Correction: Melaram et al. Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins 2022, 14, 350
Error in Content
5.1. Biosynthesis
5.4. Phytotoxicity
6.2. Tissue Growth
6.3. Aquatic Plants
Error in Tables
Error in References
References Citation Changes in Maintext (Reordered Labeled)
Section 1: Introduction
Section 4.1: Irrigation with Polluted Water
Section 4.2: Application of Cyanobacterial Manure
Section 4.3: Compost
Section 5.2: Mechanism of Action
Section 5.4: Phyotoxicity
Section 6: Agricultural Plants
Section 6.1: Plant Seedling Growth
Section 6.2: Tissue Growth
Section 6.3: Aquatic Plants
Section 7: Human Health Risks
Adjusted References (Reordered Labeled)
Switch Original Refs 16 and 17
- 16. Chen, J.; Xie, P.; Li, L.; Xu, J. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol. Sci. 2009, 108, 81–89.
- 17. Ueno, Y.; Nagata, S.; Tsutsumi, T.; Hasegawa, A.; Watanabe, M.F.; Park, H.D.; Chen, G.C.; Yu, S.Z. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 1996, 17, 1317–1321.
Original Ref 43 Turns to 31
- 31. Yang, Z.; Kong, F.; Zhang, M. Groundwater contamination by microcystin from toxic cyanobacteria blooms in Lake Chaohu, China. Environ. Monit. Assess. 2016, 188, 280.
Original Ref 51 Turns to 65
- 65. Bouaïcha, N. Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 2014, 96, 1–15.
Original Ref 73 Turns to 79
- 79. Zhang, Y.; Whalen, J.K.; Sauvé, S. Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment. Environ. Pollut. 2020, 272, 115966.
Original Ref 76 Turns to 85
- 85. Cao, Q.; Rediske, R.R.; Yao, L.; Xie, L. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa). Ecotoxicol. Environ. Saf. 2018, 149, 143–149.
Original Ref 78 Turns to 87
- 87. Corbel, S.; Bouaïcha, N.; Nélieu, S.; Mougin, C. Soil irrigation with water and toxic cyanobacterial microcystins accelerates tomato development. Environ. Chem. Lett. 2015, 13, 447–452.
Original Ref 82 Turns to 95
- 95. Lee, S.; Jiang, X.; Manubolu, M.; Riedl, K.; Ludsin, S.A.; Martin, J.F.; Lee, J. Fresh produce and their soils accumulate cyanotoxins from irrigation water: Implications for public health and food security. Food Res. Int. 2017, 102, 234–245.
Original Ref 86 Turns to 108
- 108. Romero-Oliva, C.S.; Contardo-Jara, V.; Pflugmacher, S. Time dependent uptake, bioaccumulation and biotransformation of cell free crude extract microcystins from Lake Amatitlán, Guatemala by Ceratophyllum demersum, Egeria densa and Hydrilla verticillata. Toxicon 2015, 105, 62–73.
Removed References (Original Labeled)
- 54. Wu, X.; Xiao, B.; Li, R.; Wang, C.; Huang, J.; Wang, Z. Mechanisms and factors affecting sorption of microcystins onto natural sediments. Environ. Sci. Technol. 2011, 45, 2641–2647.
- 55. Yuhui, L.; Wang, Y.; Yin, L.; Pu, Y.; Wang, D. Using the nematode Caenorhabditis elegans as a model animal for assessing the toxicity induced by mirocsystin-LR. J. Environ. Sci. 2009, 21, 395–401.
- 58. Saqrane, S.; Ghazali, I.E.; Oudra, B.; Bouarab, L.; Vasconcelos, V. Effects of cyanobacteria producing microcystins on seed germination and seedling growth of several agricultural plants. J. Environ. Sci. Health Part B 2008, 43, 443–451.
- 61. Bouaïcha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Benayache, N.Y.; Nguyen-Quang, T. Structural diversity, characterization and toxicology of microcystins. Toxins 2019, 11, 714.
- 75. Sedan, D.; Malaissi, L.; Vaccarini, C.A.; Ventosi, E.; Laguens, M.; Rosso, L.; Giannuzzi, L.; Andrinolo, D. [D-Leu1] MC-LR has lower PP1 inhibitory capability and greater toxic potency than MC-LR in animal and plant tissues. Toxins 2020, 12, 632.
- 77. Do Carmo Bittencourt-Oliveira, M.; Cordeiro-Araújo, M.K.; Chia, M.A.; de Toledo Arruda-Neto, J.D.; de Oliveira, Ê.T.; dos Santos, F. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. Ecotoxicol. Environ. Saf. 2016, 128, 83–90.
- 79. Pflugmacher, S. Reduction in germination rate and elevation of peroxidase activity in Zea mays seedlings due to exposure to different microcystin analogues and toxic cell free cyanobacterial crude extract. J. Appl. Bot. Food Qual. 2007, 81, 45–48.
- 83. Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem. 2010, 119, 1485–1490.
- 87. Verbitsky, V.B.; Kurbatova, S.A.; Berezina, N.A.; Korneva, L.G.; Meteleva, N.Y.; Makarova, O.S.; Sharov, A.N.; Ershov, I.Y.; Malysheva, O.A.; Russkikh, Y.V.; et al. Responses of aquatic organisms to cyanobacteria and Elodea in microcosms. Dokl Biol. Sci. 2019, 488, 136–140.
- 89. Zanchett, G.; Oliveira-Filho, E.C. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 2013, 5, 1896–1917.
- 90. Saqrane, S.; Ouahid, Y.; El Ghazali, I.; Oudra, B.; Bouarab, L.; del Campo, F.F. Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: A laboratory experimental approach. Toxicon 2009, 53, 786–796.
Newly Added References (Reordered Labeled)
- 27. Zhang, Y; Husk, B.R.; Dinh, Q.T.; Sanchez, J.S.; Sauvé, S.; Whalen, J.K. Quantitative screening for cyanotoxins in soil and groundwater of agricultural watersheds in Quebec, Canada. Chemosphere 2021, 274, 129781.
- 32. Groundwater: Understanding and Protecting Our Hidden Resource. U.S. Environmental Protection Agency: Washington DC, USA, 2021.
- 34. Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S. Environmental impacts of water use in global crop production: Hotspots and trade-offs with land use. Environ. Sci. Technol. 2011, 45, 13.
- 55. Chittora, D.; Meena, M.; Barupal, T.; Swapnil, P. Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem. Biophys. Rep. 2020, 22, 100737.
- 56. Xiang, L.; Li, Y.W.; Wang, Z.R.; Liu, B.L.; Zhao, H.M.; Li, H.; Cai, Q.Y.; Mo, C.H.; Li, Q.X. Bioaccumulation and phytotoxicity and human health risk from microcystin-LR under various treatments: A pot study. Toxins 2020, 12, 523.
- 58. Sinha, R.; Soni, B.K.; Agarwal, S.M.; Shankar, B.; Hahn, G.E. Vermiculture for organic horticulture: Producing chemical-free, nutritive and health protective foods by earthworms. Agric. Sci. 2013, 1, 17–44.
- 59. Li, Y.; Wang, Y.; Yin, L.; Pu, Y.; Wang, D. Using the nematode Caenorhabditis elegans as a model animal for assessing the toxicity induced by microcystin-LR. J. Environ. Sci. 2009, 21, 395–401.
- 61. Gurtler, J.B.; Doyle, M.P.; Erickson, M.C.; Jiang, X.; Millner, P.; Sharma, M. Composting to inactivate foodborne pathogens for crop soil application: A review. J. Food. Prot. 2018, 81, 1821–1837.
- 74. Tsoumalakou, E.; Papadimitriou, T.; Berillis, P.; Kormas, K.A.; Levizou, E. Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). Sci. Total Envirion. 2021, 789, 147948.
- 75. Wang, N.; Wang. C. Effects of microcystin-LR on the tissue growth and physiological responses of the aquatic plant Iris pseudacorus L. Aquat. Toxicol. 2018, 200, 197–205.
- 76. Chen, G.; Li, Q.; Bai, M.; Chen, Y. Nitrogen metabolism in Acorus calamus L. leaves induced changes in response to microcystin-LR at environmentally relevant concentrations. Bull. Environ. Contam. Toxicol. 2019, 103, 280–285.
- 80. Zhao, W.; Fu, P.; Liu, G.; Zhao, P. Difference between emergent aquatic and terrestrial monocotyledonous herbs in relation to the coordination of leaf stomata with vein traits. AoB PLANTS 2020, 12, plaa047.
- 81. Chen, J.; Song, L.; Dai, J.; Gan, N.; Liu, Z. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 2004, 15, 393–400.
- 83. Gehringer, M.M.; Kewada, V.; Coates, N.; Downing, T.G. The use of Lepidium sativum in a plant bioassay system for the detection of microcystin-LR. Toxicon 2003, 41, 871–876.
- 84. Pflugmacher, S.; Jung, K.; Lundvall, L.; Neumann, S.; Peuthert, A. Effects of cyanobacterial toxins and cyanobacterial cell-free crude extract on germination of alfalfa (Medicago sativa) and induction of oxidative stress. Environ. Toxicol. Chem. 2006, 25, 381–2387.
- 89. El-Sheekh, M.M.; Khairy, H.M.; El-Shenody, R. Effects of crude extract of Microcystis aeruginosa on germination, growth and chlorophyll content of Zea mays L. Bangladesh J. Bot. 2013, 42, 295–300.
- 90. Järvenpää, S.; Lundberg-Niinistö, C.; Sjövall, O.; Tyystjärvi, E.; Meriluoto, J. Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography-mass spectrometry. Toxicon 2007, 49, 865–874.
- 91. Hereman, T.C.; Bittencourt-Olveira, M.C. Bioaccumulation of microcystins in lettuce. J. Phycol. 2012, 48, 1535–1537.
- 92. Lahrouni, M.; Oufdou, K.; El Khalloufi, F.; Benidire, L.; Albert, S.; Göttfert, M.; Caviedes, M.A.; Rodriguez-Llorente, I.D.; Oudra, B.; Pajuelo, E. Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters. Environ. Sci. Pollut. Res. Int. 2016, 23, 10037–10049.
- 93. Bittencourt-Olveira, M.C.; Cordeiro-Araújo, M.K.; Chia, M.A.; Arrudo-Neto, J.D.; de Oliveira, E.T.; dos Santos, F. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. Ecotoxicol. Environ. Safi. 2016, 128, 83–90.
- 94. Haida, M.; El Khalloufi, F.; Mugani, R.; Redouane, E.M.; Campos, A.; Vasconcelos, V.; Oudra, B. Effects of irrigation with microcystin-containing water on growth, physiology, and antioxidant defense in strawberry Fragaria vulgaris under hydroponic culture. Toxins 2022, 14, 198.
- 97. Lucini, L.; Bernardo, L. Comparison of proteome response to saline and zinc in lettuce. Front. Plant Sci. 2015, 16, 240.
- 98. Levizou, E.; Statiris, G.; Papadimitriou, T.; Laspidou, C.S.; Kormas, K.A. Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation. Exotoxicol. Environ. Saf. 2017, 143, 193–200.
- 101. Cao, Q.; Wan, X.; Shu, X.; Xie, L. Bioaccumulation and detoxifixation of microcystin-LR in three submerged macrophytes: The important role of glutathione biosynthesis. Chemosphere 2019, 225, 935–942.
- 103. Pflugmacher, S.; Wiegand, C.; Beattie, K.A.; Codd, G.A.; Steinberg, C.E.W. Uptake of the cyanobacterial hepatotoxin microcystin-LR by aquatic macrophytes. Appl. Bot. 1998, 72, 228–232.
- 104. Cao, Q.; Liu, W.; Jiang, W.; Shu, X.; Xie, L. Glutathione biosynthesis plays an important role in microcystin-LR depurination in lettuce and spinach. Environ. Pollut. 2019, 253, 599–605.
- 105. Yin, L.; Huang, J.; Li, D.; Liu, Y. Microcystin-RR uptake and its effects on the growth of submerged macrophyte Vallisneria natans (lour.) hara. Environ. Toxicol. 2005, 20, 308–313.
- 106. Wang, Z.; Xiao, B.; Song, L.; Wang, C.; Zhang, J. Responses and toxin bioaccumulation in duckweed (Lemna minor) under microcystin-LR, linear alkybenzene sulfonate and their joint stress. J. Hazard Mater. 2012, 229–230, 137–144.
- 107. Song, L.; Chen, W.; Peng, L.; Wan, N.; Gan, N.; Zhang, X. Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and the risks associated with microcystins in Meilang Bay, Lake Taihu. Water Res. 2007, 41, 2853–2864.
- 110. Máthé, C.; M-Hamvas, M.; Vasas, G.; Surányi, G.; Bácsi, I.; Beyer, D.; Tóth, S.; Tímár, M.; Borbély, G. Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis) plants regenerated from embryogenic calli. New Phytol. 2007, 176, 824–835.
- 111. Xiao, F.G.; Zhao, X.L.; Tang, J.; Gu, X.H.; Zhang, J.P.; Niu, W.M. Necessity of screening water chestnuts for microcystins after cyanobacterial blooms break out. Arch. Environ. Contam. Toxicol. 2009, 57, 256–263.
Reference
- Melaram, R.; Newton, A.R.; Chafin, J. Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins 2022, 14, 350. [Google Scholar] [CrossRef] [PubMed]
Species | Experimental Design | Concentration of Microcystin * | Duration of Exposure (Days) | Stage of Development | Physiological Effects | Reference |
---|---|---|---|---|---|---|
Brassica juncea (mustard green) | Pot study | 150 µg/kg MC-LR | 10 d | Mature plants | Reduced plant height and weight | [56] |
Brassica napus (rape seed) | Germination | 600–3000 µg/L MC-LR | 10 d | Seeds | Reduced germination | [81] |
Daucus carota (carrot) | Independent exposure experiment | 50 µg/L MC-LR | 28 d | Mature plants | Reduced root growth Increased photosynthetic efficiency | [82] |
Ipomoea batatas (sweet potato) | Pot study | 150 µg/kg MC-LR | 10 d | Mature plants | Reduced plant height and weight | [56] |
Lactuca sativa (lettuce) | Hydroponics Hydroponics | 50 µg/L MCs 100 µg/L MC-LR | 21 d 10 d | Mature plants Mature plants | Reduced leaf growth and mineral content Reduced biomass of leaves and mineral content Increased GST activity in roots | [77,78] |
Lepidium sativum (watercress) | Germination | 10 µg/L MC-LR | 6 d | Seeds | Reduced radicle length and shoot weight | [83] |
Medicago sativa (alfalfa) | Germination | 5 µg/L MCs | 7 d | Seedlings | Inhibition of germination and root growth Increased lipid peroxidation | [84] |
Oryza sativa (rice) | Hydroponics Hydroponics | 1–3000 µg/L MC 500 µg/L MCs | 7 d 30 d | Seedlings | Reduced biomass of leaves, stems, and roots Reduced root weight, length, surface area and volume Increased levels of tartaric acid and malic acid | [26] [85] |
Phaseolus vulgaris (green bean) | Germination | 3500 µg/L MC-LR | 30 d | Seeds | Reduced chlorophyll content, delayed development Reduced conductivity and phototropic response | [86] |
Solanium lycopersicum (tomato) | Soil | 5 µg/L MC-LR | 90 d | Seeds | Stimulation of inflorescence and blooming of flower | [87] |
Spinacia oleracea (spinach) | Hydroponics | 50 µg/L MCs | 21 d | Mature plants | Reduced leaf growth and mineral content | [77] |
Triticum aestivum (wheat) | Germination Soil | 0.5 µg/L MC-LR | 3 d 14 d | Seeds | Reduced germination Reduced photosynthesis and root and shoot development Increased GST activity | [88] |
Zea mays (corn) | Germination | 100,000–800,000 µg/L | 1 d | Seeds | Reduced plant height and weight | [89] |
Species | Environment | Mode of Uptake | * Microcystin Toxins | ** Concentration of Microcystin | *** Plant Response | Reference |
---|---|---|---|---|---|---|
Alternanthera philoxeroides (alligator weed) | Submerged | Root absorption Diffusion | Total MCs | 169–3945 ng/g | -- | [107] |
Ceratophyllum dermersum (hornwort) | Submerged | Root absorption Diffusion | MC-LR | 71 µg/g | -- | [103] |
Elodea canadensis (American waterweed) | Submerged | Root absorption Leaf contact with water surface Diffusion | MC-LR | 40 µg/g | -- | [103] |
Hydrilla verticillata (water thyme) | Submerged | Root absorption Diffusion | Total MCs MC-LR MC-RR MC-YR | >1000 µg/kg >1000 µg/kg <500 µg/kg <500 µg/kg | Biotransformation of MCs | [108] |
Lemna gibba (duckweed) | Floating | Root absorption Leaf contact with water surface | MC-LR | 2.44 µg/g | Reduction in plant growth and chlorophyll content Biotransformation of MCs | [109] |
Phragmites australis (common reed) | Floating | Root absorption Leaf contact with water surface | MC-LR | 5–40 µg/L | Inhibition of growth and development | [110] |
Polygonum portorcensis (smooth smartweed) | Submerged | Root absorption Diffusion | Total MCs MC-LR MC-RR MC-YR | >400 µg/kg >400 µg/kg <200 µg/kg <200 µg/kg | Biotransformation of MCs | [108] |
Trapa natans (water chestnut) | Floating | Root absorption Leaf contact with water surface | Total MCs | 1.68 ng/g | -- | [111] |
Typha sp. (cattail) | Floating | Root absorption Leaf contact with water surface | Total MCs MC-LR MC-RR MC-YR | >1500 µg/kg >1500 µg/kg <500 µg/kg <500 µg/kg | Biotransformation of MCs | [108] |
Vallisneria natans (eelgrass) | Submerged | Root absorption Diffusion | MC-RR | 10 mg/L | Reduction in root and leaf numbers | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melaram, R.; Newton, A.R.; Chafin, J. Correction: Melaram et al. Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins 2022, 14, 350. Toxins 2025, 17, 320. https://doi.org/10.3390/toxins17070320
Melaram R, Newton AR, Chafin J. Correction: Melaram et al. Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins 2022, 14, 350. Toxins. 2025; 17(7):320. https://doi.org/10.3390/toxins17070320
Chicago/Turabian StyleMelaram, Rajesh, Amanda R. Newton, and Jennifer Chafin. 2025. "Correction: Melaram et al. Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins 2022, 14, 350" Toxins 17, no. 7: 320. https://doi.org/10.3390/toxins17070320
APA StyleMelaram, R., Newton, A. R., & Chafin, J. (2025). Correction: Melaram et al. Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins 2022, 14, 350. Toxins, 17(7), 320. https://doi.org/10.3390/toxins17070320