Monitoring of Vitamin C Plasma Levels in a Reversible Model of Malabsorption Generated in Mice by Ebulin-f
Abstract
1. Introduction
2. Results
2.1. Isolation and Characterization of Ebulin-f
2.2. Vitamin C Determination by HPLC/UV-Vis
2.3. Pharmacokinetic Parameters of Vitamin C After Its Oral Administration in a Reversible Model of Malabsorption
3. Discussion
4. Conclusions
- (1)
- A validated analytical HPLC–UV/Vis method capable of accurately quantifying vitamin C in small plasma samples within a range of 6–60 µg/mL, with detection and quantification limits of 0.015 and 0.456 µg/mL, respectively.
- (2)
- Administration of a single intraperitoneal dose of 2.5 mg/kg ebulin-f induces significant but reversible intestinal damage, with peak alterations at day 3 and substantial recovery by day 22.
- (3)
- Vitamin C absorption is significantly increased during intestinal damage (up to eightfold higher AUC at day 3), without affecting elimination kinetics, suggesting that changes in absorption are directly related to intestinal epithelial damage and regeneration.
5. Materials and Methods
5.1. Obtaining Ebulin-f from S. ebulus L. Fruits
5.2. Ebulin-f Characterization
5.3. Experimental Animal Groups for Generation of the Reversible Model with Ebulin-f
5.4. Vitamin C Administration
5.5. Vitamin C Quantification by HPLC/UV-Vis
5.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASC | Ascorbic acid |
AUC | Areas under the curve |
DHA | Dehydroascorbic acid |
DTT | 1,4-dithiothreitol |
EP | European Pharmacopoeia |
GLUT | Glucose facilitating transporters |
HPLC | High-performance liquid chromatography |
i.p. | Intraperitoneal injection |
MPA | Metaphosphoric acid |
RILs | Ribosome-inactivating lectins |
RIPs | Ribosome-inactivating proteins |
SVCT | Sodium-vitamin C transporters |
TAC | Transit amplifying compartment |
References
- Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.H.; Torras, N.; García-Díaz, M.; Barrias, C.; Sarmento, B.; Martínez, E. The Shape of Our Gut: Dissecting Its Impact on Drug Absorption in a 3D Bioprinted Intestinal Model. Biomater. Adv. 2023, 153, 213564. [Google Scholar] [CrossRef]
- Grønlund, D.; Poulsen, J.L.; Sandberg, T.H.; Olesen, A.E.; Madzak, A.; Krogh, K.; Frøkjaer, J.B.; Drewes, A.M. Established and Emerging Methods for Assessment of Small and Large Intestinal Motility. Neurogastroenterol. Motil. 2017, 29, e13008. [Google Scholar] [CrossRef] [PubMed]
- Capeling, M.; Huang, S.; Mulero-Russe, A.; Cieza, R.; Tsai, Y.H.; Garcia, A.; Hill, D.R. Generation of Small Intestinal Organoids for Experimental Intestinal Physiology. Methods Cell Biol. 2020, 159, 143–174. [Google Scholar] [CrossRef]
- Markus, J.; Landry, T.; Stevens, Z.; Scott, H.; Llanos, P.; Debatis, M.; Armento, A.; Klausner, M.; Ayehunie, S. Human Small Intestinal Organotypic Culture Model for Drug Permeation, Inflammation, and Toxicity Assays. In Vitro Cell. Dev. Biol. Anim. 2021, 57, 160–173. [Google Scholar] [CrossRef]
- Montoro-Huguet, M.A.; Belloc, B.; Domínguez-Cajal, M. Small and Large Intestine (I): Malabsorption of Nutrients. Nutrients 2021, 13, 1254. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bañares, F. Carbohydrate Maldigestion and Intolerance. Nutrients 2022, 14, 1923. [Google Scholar] [CrossRef]
- Cañamares-Orbis, P.; Bernal-Monterde, V.; Sierra-Gabarda, O.; Casas-Deza, D.; Garcia-Rayado, G.; Cortes, L.; Lué, A. Impact of Liver and Pancreas Diseases on Nutritional Status. Nutrients 2021, 13, 1650. [Google Scholar] [CrossRef]
- Schnedl, W.J.; Tillich, M.; Schenk, M.; Enko, D.; Mangge, H. Food Intolerance/Malabsorption May Occur in Rare Diseases. Intractable Rare Dis. Res. 2020, 9, 126–129. [Google Scholar] [CrossRef]
- Andriolo, I.R.L.; Venzon, L.; da Silva, L.M. Perspectives About Ascorbic Acid to Treat Inflammatory Bowel Diseases. Drug Res. 2024, 74, 149–155. [Google Scholar] [CrossRef]
- Xiang, T.; Wang, J.; Li, H. Current Applications of Intestinal Organoids: A Review. Stem Cell Res. Ther. 2024, 15, 155. [Google Scholar] [CrossRef]
- Ekström, G.M. Oxazolone-Induced Colitis in Rats: Effects of Budesonide, Cyclosporin A, and 5-Aminosalicylic Acid. Scand. J. Gastroenterol. 1998, 33, 174–179. [Google Scholar] [CrossRef] [PubMed]
- MacPherson, B.R.; Pfeiffer, C.J. Experimental Production of Diffuse Colitis in Rats. Digestion 1978, 17, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Aceituno, M.; Panés, J. Patogenia e Inmunoterapia de la Enfermedad Inflamatoria Intestinal: Lecciones de los Modelos Animales. Gastroenterol. Hepatol. 2005, 28, 576–590. [Google Scholar] [CrossRef]
- Kuemmerle, J.F. Murine Trinitrobenzoic Acid-Induced Colitis as a Model of Crohn’s Disease. Methods Mol. Biol. 2016, 1422, 243–252. [Google Scholar] [CrossRef]
- Baur, P.; Martin, F.P.; Gruber, L.; Bosco, N.; Brahmbhatt, V.; Collino, S.; Guy, P.; Montoliu, I.; Rozman, J.; Klingenspor, M.; et al. Metabolic Phenotyping of the Crohn’s Disease-Like IBD Etiopathology in the TNF ΔARE/WT Mouse Model. J. Proteome Res. 2011, 10, 5523–5535. [Google Scholar] [CrossRef] [PubMed]
- Park, S.G.; Mathur, R.; Long, M.; Hosh, N.; Hao, L.; Hayden, M.S.; Ghosh, S. Regulatory Cells Maintain Intestinal Homeostasis by Suppressing γδ T Cells. Immunity 2010, 33, 791–803. [Google Scholar] [CrossRef]
- Lodes, M.J.; Cong, Y.; Elson, C.O.; Mohamath, R.; Landers, C.J.; Targan, S.R.; Fort, M.; Hershberg, R.M. Bacterial Flagellin Is a Dominant Antigen in Crohn Disease. J. Clin. Investig. 2004, 113, 1296–1306. [Google Scholar] [CrossRef]
- Sundberg, J.P.; Elson, C.O.; Bedigian, H.; Birkenmeier, E.H. Spontaneous, Heritable Colitis in a New Substrain of C3H/HeJ Mice. Gastroenterology 1994, 107, 1726–1735. [Google Scholar] [CrossRef]
- Rivera-Nieves, J.; Bamias, G.; Vidrich, A.; Marini, M.; Pizarro, T.T.; McDuffie, M.J.; Moskaluk, C.A.; Cohn, S.M.; Cominelli, F. Emergence of Perianal Fistulizing Disease in the SAMP1/YitFc Mouse, a Spontaneous Model of Chronic Ileitis. Gastroenterology 2003, 124, 972–982. [Google Scholar] [CrossRef]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; van Damme, E.J.M. Lectins as Plant Defense Proteins. Plant Physiol. 1995, 109, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Girbés, T.; Ferreras, J.M.; Arias, F.J.; Stirpe, F. Description, Distribution, Activity and Phylogenetic Relationship of Ribosome-Inactivating Proteins in Plants, Fungi and Bacteria. Mini Rev. Med. Chem. 2004, 4, 461–476. [Google Scholar] [CrossRef]
- Puri, M.; Kaur, I.; Perugini, M.A.; Gupta, R.C. Ribosome-inactivating Proteins: Current Status and Biomedical Applications. Drug Discov. Today 2012, 17, 774–783. [Google Scholar] [CrossRef]
- Stirpe, F. Ribosome-inactivating Proteins: From Toxins to Useful Proteins. Toxicon 2013, 67, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhou, Y.K.; Ji, Z.L.; Chen, X.R. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense Against Pathogens and Insect Pest Attacks. Front. Plant Sci. 2018, 9, 146. [Google Scholar] [CrossRef]
- Fabbrini, M.S.; Katayama, M.; Nakase, I.; Vago, R. Plant Ribosome-Inactivating Proteins: Progresses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins 2017, 9, 314. [Google Scholar] [CrossRef]
- Schrot, J.; Weng, A.; Melzig, M. Ribosome-Inactivating and Related Proteins. Toxins 2015, 7, 1556–1615. [Google Scholar] [CrossRef]
- Battelli, M.G.; Musiani, S.; Buonamici, L.; Santi, S.; Riccio, M.; Maraldi, N.M.; Girbés, T.; Stirpe, F. Interaction of Volkensin with HeLa Cells: Binding, Uptake, Intracellular Localization, Degradation and Exocytosis. Cell. Mol. Life Sci. 2004, 61, 1975–1984. [Google Scholar] [CrossRef]
- Citores, L.; de Benito, F.M.; Iglesias, R.; Miguel, F.J.; Argueso, P.; Jimenez, P.; Mendez, E.; Girbés, T. Presence of Polymerized and Free Forms of the Non-Toxic Type 2 Ribosome-Inactivating Protein Ebulin and a Structurally Related New Homodimeric Lectin in Fruits of Sambucus ebulus L. Planta 1998, 204, 310–319. [Google Scholar] [CrossRef]
- Gayoso, M.J.; Muñoz, R.; Arias, Y.; Villar, R.; Rojo, M.A.; Jiménez, P.; Ferreras, J.M.; Aranguez, I.; Girbés, T. Specific Dose-Dependent Damage of Lieberkühn Crypts Promoted by Large Doses of Type 2 Ribosome-Inactivating Protein Nigrin b Intravenous Injection to Mice. Toxicol. Appl. Pharmacol. 2005, 207, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Gilabert-Oriol, R.; Weng, A.; Mallinckrodt, B.V.; Melzig, M.F.; Fuchs, H.; Thakur, M. Immunotoxins Constructed with Ribosome-Inactivating Proteins and Their Enhancers: A Lethal Cocktail with Tumor Specific Efficacy. Curr. Pharm. Des. 2014, 20, 6584–6643. [Google Scholar] [CrossRef]
- Tejero, J.; Jiménez, P.; Quinto, E.J.; Cordoba-Diaz, D.; Garrosa, M.; Cordoba-Diaz, M.; Gayoso, M.J.; Girbés, T. Elderberries: A Source of Ribosome-Inactivating Proteins with Lectin Activity. Molecules 2015, 20, 2364–2387. [Google Scholar] [CrossRef]
- Jiménez, P.; Gayoso, M.J.; Garrosa, M.; Cordoba-Diaz, D.; Cabrero, P.; Tejero, J.; Aracil, M.; Girbés, T. Paneth Cells Are Also Target of the Ribotoxic Lectin Nigrin b. Histol. Histopathol. 2014, 29, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, P.; Gayoso, M.; Tejero, J.; Cabrero, P.; Cordoba-Diaz, D.; Basterrechea, J.E.; Girbés, T. Toxicity in Mice of Lectin Ebulin f Present in Dwarf Elderberry (Sambucus ebulus L.). Toxicon 2013, 61, 26–29. [Google Scholar] [CrossRef]
- Garrosa, M.; Jiménez, P.; Tejero, J.; Cabrero, P.; Córdoba-Diaz, D.; Quinto, E.J.; Gayoso, M.J.; Girbés, T. Toxicity of the Anti-Ribosomal Lectin Ebulin f in Lungs and Intestines in Elderly Mice. Toxins 2015, 7, 367–379. [Google Scholar] [CrossRef]
- Figueroa-Méndez, R.; Rivas-Arancibia, S. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain. Front. Physiol. 2015, 6, 397. [Google Scholar] [CrossRef] [PubMed]
- Rivas, C.I.; Zúñiga, F.A.; Salas-Burgos, A.; Mardones, L.; Ormazabal, V.; Vera, J.C. Vitamin C Transporters. J. Physiol. Biochem. 2008, 64, 357–375. [Google Scholar] [CrossRef]
- Rumsey, S.C.; Kwon, O.; Xu, G.W.; Burant, C.F.; Simpson, I.; Levine, M. Glucose Transporter Isoforms GLUT1 and GLUT3 Transport Dehydroascorbic Acid. J. Biol. Chem. 1997, 272, 18982–18989. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Tveden-Nyborg, P. The Pharmacokinetics of Vitamin C: An Update. Nutrients 2020, 11, 2412. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C Pharmacokinetics: Implications for Oral and Intravenous Use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Savini, I.; Rossi, A.; Pierro, C.; Avigliano, L.; Catani, M.V. SVCT1 and SVCT2: Key Proteins for Vitamin C Uptake. Amino Acids. 2008, 34, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Corpe, C.P.; Eck, P.; Wang, J.; Al-Hasani, H.; Levine, M. Intestinal Dehydroascorbic Acid (DHA) Transport Mediated by the Facilitative Sugar Transporters, GLUT2 and GLUT8. J. Biol. Chem. 2013, 288, 9092–9101. [Google Scholar] [CrossRef]
- MacDonald, L.; Thumser, A.E.; Sharp, P. Decreased expression of the vitamin C transporter SVCT1 by ascorbic acid in a human intestinal epithelial cell line. Br. J. Nutr. 2002, 87, 97–100. [Google Scholar] [CrossRef]
- Sim, M.; Hong, S.; Jung, M.H.; Choi, E.Y.; Hwang, G.S.; Shin, D.M.; Kim, C.S. Gut Microbiota Links Vitamin C Supplementation to Enhanced Mental Vitality in Healthy Young Adults with Suboptimal Vitamin C Status: A Randomized, Double-blind, Placebo-controlled Trial. Brain Behav. Immun. 2025, 128, 179–191. [Google Scholar] [CrossRef]
- Hartman, C.; Eliakim, R.; Shamir, R. Nutritional Status and Nutritional Therapy in Inflammatory Bowel Diseases. World J. Gastroenterol. 2009, 15, 2570–2578. [Google Scholar] [CrossRef]
- Sylvester, F.A.; Leopold, S.; Lincoln, M.; Hyams, J.S.; Griffiths, A.M.; Lerer, T. A Two-Year Longitudinal Study of Persistent Lean Tissue Deficits in Children with Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2009, 7, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, P.; Córdoba-Díaz, D.; Cabrero, P.; Aracil, M.J.; Gayoso, M.; Garrosa, M.; Córdoba-Díaz, M.; Girbés, T. Plasma Accumulations of Vitamin B6 from an Oral Dose in a New Reversible Model for Mouse Gut Injury and Regeneration. Food Nutr. Sci. 2013, 4, 908–917. [Google Scholar] [CrossRef]
- Girbés, T.; Citores, L.; Iglesias, R.; Ferreras, J.M.; Muñoz, R.; Rojo, M.A.; Arias, F.J.; García, J.R.; Méndez, E.; Calonge, M. Ebulin 1, a Nontoxic Novel Type 2 Ribosome-Inactivating Protein from Sambucus ebulus L. Leaves. J. Biol. Chem. 1993, 268, 18195–18199. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Bolbjerg, M.L.; Poulsen, H.E. Effect of Smoking on Erythorbic Acid Pharmacokinetics. Br. J. Nutr. 2003, 89, 667–671. [Google Scholar] [CrossRef]
- Viscovich, M.; Lykkesfeldt, J.; Poulsen, H.E. Vitamin C Pharmacokinetics of Plain and Slow Release Formulations in Smokers. Clin. Nutr. 2004, 23, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mackenzie, B.; Tsukaguchi, H.; Weremowicz, S.; Morton, C.C.; Hediger, M.A. Human Vitamin C (L-Ascorbic Acid) Transporter SVCT1. Biochem. Biophys. Res. Commun. 2000, 267, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.X. Regulation of Vitamin C Transport. Annu. Rev. Nutr. 2005, 25, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Aoki, M.; Jenkins, D.J.A. Sodium-Glucose Co-Transporter 2 Inhibitors Could Improve the Bioavailability of Vitamin C at the Kidney in Diabetes Treatment. Cell. Mol. Med. 2017, 3, 2. [Google Scholar] [CrossRef]
- Bürzle, M.; Suzuki, Y.; Ackermann, D.; Miyazaki, H.; Maeda, N.; Clémençon, B.; Burrier, R.; Hediger, M.A. The Sodium-Dependent Ascorbic Acid Transporter Family SLC23. Mol. Asp. Med. 2013, 34, 436–454. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Kalb, V.F.; Bernlohr, R.W. A New Spectrophotometric Assay for Protein in Cell Extracts. Anal. Biochem. 1977, 82, 362–371. [Google Scholar] [CrossRef]
- Esteve, M.J.; Farré, R.; Frigola, A.; Garcia-Cantabella, J.M. Determination of Ascorbic and Dehydroascorbic Acids in Blood Plasma and Serum by Liquid Chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1997, 688, 345–349. [Google Scholar] [CrossRef]
- Sánchez-Mata, M.C.; Cámara-Hurtado, M.; Díez-Marqués, C.; Torija-Isasa, M.E. Comparison of High-Performance Liquid Chromatography and Spectrofluorimetry for Vitamin C Analysis of Green Beans (Phaseolus vulgaris L.). Eur. Food Res. Technol. 2000, 210, 220–225. [Google Scholar] [CrossRef]
Method Validation. Vitamin C in Water | ||
---|---|---|
Linearity test | Concentration range (µg/mL) | 6, 10, 15, 130, 45, and 60 |
Number of samples | 3 | |
Calibration equation | y = 85,373.8922x + 10,905.9591 | |
r | 0.9998 | |
r2 | 0.9995 | |
Other parameters | Concentration range (µg/mL) | 2, 30 and 60 |
Number of samples | 3 | |
Detection limits (µg/mL) | 0.015 | |
Quantitation limits (µg/mL) | 0.456 | |
Cochram test accuracy | ||
Recovery % mean | data | |
Student’s t-test accuracy | ||
Repeatability (CV) (<5% ICH Q2A) | 6 µg/mL, CV = 3.81%; 30 µg/mL, CV = 1.85%; 60 µg/mL, CV = 1.94%; | |
Precision (<3.3% ICH Q2A) | 0.1048% | |
Robustness | CV < 3% with variations in temperature (±2 °C), flow rate (±0.1 mL/min), and mobile phase pH (±0.2) |
Control | 1 Day | 3 Days | 22 Days | |
---|---|---|---|---|
Absorption constant (A) Confidence interval (±) | 4.6 * | 21.5 + | 31.0 $ | 11.3 +,$ |
0.5 | 1.5 | 19.2 | 0.8 | |
Elimination constant Confidence interval (±) | 4.90 × 10−4 | 5.83 × 10−4 | 4.34 × 10−4 | 3.44 × 10−4 |
2.16 × 10−4 | 1.23 × 10−4 | 1.31 × 10−4 | 1.07 × 10−4 | |
Interception constant Confidence interval (±) | 5.23 × 10−2 | 5.34 × 10−2 | 7.91 × 10−2 | 9.13 × 10−2 |
2.56 × 10−2 | 1.84 × 10−2 | 3.57 × 10−2 | 6.55 × 10−2 | |
AUC Confidence interval (±) | 0.94 × 104 * | 3.65 × 104 + | 7.10 × 104 +,$ | 3.27 × 104 $ |
0.37 × 104 | 0.67 × 104 | 1.96 × 104 | 0.91 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arranz-Paraiso, D.; Rojo, M.A.; Martin-Sabroso, C.; Cordoba-Diaz, M.; Girbés, T.; Garrosa, M.; Cordoba-Diaz, D. Monitoring of Vitamin C Plasma Levels in a Reversible Model of Malabsorption Generated in Mice by Ebulin-f. Toxins 2025, 17, 333. https://doi.org/10.3390/toxins17070333
Arranz-Paraiso D, Rojo MA, Martin-Sabroso C, Cordoba-Diaz M, Girbés T, Garrosa M, Cordoba-Diaz D. Monitoring of Vitamin C Plasma Levels in a Reversible Model of Malabsorption Generated in Mice by Ebulin-f. Toxins. 2025; 17(7):333. https://doi.org/10.3390/toxins17070333
Chicago/Turabian StyleArranz-Paraiso, Daniel, M. Angeles Rojo, Cristina Martin-Sabroso, Manuel Cordoba-Diaz, Tomás Girbés, Manuel Garrosa, and Damian Cordoba-Diaz. 2025. "Monitoring of Vitamin C Plasma Levels in a Reversible Model of Malabsorption Generated in Mice by Ebulin-f" Toxins 17, no. 7: 333. https://doi.org/10.3390/toxins17070333
APA StyleArranz-Paraiso, D., Rojo, M. A., Martin-Sabroso, C., Cordoba-Diaz, M., Girbés, T., Garrosa, M., & Cordoba-Diaz, D. (2025). Monitoring of Vitamin C Plasma Levels in a Reversible Model of Malabsorption Generated in Mice by Ebulin-f. Toxins, 17(7), 333. https://doi.org/10.3390/toxins17070333