2017. [Google Scholar]
- Coelho-de-Souza, A.; Alves-Soares, R.; Oliveira, H.; Gomes-Vasconcelos, Y.; Souza, P.; Santos-Nascimento, T.; Oliveira, K.; Diniz, L.; Guimarães-Pereira, J.; Leal-Cardoso, J. The essential oil of Hyptis crenata Pohl ex Benth. presents an antiedematogenic effect in mice. Braz. J. Med. Biol. Res. 2021, 54, e9422. [Google Scholar] [CrossRef]
- Mourão, D.D.S.C.; Ferreira de Souza Pereira, T.; Souza, D.J.d.; Chagas Júnior, A.F.; Dalcin, M.S.; Veloso, R.A.; Leão, E.U.; Santos, G.R.d. Essential Oil of Cymbopogon citratus on the Control of the Curvularia Leaf Spot Disease on Maize. Medicines 2017, 4, 62. [Google Scholar] [CrossRef]
Constituents | Hypenia irregularis x Morinda Citrifolia | Hypenia irregularis x Hyptis Crenata | Hypenia irregularis x Cymbopogon Citratus | ||||||
---|---|---|---|---|---|---|---|---|---|
TR | IR | (%) | TR | IR | (%) | TR | IR | (%) | |
Diacetone alcohol | 2.91 | 2.90 | 9.45 | 2.93 | 2.90 | 9.42 | 2.92 | 2.88 | 9.34 |
Hexanoic acid | 4.64 | 4.55 | 2.45 | - | - | - | - | - | - |
β-myrcene | 4.85 | 4.82 | 1.00 | 4.85 | 4.80 | 1.76 | 4.85 | 4.80 | 4.11 |
α-cymene | 5.41 | 5.33 | 10.0 | 4.85 | 4.80 | 10.0 | 5.41 | 5.35 | 7.34 |
α-pinene | - | - | - | 4.12 | 4.01 | 1.47 | - | - | - |
α-terpineol | - | - | - | 7.97 | 7.95 | 0.93 | - | - | - |
α-bergamotene | - | - | - | - | - | - | 11.2 | 11.2 | 0.30 |
Eucalyptol | - | - | - | 5.54 | 5.50 | 4.77 | - | - | - |
Terpinene | - | - | - | 5.91 | 5.87 | 1.1 | - | - | - |
Camphor | - | - | - | 7.3 | 7.26 | 9.21 | - | - | - |
Linalool | 6.50 | 6.46 | 0.80 | 6.5 | 6.47 | 1.12 | 6.50 | 6.46 | 0.97 |
Sulcatone | - | - | - | - | - | - | 4.77 | 4.73 | 0.26 |
Isogeraniol | - | - | - | - | - | - | 7.69 | 7.64 | 0.41 |
Citral B, neral | - | - | - | - | - | - | 8.56 | 8.51 | 17.1 |
Geraniol | - | - | - | - | - | - | 8.70 | 8.61 | 1.44 |
Citral A, geranial | - | - | - | - | - | - | 8.97 | 8.93 | 23.0 |
Octanoic acid, methyl ester | 6.83 | 6.80 | 0.79 | - | - | - | - | - | - |
Octanoic acid | 7.64 | 7.40 | 23.0 | - | - | - | - | - | - |
Terpinene-4-ol | 7.77 | 7.73 | 0.70 | 7.78 | 7.78 | 1.65 | 7.77 | 7.74 | 0.44 |
Benzene, 2-methoxy-4-methyl-1-(1-methylethyl) | 8.43 | 8.40 | 2.50 | - | - | - | - | - | - |
Anisol | 8.60 | 8.53 | 1.94 | 8.43 | 8.40 | 2.9 | 8.43 | 8.40 | 1.98 |
Hexanoic acid, 4-pentenyl ester | 8.83 | 8.80 | 2.07 | - | - | - | - | - | - |
Thymol | 9.27 | 9.23 | 4.30 | - | - | - | - | - | - |
Carvacrol | - | - | - | 9.4 | 9.35 | 10.4 | 9.39 | 9.35 | 6.87 |
2,5-dimethoxy-p-cimene | 10.9 | 10.9 | 19.5 | 10.9 | 10.9 | 21.9 | 10.9 | 10.9 | 15.5 |
Caryophyllene | 11.2 | 11.1 | 1.21 | 11.1 | 11.1 | 2.58 | 11.1 | 11.1 | 0.84 |
Isobutyl-3-methylbut-3-enyl carbonate | 11.5 | 11.5 | 3.05 | - | - | - | - | - | - |
Humulene | 11.6 | 11.5 | 3.02 | 11.6 | 11.5 | 3.52 | 11.6 | 11.5 | 2.13 |
Phenol, 3-(1,1-dimethylethyl)-4-methoxy | 11.8 | 11.8 | 3.94 | 13.2 | 13.1 | 1.05 | 13.3 | 13.1 | 0.45 |
(1R,3E,7E,11R)-1,5,5,8-Tetramethyl-12-oxabicato | 13.5 | 13.5 | 0.41 | - | - | - | - | - | - |
3-tert-butyl-4-hydroxyanisole | - | - | - | 11.8 | 11.7 | 1.49 | 11.7 | 11.7 | 0.91 |
Monoterpenes | - | - | 18.56 | - | - | 42.90 | - | - | 56.69 |
Sesquiterpenes | - | - | 6.47 | - | - | 6.10 | - | - | 3.27 |
Phenylpropanoids | - | - | 36.23 | - | - | 38.69 | - | - | 24.75 |
Others | - | - | 38.71 | - | - | 9.90 | - | - | 15.22 |
Total | 99.97 | 97.59 | 99.93 |
Essential Oil | Slope ± SE | LC50 (CI 95%) (μL/mL) | LC95 (CI 95%) (μL/mL) | χ2 | P |
---|---|---|---|---|---|
Hypenia irregularis | 2.53 ± 0.280 | 0.037 (0.020–0.048) | 0.122 (0.079–0.221) | 8.203 | 0.64 |
Morinda citrifolia | 2.71 ± 0.292 | 0.036 (0.019–0.049) | 0.120 (0.079–0.217) | 9.223 | 0.51 |
Hyptis crenata | 2.37 ± 0.273 | 0.040 (0.029–0.045) | 0.126 (0.081–0.234) | 8.968 | 0.67 |
Cymbopogon citratus | 1.93 ± 0.257 | 0.051 (0.048–0.079) | 0.137 (0.113–0.301) | 8.272 | 0.28 |
Proportions | Slope ± SE | LC50 (CI 95%) (μL/mL) | LC95 (CI 95%) (μL/mL) | χ2 | P | |
---|---|---|---|---|---|---|
Hipe. irregulares × M. citriflora | 0:1 | 2.71 ± 0.292 | 0.036 (0.019–0.049) | 0.120 (0.079–0.217) | 9.23 | 0.51 |
1:2 | 2.08 ± 0.240 | 0.063 (0.046–0.066) | 0.147 (0.106–0.244) | 8.64 | 0.62 | |
1:3 | 2.49 ± 0.292 | 0.049 (0.032–0.057) | 0.139 (0.098–0.236) | 8.35 | 0.66 | |
1:1 | 2.46 ± 0.277 | 0.032 (0.015–0.041) | 0.118 (0.077–0.215) | 9.00 | 0.55 | |
1:0 | 2.53 ± 0.280 | 0.037 (0.020–0.048) | 0.122 (0.081–0.219) | 8.20 | 0.64 | |
2:1 | 2.05 ± 0.301 | 0.061 (0.044–0.069) | 0.144 (0.079–0.221) | 8.53 | 0.81 | |
3:1 | 2.17 ± 0.118 | 0.054 (0.037–0.072) | 0.142 (0.101–0.239) | 8.94 | 0.74 | |
Hipe. irregulares × Hypt. crenata | 0:1 | 2.37 ± 0.273 | 0.040 (0.029–0.045) | 0.126 (0.081–0.234) | 8.27 | 0.67 |
1:2 | 2.81 ± 0.341 | 0.068 (0.052–0.071) | 0.161 (0.116–0.305) | 8.33 | 0.50 | |
1:3 | 2.74 ± 0.233 | 0.055 (0.039–0.067) | 0.147 (0.102–0.291) | 8.91 | 0.63 | |
1:1 | 2.63 ± 0.180 | 0.037 (0.021–0.052) | 0.124 (0.079–0.268) | 8.22 | 0.59 | |
1:0 | 2.53 ± 0.280 | 0.037 (0.020–0.048) | 0.122 (0.079–0.221) | 8.21 | 0.64 | |
2:1 | 2.35 ± 0.203 | 0.065 (0.049–0.069) | 0.153 (0.108–0.297) | 8.72 | 0.88 | |
3:1 | 2.24 ± 0.103 | 0.049 (0.033–0.055) | 0.141 (0.096–0.285) | 8.99 | 0.94 | |
Hipe. irregularis × C. citratus | 0:1 | 1.93 ± 0.257 | 0.051 (0.045–0.079) | 0.143 (0.113–0.301) | 8.27 | 0.28 |
1:2 | 1.53 ± 0.393 | 0.074 (0.065–0.093) | 0.169 (0.139–0.327) | 8.47 | 0.49 | |
1:3 | 1.53 ± 0.123 | 0.059 (0.053–0.081) | 0.148 (0.118–0.306) | 8.83 | 0.31 | |
1:1 | 2.00 ± 0.280 | 0.049 (0.039–0.067) | 0.139 (0.109–0.297) | 8.30 | 0.44 | |
1:0 | 2.53 ± 0.201 | 0.034 (0.020–0.048) | 0.118 (0.079–0.221) | 8.21 | 0.64 | |
2:1 | 2.18 ± 0.332 | 0.071 (0.063–0.091) | 0.162 (0.132–0.320) | 9.12 | 0.51 | |
3:1 | 2.21 ± 0.238 | 0.050 (0.041–0.069) | 0.140 (0.110–0.298) | 9.01 | 0.39 |
Essential Oil | Ligand | Affinity Energy (kcal/mol) | |||||
---|---|---|---|---|---|---|---|
AChE | AeagOBP1 | AaOR31 | GABAR | TRP | OCT | ||
Hipenia irregularis x Morinda citrifolia | Octanoic acid | −4.9 | −5.8 | −4.8 | −3.9 | −4.1 | −4.2 |
2,5-dimethoxy-p-cymene | −6.6 | −6.8 | −6.5 | −4.5 | −5.4 | −5.2 | |
Hipenia irregularis x Hyptis crenata | 2,5-dimethoxy-p-cymene | −6.6 | −6.8 | −6.5 | −4.5 | −5.4 | −5.2 |
Carvacrol | −6.1 | −7.0 | −6.4 | −5.0 | −5.2 | −5.6 | |
Hipenia irregularis x Cymbopogon citratus | Citral | −5.5 | −5.7 | −5.3 | −4.1 | −4.3 | −4.5 |
2,5-dimethoxy-p-cymene | −6.6 | −6.8 | −6.5 | −4.5 | −5.4 | −5.2 |
Proportions | Hipe. Irregularis (µL/mL) | Essential Oil x, y, z (µL/mL) |
---|---|---|
0:1 | 0 | 100 |
1:1 | 50 | 50 |
2:1 | 67 | 33 |
3:1 | 75 | 25 |
1:0 | 100 | 0 |
1:2 | 33 | 67 |
1:3 | 25 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viteri Jumbo, L.O.; Moura, W.S.; Possel, R.D.; Herrera, O.M.; Fidelis, R.R.; Andrade, B.S.; Smagghe, G.; Santos, G.R.; Oliveira, E.E.; Aguiar, R.W.S. Phytochemistry, Mode of Action Predictions, and Synergistic Potential of Hypenia irregularis Essential Oil Mixtures for Controlling Aedes aegypti. Toxins 2025, 17, 402. https://doi.org/10.3390/toxins17080402
Viteri Jumbo LO, Moura WS, Possel RD, Herrera OM, Fidelis RR, Andrade BS, Smagghe G, Santos GR, Oliveira EE, Aguiar RWS. Phytochemistry, Mode of Action Predictions, and Synergistic Potential of Hypenia irregularis Essential Oil Mixtures for Controlling Aedes aegypti. Toxins. 2025; 17(8):402. https://doi.org/10.3390/toxins17080402
Chicago/Turabian StyleViteri Jumbo, Luis O., Wellington S. Moura, Richard D. Possel, Osmany M. Herrera, Rodrigo R. Fidelis, Bruno S. Andrade, Guy Smagghe, Gil R. Santos, Eugênio E. Oliveira, and Raimundo W. S. Aguiar. 2025. "Phytochemistry, Mode of Action Predictions, and Synergistic Potential of Hypenia irregularis Essential Oil Mixtures for Controlling Aedes aegypti" Toxins 17, no. 8: 402. https://doi.org/10.3390/toxins17080402
APA StyleViteri Jumbo, L. O., Moura, W. S., Possel, R. D., Herrera, O. M., Fidelis, R. R., Andrade, B. S., Smagghe, G., Santos, G. R., Oliveira, E. E., & Aguiar, R. W. S. (2025). Phytochemistry, Mode of Action Predictions, and Synergistic Potential of Hypenia irregularis Essential Oil Mixtures for Controlling Aedes aegypti. Toxins, 17(8), 402. https://doi.org/10.3390/toxins17080402