Review on the Occurrence of Mycotoxigenic Fungi in Dried Fruits and the Role of Stored-Product Insects
Abstract
1. Introduction
2. Insects of Dried Fruits
Coleoptera | |
Dried fruit beetle | Carpophilus hemipterus L. |
Confused sap beetle | Carpophilus mutiatus Erichson |
Corn sap beetle | Carpophilus dimidiatus (F.) |
Australian sap beetle | Carpophilus davidsoni Dobson |
Pineapple beetle | Carpophilus humeralis (F.) |
Rust red flour beetle | Tribolium castaneum Herbst |
Drugstore beetle | Stegobium panaceum L. |
Cigarette beetle | Lasioderma serricorne F. |
Sawtoothed grain beetle | Oryzaephilus surinamensis L. |
Merchant grain beetle | Oryzaephilus mercator Fauve |
Small darkling beetles | Blapstinus spp. |
Hairy fungus beetle | Typhaea stercorea (L.) |
Yellow nitidulid | Haptoncus luteolus (Erichson) |
Leadcable borer | Scobicia declivis (LeConte) |
Date-stone beetle | Coccotrypes dactyliperda (F.) |
- | Gonocephalum pusillum F. |
Lepidoptera | |
Raisin moth | Ephestia figuiela Gregson |
Codling moth | Cydia pomonela L. |
Almond moth | Ephestia cautela Walker |
Indian meal moth | Plodia interpunctela Hubner |
Tobacco moth | Ephestia elutella Hubner |
Rice moth | Corcyra cephalonica Stainton |
Navel orangeworm | Amyelois transitelfa Walker |
Raisin moth | Ephestia figuiela Gregson |
Codling moth | Cydia pomonela L. |
Almond moth | Ephestia cautela Walker |
Mites | |
Dried food mite | Carpoglyphus lactis (L.) |
Cheese mite | Tyrophagus putrescentiae (Schrnak) |
Flour mite | Acarus siro L. |
- | Cheyletus malaccensis (Oudemans) |
- | Blattisocius keegani (Fox) |
- | Blattisocius dentriticus (Berlese) |
- | Caloglyphus berlesei (Michael) |
- | Tarsonemus sp. |
3. Fungi and Mycotoxins Commonly Found in Dried Fruits
- (i)
- Hydrophilic plant pathogenic fungi such as Fusarium graminearum Schwabe, named “field fungi”;
- (ii)
- Saprophytic and thermophilic fungi such as Fusarium proliferatum (Matsushima) Nirenberg or Aspergillus flavus Link, considered as “intermediate microflora”;
- (iii)
Mycotoxin | Fungi | Range of Temperature (°C) | Reference | Symptoms/Toxicology |
---|---|---|---|---|
Aflatoxins | Aspergillus flavus Aspergillus parasiticus | 10–48 12–42 | [131] | Binds to guanine (DNA adduct)/carcinogenic, mutagenic, teratogenic, hepatotoxic [132] |
Ochratoxin A (OTA) | Aspergillus ochraceus Aspergillus niger A. carbonarius Penicillium verrucosum | 10–40 6–47 10–40 0–31 | [133] | Blocks protein synthesis/mutagenic, teratogenic, neurotoxic, hepatotoxic, nephrotoxic, immunotoxic [134] |
Fumonisins | Fusarium verticilloides Fusarium proliferatum | 15–35 | [135] | Carcinogens, neurotoxic, neural tube defects, genotoxic [136] |
Alternariol Monomethyl Ether Alternariol | Altenaria spp. | 5–30 | [108] | Genotoxic and carcinogenic in animal studies, internal hemorrhage [137] |
Patulin | Penicillium expansum | 25 | [112] | Nausea, vomiting, and diarrhea, immunotoxicity and genotoxicity [137] |
4. The Storage Ecosystem: Dynamics of Infestation and Ecological Interactions in Stored Products
5. Synergistic Effects Between Stored-Product Insects and Post-Harvest Pathogen
6. Climate Change and Mycotoxins
7. Legislation
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omolola, A.O.; Jideani, A.I.; Kapila, P.F. Quality properties of fruits as affected by drying operation. Crit. Rev. Food Sci. Nutr. 2017, 57, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.P.K.; Rupasinghe, H.P.V.; Khanizadeh, S. Impact of drying processes on bioactive phenolics, vitamin C and antioxidant capacity of red-fleshed apple slices. J. Food Process. Preserv. 2011, 35, 453–457. [Google Scholar] [CrossRef]
- Santos, P.H.S.; Silva, M.A. Retention of vitamin C in drying processes of fruits and vegetables—A review. Dry. Technol. 2008, 26, 1421–1437. [Google Scholar] [CrossRef]
- Pateiro, M.; Vargas-Ramella, M.; Franco, D.; da Cruz, A.G.; Zengin, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. The role of emerging technologies in the dehydration of berries: Quality, bioactive compounds, and shelf life. Food Chem. X 2022, 16, 100465. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Das, A.; Basfore, S.; Seth, T. Value addition of fruits and vegetables through drying and dehydration. In Value Addition of Horticultural Crops: Recent Trends and Future Directions; Springer: New Delhi, India, 2015; pp. 179–189. [Google Scholar] [CrossRef]
- Tiwari, P.; Singh, A.; Singh, U.; Maurya, S.; Singh, M. Nutritional importance of some dry fruits based on their phenolic acids. Int. J. Nutr. Wellness 2008, 8, 1–8. [Google Scholar]
- Cinar, G. Consumer perspective regarding dried tropical fruits in Turkey. Ital. J. Food Sci. 2018, 30, 809–827. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits. J. Funct. Foods 2016, 21, 113–132. [Google Scholar] [CrossRef]
- Rybicka, I.; Kiewlicz, J.; Kowalczewski, P.Ł.; Gliszczyńska-Świgło, A. Selected dried fruits as a source of nutrients. Eur. Food Res. Technol. 2021, 247, 2409–2419. [Google Scholar] [CrossRef]
- Dhiman, P.; Soni, K.; Singh, S. Nutritional Value of Dry Fruits and their Vital Significance-A Review. PharmaTutor 2014, 2, 102–108. [Google Scholar]
- Sullivan, V.K.; Na, M.; Proctor, D.N.; Kris-Etherton, P.M.; Petersen, K.S. Consumption of dried fruits is associated with greater intakes of underconsumed nutrients, higher total energy intakes, and better diet quality in US adults: A cross-sectional analysis of the national health and nutrition examination survey, 2007–2016. J. Acad. Nutr. Diet. 2021, 121, 1258–1272. [Google Scholar] [CrossRef]
- Rizzo, D.M.; Lichtveld, M.; Mazet, J.A.; Togami, E.; Miller, S.A. Plant health and its effects on food safety and security in a one health framework: Four case studies. One Health Outlook 2021, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Nie, J.; Bacha, S.A.S.; Yan, Z.; Gao, G. Occurrence and co-occurrence of mycotoxins in apple and apple products from China. Food Control 2020, 118, 107354. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain; Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, R.L.; Leblanc, J.-C.; et al. Scientific opinion—Risk assessment of aflatoxins in food. EFSA J. 2020, 8, 112. [Google Scholar] [CrossRef]
- Pleadin, J.; Zadravec, M.; Lešić, T.; Frece, J.; Vasilj, V.; Markov, K. Climate change-A potential threat for increasing occurrences of mycotoxins. Vet. Stanica 2020, 51, 659–671. [Google Scholar] [CrossRef]
- Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 2010, 1, 113–122. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- European Commission (EC). Commission Regulation (EU) No 2002/1370 of 5 August 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of ochratoxin A in certain foodstuffs. Off. J. Eur. Union 2022, L206, 11–14. [Google Scholar]
- European Commission (EC). Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, L70, 12–34. [Google Scholar]
- European Commission (EC). Commission Regulation (EU) No 1058/2012 of 12 November 2012 amending Regulation (EC) No 1881/2006 as regards maximum levels for aflatoxins in dried figs. Off. J. Eur. Union 2010, L313, 14–15. [Google Scholar]
- CAST. Mycotoxins: Risks in Plant, Animal, and Human Systems; Council for Agricultural Science and Technology: Ames, IA, USA, 2003; ISBN 1-887383-22-0. [Google Scholar]
- Lamboni, Y.; Hell, K. Propagation of mycotoxigenic fungi in maize stores by post-harvest insects. Int. J. Trop. Insect Sci. 2009, 29, 31–39. [Google Scholar] [CrossRef]
- Reddy, K.R.N.; Salleh, B.; Saad, B.; Abbas, H.K.; Abel, C.A.; Shier, W.T. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev 2010, 29, 3–26. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Subramanyam, B. Stored-Product Insect Resource; AACC Int.: Saint Paul, MN, USA, 2009. [Google Scholar]
- Hubert, J.; Erban, T.; Nesvorna, M.; Stejskal, V. Emerging risk of infestation and contamination of dried fruits by mites in the Czech Republic. Food Addit. Contam. 2011, 28, 1129–1135. [Google Scholar] [CrossRef]
- Nayak, M.K.; Collins, P.J.; Throne, J.E.; Wang, J.J. Biology and management of psocids infesting stored products. Annu. Rev. Entomol. 2014, 59, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, V.; Hubert, J.; Aulicky, R.; Kucerova, Z. Overview of present and past and pestassociated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 2015, 64, 122–132. [Google Scholar] [CrossRef]
- Perez, S.; Nelson, H.D. Insects on Dried Fruits. U.S. Department of Agriculture, Agricultural Research Service, Agriculture Handbook 464. [Recreated and Published as an Acrobat pdf in 2005, with an Added List of Updates and Corrections, by Judy Johnson]. 1975. Available online: http://www.ars.usda.gov/is/np/insectsdriedfruits/insectsdriedfruits.pdf (accessed on 20 February 2025).
- Guru, P.N.; Mridula, D.; Dukare, A.S.; Ghodki, B.M.; Paschapur, A.U.; Samal, I.; Nikhil, R.M.; Padala, V.K.; Rajashekhar, M.; Subbanna, A.R.N.S. A comprehensive review on advances in storage pest management: Current scenario and future prospects. Front. Sustain. Food Syst. 2022, 6, 993341. [Google Scholar] [CrossRef]
- Burks, C.S.; Johnson, J.A. Biology, behavior, and ecology of stored fruit and nut insects. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 26–32. [Google Scholar]
- Hubert, J.; Stejskal, V.; Athanassiou, C.G.; Throne, J.E. Health Hazards Associated with Arthropod Infestation of Stored Products. Annu. Rev. Entomol. 2018, 63, 553–573. [Google Scholar] [CrossRef]
- Johnson, J. Pest control in postharvest nuts. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Improving the Safety and Quality of Nuts; Harris, L.J., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 56–87. [Google Scholar] [CrossRef]
- Arthur, F.H. Structural pest management for stored product insects. In Recent Advances in Stored Product Protection; Athanassiou, C., Arthur, F., Eds.; Springer GmbH: Berlin/Heidelberg, Germany, 2018; pp. 65–81. [Google Scholar]
- Nayak, M.K.; Daglish, G.J. Importance of Stored Product Insects. In Recent Advances in Stored Product Protection; Athanassiou, C., Arthur, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–17. [Google Scholar]
- Mohandass, S.; Arthur, F.J.; Zhu, K.Y.; Throne, J.E. Biology and management of Plodia interpunctella (Lepidoptera: Pyralidae) in stored products. J. Stored Prod. Res. 2007, 43, 302–311. [Google Scholar] [CrossRef]
- Hinton, H.E. A Monograph of the Beetles Associated with Stored Products; British Museum (Natural History): London, UK, 1945; Volume 1, pp. 1–443. [Google Scholar]
- Hayashi, N. A contribution to the knowledge of the larvae of Nitidulidae occurring in Japan (Coleoptera: Cucujoidea). Insecta Matsumurana New Ser. 1978, 14, 1–97. [Google Scholar]
- Jelínek, J.; Audisio, P.; Hajek, J.; Baviera, C.; Moncourtier, B.; Barnouin, T.; Brustel, H.; Genç, H.; Leschen, R.A. Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of sap beetles introduced to Europe and Mediterranean areas. AAPP Phys. Math. Nat. Sci. 2016, 94, 1–24. [Google Scholar] [CrossRef]
- James, D.G.; Vogele, B.; Faulder, R.J. Seasonal abundance of Carpophilus spp. (Coleoptera: Nitidulidae) in fallen citrus fruit in the Murrumbidgee Irrigation Area of southern New South Wales. Plant Prot. Q. 1995, 10, 1–4. [Google Scholar]
- James, D.G.; Faulder, R.J.; Vogele, B.; Bartelt, R.J.; Moore, C.J. Phenology of Carpophilus spp. (Coleoptera: Nitidulidae) in stone fruit orchards as determined by pheromone trapping: Implications for prediction of crop damage. Aust. J. Entomol. 1997, 36, 165–173. [Google Scholar] [CrossRef]
- Leschen, R.; Marris, J. Carpophilus (Coleoptera: Nitidulidae) of New Zealand with notes on Australian species. Landc. Res. Contract Rep. 2005, 405, 1–40. [Google Scholar]
- Barth, M.; Hankinson, T.R.; Zhuang, H.; Breidt, F. Microbiological Spoilage of Fruits and Vegetables. In Compendium of the Microbiological Spoilage of Foods and Beverages; Sperber, W.H., Doyle, M.P., Eds.; Springer: New York, NY, USA, 2009; pp. 135–183. ISBN 978-1-4419-0825-4. [Google Scholar]
- James, D.G.; Faulder, R.J.; Bartelt, R.J. Fauna and seasonal abundance of Carpophilus spp. (Coleoptera: Nitidulidae) in four stone fruit growing regions of southeastern Australia as determined by pheromone-trapping. J. Aust. Entomol. Soc. 1995, 34, 327–333. [Google Scholar] [CrossRef]
- James, D.G.; Bartelt, R.J.; Faulder, R.J. Attraction of Carpophilus spp. (Coleoptera: Nitidulidae) to synthetic aggregation pheromones and host-related coattractants in Australian stone fruit orchards: Beetle phenology and pheromone dose studies. J. Chem. Ecol. 1994, 20, 2525–2539. [Google Scholar] [CrossRef]
- James, D.G.; Vogele, B. Development and survivorship of Carpophilus hemipterus (L.), Carpophilus mutilatus Erichson and Carpophilus humeralis (F.) (Coleoptera: Nitidulidae) over a range of constant temperatures. Aust. J. Entomol. 2000, 39, 180–184. [Google Scholar] [CrossRef]
- Srivastava, C.; Subramanian, S. Storage insect pests and their damage symptoms: An overview. J. Grain Stor. Res. 2016, 78, 53–58. [Google Scholar] [CrossRef]
- Trematerra, P.; Throne, J. Insect and mites pests of durum wheat. In American Associate of Cereal Chemists International, 2nd ed.; Sissons, M., Abecassis, J., Marchylo, B., Carcea, M., Eds.; AACC International Press: St. Paul, MN, USA, 2012; pp. 73–83. [Google Scholar] [CrossRef]
- Gourgouta, M.; Morrison, W.R.; Hagstrum, D.W.; Athanassiou, C.G. Saw-toothed grain beetle, Oryzaephilus surinamensis, an internationally important stored product pest. J. Stored Prod. Res. 2023, 104, 102165. [Google Scholar] [CrossRef]
- Campbell, J.F.; Athanassiou, C.G.; Hagstrum, D.W.; Zhu, K.Y. Tribolium castaneum: A model insect for fundamental and applied research. Annu. Rev. Entomol. 2022, 67, 347–365. [Google Scholar] [CrossRef]
- Lis, Ł.B.; Bakuła, T.; Baranowski, M.; Czarnewicz, A. The carcinogenic effects of benzoquinones produced by the flour beetle. Pol. J. Vet. Sci. 2011, 14, 159–164. [Google Scholar] [CrossRef]
- Perez-Mendoza, J.; Aguilera-Peña, M. Development, reproduction, and control of the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), in stored seed garlic in Mexico. J. Stored Prod. Res. 2004, 40, 409–421. [Google Scholar] [CrossRef]
- Allotey, J.; Goswami, L. Comparative biology of two phycitid moths, Plodia interpunctella (Hubn.) and Ephestia cautella (Wlk.) on some selected food media. Insect Sci. Its Appl. 1990, 11, 209–215. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y.H.; Lee, G.S.; Gho, H.G.; Han, M.W. Biological characteristics and mass rearing system for Cadra cautella (Walker) as a substitute diet for natural enemies. Korean J. Appl. Entomol. 2003, 42, 203–209. [Google Scholar]
- Ashworth, J.R. The biology of Ephestia elutella. J. Stored Prod. Res. 1993, 29, 199–205. [Google Scholar] [CrossRef]
- Donohoe, H.C.; Simmons, P.; Barnes, D.F.; Kaloostian, G.H.; Heinrich, C. Biology of the Raisin Moth; Technical Report 9781119130536; United States Department of Agriculture: Washington, DC, USA, 1949; Volume 994. [Google Scholar]
- Cox, P.D. The influence of temperature and humidity on the life-cycles of Ephestia figulilella Gregson and Ephestia calidella (Guenee) (Lepidoptera: Phycitidae). J. Stored Prod. Res. 1974, 10, 43–55. [Google Scholar] [CrossRef]
- Lara-Villalón, M.; Vanoye-Eligio, V.; Solís, M.A.; Sánchez-Ramos, G.; Chacón-Hernández, J.C. The Navel Orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), Discovered in Northeastern Mexico Feeding on Sapindaceae. Proc. Entomol. Soc. Wash. 2017, 119, 601–605. [Google Scholar] [CrossRef]
- EFSA PLH Panel (EFSA Panel on Plant Health); Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.-A.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; et al. Scientific Opinionon the pest categorisation of Amyelois transitella. EFSA J. 2021, 19, 27. [Google Scholar] [CrossRef]
- Plant Health Australia. Orchard Biosecurity Manual for the Almond Industry; Plant Health Australia: Canberra, Australia, 2009; Available online: http://www.planthealthaustralia.com.au/go/phau/biosecurity/nuts (accessed on 10 May 2025).
- Palyvos, N.E.; Emmanouel, N.G.; Saitanis, C.J. Mites associated with stored products in Greece. Exp. Appl. Acarol. 2008, 44, 213–226. [Google Scholar] [CrossRef]
- Xu, L.F.; Li, H.X.; Xu, P.F.; Xu, H.F.; Li, C.P. Study of acaroid mites pollution in stored fruit-derived chinese medicinal materials. Nutr. Hosp. 2015, 32, 732–737. [Google Scholar] [CrossRef]
- Cobanoglu, S. Mite population density analysis of stored dried apricots in Turkey. Int. J. Acarol. 2009, 35, 67–75. [Google Scholar] [CrossRef]
- Tao, N.; Zhan, Z.X.; Sun, E.T.; Li, C.P. Investigation of Acaroid mites breeding in stored dry fruits. Chin. J. Schistosomiasis Control 2015, 27, 634–637. [Google Scholar]
- Rezk, H.; Bakr, A.; Hamid, M. Population Fluctuation of Dried Fruit Mite, Carpoglyphus lactis, on Two Dried Fruits and Chestnut in Alexandria, Egypt and Determination the Total Aflatoxin in Infested Dried Fruits. 2018. Available online: https://www.researchgate.net/publication/323779647_Population_fluctuation_of_Dried_fruit_mite_Carpoglyphus_lactis_on_two_dried_fruits_and_Chestnut_in_Alexandria_Egypt_and_Determination_the_total_Aflatoxin_in_infested_dried_fruits (accessed on 10 May 2025).
- Hubert, J.; Stejskal, V.; Kubatova, A.; Munzbergova, Z.; Vanova, M.; Zdarkova, E. Mites as selective fungal carriers in stored grain habitats. Exp. Appl. Acarol. 2003, 29, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Colloff, M.J. Dust Mites; Springer: Dordrecht, The Netherlands, 2009; Volume 29. [Google Scholar] [CrossRef]
- Krizkova-Kudlikova, I.; Stejskal, V.; Hubert, J. Comparison of detection methods for Acarus siro (Acari: Acaridida: Acarididae) contamination in grain. J. Econ. Entomol. 2007, 100, 1928–1937. [Google Scholar] [CrossRef]
- Gragera-Facundo, J. Un falso gusano del alambre (Gonocephalum pusillum) como plaga de la higuera. Phytoma. Esp. 2014, 255, 26–30. [Google Scholar]
- Al-Taher, F.; Cappozzo, J.; Zweigenbaum, J.; Lee, H.J.; Jackson, L.; Ryu, D. Detection and quantitation of mycotoxins in infant cereals in the US market by LC-MS/MS using a stable isotope dilution assay. Food Control 2017, 72, 27–35. [Google Scholar] [CrossRef]
- Miller, J.D. Fungi and mycotoxins in grain: Implications for stored product research. J. Stored Prod. Res. 1995, 31, 1–16. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Conditions of formation of ochratoxin A in drying, transport and in different commodities. Food Addit. Contam. 2006, 22, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Fleurat-Lessard, F.; Fourar-Belaifa, R.; Bouznad, Z. Multivariate analysis of the temporal changes of fungal communities in unsafe storage conditions of some common wheat varieties in relation to relative humidity level and rice weevil infestation. Julius-Kühn-Archiv 2010, 425, 518–526. [Google Scholar] [CrossRef]
- Zhang, K.; Banerjee, K. A review: Sample preparation and chromatographic technologies for detection of aflatoxins in foods. Toxins 2020, 12, 539. [Google Scholar] [CrossRef]
- Abdel-Sater, M.A.; Saber, S.M. Mycoflora and mycotoxins of some Egyptian dried fruits. Bull. Fac. Sci. Assiut Univ. 1999, 28, 92–107. [Google Scholar]
- Hasnaoui, A.; El Houmaizi, M.A.; Asehraou, A.; Sindic, M.; Deroanne, C.; Hakkou, A. Chemical composition and microbial quality of dates grown in Figuig oasis of Morocco. Int. J. Agric. Biol. 2010, 12, 311–314. [Google Scholar]
- Toma, F.M.; Rajab, N.N. Isolation and identification of fungi from dried fruits and study of quantitative estimation of aflatoxin. ZANCO J. Pure Appl. Sci. 2014, 26, 49–60. [Google Scholar]
- Alghalibi, S.M.; Shater, A.R.M. Mycoflora and mycotoxin contamination of some dried fruits in Yemen Republic. Assiut Univ. Bull. Environ. Res. 2004, 7, 19–27. [Google Scholar] [CrossRef]
- El Khoury, A.; Rizk, T.; Lteif, R.; Azouri, H.; Delia, M.L.; Lebrihi, A. Occurrence of ochratoxin A-and aflatoxin B1- producing fungi in Lebanese grapes and ochratoxin. A content in musts and finished wines during 2004. J. Agric. Food Chem. 2006, 54, 8977–8982. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Zinedine, A.; Molto, J.C.; Idrissi, L.; Manes, J. Aflatoxins levels in dried fruits and nuts from Rabat-Salé area, Morocco. Food Control 2008, 19, 849–853. [Google Scholar] [CrossRef]
- Ozer, H.; Oktay Basegmez, H.I.; Ozay, G. Mycotoxin risks and toxigenic fungi in date, prune and dried apricot among Mediterranean crops. Phytopathol. Mediterr. 2012, 51, 148–157. [Google Scholar]
- European Union. RASFF. In The Rapid Alert System for Food and Feed Annual Report; Publications Office of the European Union: Luxembourg, 2018; Available online: https://op.europa.eu/en/publication-detail/-/publication/c3318331-d9c4-11e9-9c4e-01aa75ed71a1/language-en (accessed on 1 September 2023).
- European Union. RASFF. In The Rapid Alert System for Food and Feed Annual Report; Publications Office of the European Union: Luxemburg, 2019; Available online: https://op.europa.eu/en/publication-detail/-/publication/2c5c7729-0c31-11eb-bc07-01aa75ed71a1/language-en/format-PDF/source-174742448 (accessed on 1 September 2023).
- European Union. RASFF. In The Rapid Alert System for Food and Feed Annual Report; Publications Office of the European Union: Luxemburg, 2020; Available online: https://food.ec.europa.eu/system/files/2021-08/rasff_pub_annual-report_2020.pdf (accessed on 1 September 2023).
- European Union. RASFF. In The Rapid Alert System for Food and Feed Annual Report; EU: Maastricht, The Netherlands, 2020; Available online: https://food.ec.europa.eu/document/download/499ffcf1-6c99-43ec-8905-5ff3e812eeb2_en?filename=acn_annual-report_2022.pdf (accessed on 1 September 2023).
- Senyuva, H.Z.; Gilbert, J.; Ozcan, S.; Ulken, U. Survey for Co-occurrence of Ochratoxin A and Aflatoxin B1 in Dried Figs in Turkey by Using a Single Laboratory-Validated Alkaline Extraction Method for Ochratoxin A. J. Food Prot. 2005, 68, 1512–1515. [Google Scholar] [CrossRef]
- Gherbawy, Y.A.; Elhariry, H.M.; Bahobial, A.A. Mycobiota and mycotoxins (aflatoxins and ochratoxin) associated with some Saudi date palm fruits. Foodborne Pathog. Dis. 2012, 9, 561–567. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Kabak, B. Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review. Toxins 2023, 15, 576. [Google Scholar] [CrossRef]
- Naeem, I.; Ismail, A.; Rehman, A.U.; Ismail, Z.; Saima, S.; Naz, A.; Faraz, A.; de Oliveira, C.A.; Benkerroum, N.; Aslam, M.Z.; et al. Prevalence of aflatoxins in selected dry fruits, impact of storage conditions on contamination levels and associated health risks on Pakistani consumers. Int. J. Environ. Res. Public Health 2022, 19, 3404. [Google Scholar] [CrossRef]
- Azaiez, I.; Font, G.; Mañes, J.; Fernández-Franzón, M. Survey of mycotoxins in dates and dried fruits from Tunisian and Spanish markets. Food Control 2015, 51, 340–346. [Google Scholar] [CrossRef]
- Pleadin, J.; Zadravec, M.; Lešić, T.; Vahčić, N.; Frece, J.; Mitak, M.; Markov, K. Co-occurrence of ochratoxin A and citrinin in unprocessed cereals established during a three-year investigation period. Food Addit. Contam. Part B 2018, 11, 20–25. [Google Scholar] [CrossRef]
- Wei, S.; Hu, C.; Zhang, Y.; Lv, Y.; Zhang, S.; Zhai, H.; Hu, Y. AnAzf1 acts as a positive regulator of ochratoxin A biosynthesis in Aspergillus niger. Appl. Microbiol. Biotechnol. 2023, 107, 2501–2514. [Google Scholar] [CrossRef] [PubMed]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Janati, S.S.F.; Beheshti, H.R.; Asadi, M.; Mihanparast, S.; Feizy, J. Preliminary survey of aflatoxins and ochratoxin A in dried fruits from Iran Bull. Environ. Contam. Toxicol. 2012, 88, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Heperkan, D. The importance of mycotoxins and a brief history of mycotoxin studies in Turkey. ARI Bull. Istanbul Tech. Univ. 2015, 54, 18–27. [Google Scholar]
- Isman, B.; Biyik, H. The aflatoxin contamination of fig fruits in Aydin City (Turkey). J. Food Saf. 2009, 29, 318–330. [Google Scholar] [CrossRef]
- Hocking, A.D.; Varelis, P.; Pitt, J.I.; Cameron, S.F.; Leong, S.-L.L. Occurrence of ochratoxin A in Australian wine. Aust. J. Grape Wine Res. 2003, 9, 72–78. [Google Scholar] [CrossRef]
- Ferranti, L.D.S.; Fungaro, M.H.P.; Massi, F.P.; Silva, J.J.D.; Penha, R.E.S.; Frisvad, J.C.; Taniwaki, M.H.; Iamanaka, B.T. Diversity of Aspergillus section Nigri on the surface of Vitis labrusca and its hybrid grapes. Int. J. Food Microbiol. 2018, 268, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Tjamos, S.E.; Antoniou, P.P.; Tjamos, E.C. Aspergillus spp., distribution, population composition and ochratoxin A production in wine producing vineyards in Greece. Int. J. Food Microbiol. 2006, 111, S61–S66. [Google Scholar] [CrossRef]
- Engel, G. Ochratoxin A in sweets, oil seeds and dairy products. Arch. Leb. 2000, 51, 98–101. [Google Scholar]
- Iamanaka, B.T.; Taniwaki, M.H.; Menezes, H.C.; Vicente, E.; Fungaro, M.H.P. Incidence of toxigenic fungi and ochratoxin A in dried fruits sold in Brazil. Food Addit. Contam. 2005, 22, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
- Kumari, C.K.; Nusrath, M. Natural occurrence of citrinin and ochratoxin A in coconut products. Natl. Acad. Sci. Lett. 1987, 10, 303–305. [Google Scholar]
- Guler, F.K.; Heperkan, D. Natural occurrence of ochratoxin A in dried figs. Anal. Chim. Acta 2008, 617, 32–36. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Juan, C.; Mojemmi, B.; Molto, J.C.; Bouklouze, A.; Cherrah, Y.; Idrissi, L.; Aouad, R.E.; Manes, J. Incidence of ochratoxin A in rice and dried fruits from Rabat and Salé area, Morocco. Food Addit. Contam. 2007, 24, 285–291. [Google Scholar] [CrossRef]
- MacDonald, S.J.; Anderson, S.; Brereton, P.; Wood, R. Determination of ochratoxin A in currants, raisins, sultanas, mixed dried fruit, and dried figs by immunoaffinity column cleanup with liquid chromatography: Interlaboratory study. J. AOAC Int. 2003, 86, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, F.; Cozzi, G.; Raiola, A.; Dini, I.; Mule, G.; Logrieco, A.F.; Ritieni, A. Raisins and currants as conventional nutraceuticals in Italian market: Natural occurrence of Ochratoxin A. J. Food Sci. 2017, 82, 2306–2312. [Google Scholar] [CrossRef]
- Miraglia, M.; Brera, C. Assessment of Dietary Intake of Ochratoxin A by the Population of EU Member States; Directorate-General Health and Consumer Protection: Rome, Italy, 2002; p. 153. [Google Scholar]
- Müller, T.; Ruppel, S.; Behrendt, U.; Lentzsch, P.; Müller, M.E. Antagonistic potential of fluorescent pseudomonads colonizing wheat heads against mycotoxin producing alternaria and fusaria. Front. Microbiol. 2018, 9, 02124. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M. Recent advances on Alternaria mycotoxins. Curr. Opin. Food Sci. 2017, 17, 57–61. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.; de Nijs, M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control 2016, 60, 196–204. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Campillo, N.; Lopez-Garcia, I.; Hernandez-Cordoba, M.; Vinas, P. High-resolution mass spectrometry for the determination of mycotoxins in biological samples. A review. Microchem. J. 2021, 166, 106197. [Google Scholar] [CrossRef]
- Zaied, C.; Abid, S.; Hlel, W.; Bacha, H. Occurrence of patulin in applebased-foods largely consumed in Tunisia. Food Control 2013, 31, 263–267. [Google Scholar] [CrossRef]
- Hammami, W.; Al Thani, R.; Fiori, S.; Al-Meer, S.; Atia, F.A.; Rabah, D.; Quirico, M.; Samir, J. Patulin and patulin producing penicillium spp. occurrence in apples and applebased products including baby food. J. Infect. Dev. Ctries 2017, 11, 343–349. [Google Scholar] [CrossRef]
- Ngolong Ngea, G.L.; Yang, Q.; Castoria, R.; Zhang, X.; Routledge, M.N.; Zhang, H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2447–2472. [Google Scholar] [CrossRef] [PubMed]
- Şenyuva, H.Z.; Gilbert, J. Identification of fumonisin B2, HT-2 toxin, patulin, and zearalenone in dried figs by liquid chromatography–Time-of-Flight mass spectrometry and liquid chromatography–mass spectrometry. J. Food Prot. 2008, 71, 1500–1504. [Google Scholar] [CrossRef]
- Karaca, H.; Nas, S. Aflatoxins, patulin and ergosterol contents of dried figs in Turkey. Food Addit. Contam. 2006, 23, 502–508. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Akinola, S.A.; Mwanza, M. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked), Food Safety Concerns, and Health Impacts. Int. J. Environ. Res. Public Health 2021, 18, 11741. [Google Scholar] [CrossRef]
- Szecsi, A.; Szekeres, A.; Bartok, T.; Oros, G.; Bartok, M.; Mesterhazy, A. Fumonisin B1-4-producing capacity of Hungarian Fusarium verticillioides isolates. World Mycotoxin J. 2010, 3, 67–76. [Google Scholar] [CrossRef]
- Chalyy, Z.A.; Kiseleva, M.G.; Sedova, I.B.; Minaeva, L.P.; Sheveleva, S.A.; Tutelyan, V.A. Dried fruits marketed in Russia: Multi-mycotoxin contamination. Vopr. Pitan. 2021, 90, 33–39. [Google Scholar] [CrossRef]
- Perrone, G.; De Girolamo, A.; Sarigiannis, Y.; Haidukowski, M.E.; Visconti, A. Occurrence of ochratoxin A, fumonisin B2 and black aspergilli in raisins from Western Greece regions in relation to environmental and geographical factors. Food Addit. Contam. Part A 2013, 30, 1339–1347. [Google Scholar] [CrossRef]
- Aslanoğlu, Z. Determination of Ochratoxin A and Fumonisin B2 in Dried Vine Fruits. Master’s Thesis, Istanbul Technical University, İstanbul, Turkey, 2014. [Google Scholar]
- Varga, J.; Kocsubé, S.; Suri, K.; Szigeti, G.Y.; Szekeres, A.; Varga, M.; Tóth, B.; Bartók, T. Fumonisin contamination and fumonisin producing black Aspergilli in dried vine fruits of different origin. Int. J. Food Microbiol. 2010, 143, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Daskaya- Dikmen, C.; Heperkan, D. Fumonisin production of black Aspergilli in vitro, fumonisin and ochratoxin A production in figs of positive strains and their growth assessment. Toxin Rev. 2013, 32, 10–17. [Google Scholar] [CrossRef]
- Susca, A.; Proctor, R.H.; Mulè, G.; Stea, G.; Ritieni, A.; Logrieco, A.; Moretti, A. Correlation of mycotoxin fumonisin B2 production and presence of the fumonisin biosynthetic gene fum8 in Aspergillus niger from grape. J. Agric. Food Chem. 2010, 58, 9266–9272. [Google Scholar] [CrossRef]
- Mogensen, J.M.; Knudsen, P.B.; Larsen, T.O.; Frisvad, J.C.; Thrane, U.; Nielsen, K.F. Fumonisins from Aspergillus niger in grapes and derived products. In Proceedings of the The MycoRed Africa Conference, Cape Town, South Africa, 4–6 April 2011. [Google Scholar]
- Abdallah, M.F.; Krska, R.; Sulyok, M. Occurrence of ochratoxins, fumonisin B2, aflatoxins (B1 and B2), and other secondary fungal metabolites in dried date palm fruits from Egypt: A mini survey. J. Food Sci. 2018, 83, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Azaiez, I.; Giusti, F.; Sagratini, G.; Mañes, J.; Fernández-Franzón, M. Multi-mycotoxins analysis in dried fruit by LC/MS/MS and a modified QuEChERS procedure. Food Anal. Methods 2014, 7, 935–945. [Google Scholar] [CrossRef]
- Kaya, S.B.; Tosun, H. Occurrence of total aflatoxin, ochratoxin A and fumonisin in some organic foods. J. Pure Appl. Microbiol. 2013, 7, 2925–2932. [Google Scholar]
- Haitao, S.; Warren, S.; Peiqiang, Y. Natural Occurrence and Co-Contamination of Twelve Mycotoxins in Industry-Submitted Cool-Season Cereal Grains Grown under a Low Heat Unit Climate Condition. Toxins 2019, 11, 160. [Google Scholar]
- Varga, J.; Kozakiewicz, Z. Ochratoxin A in grapes and grape derived products. Trends Food Sci. Technol. 2006, 17, 72–81. [Google Scholar] [CrossRef]
- Gourama, H.; Bullerman, L.B. Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic Fungi of Concern in Foods and Feeds: A Review. J. Food Prot. 1995, 58, 1395–1404. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Climate Change as a Driver of Emerging Risks for Food and Feed Safety, Plant, Animal Health and Nutritional Quality; Maggiore, A., Afonso, A., Barrucci, F., De Sanctis, G., Eds.; EFSA: Parma, Italy, 2020; EN-1881; Available online: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/sp.efsa.2020.EN-1881 (accessed on 10 May 2025).
- Mitchell, D.; Aldred, D.; Magan, N. Impact of ecological factors on the growth and ochratoxin A production by Aspergillus carbonarius from different regions of Europe. Asp. Appl. Biol. 2003, 68, 109–116. [Google Scholar]
- Schrenk, D.; Bodin, L.; Chipman, J.K.; Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-C.; Nebbia, C.S. Scientific Opinion on the risk assessment of ochratoxin A in food. EFSA J. 2020, 18, 150. [Google Scholar]
- Samapundo, S.; Devliehgere, F.; De Meulenaer, B.; Debevere, J. Effect of Water Activity and Temperature on Growth and the Relationship between Fumonisin Production and the Radial Growth of Fusarium verticillioides and Fusarium proliferatum on Corn. J. Food Prot. 2005, 68, 1054–1059. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; et al. Risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA J. 2018, 16, e05242. [Google Scholar]
- Bacha, S.A.S.; Li, Y.; Nie, J.; Xu, G.; Han, L.; Farooq, S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. Front. Plant Sci. 2023, 14, 1139757. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, F.V. The stored grain ecosystem. A global perceptive. J. Stored Prod. Res. 1992, 28, 73–87. [Google Scholar] [CrossRef]
- White, N. A multidisciplinary approach to stored-grain research. J. Stored Prod. Res. 1992, 28, 127–137. [Google Scholar] [CrossRef]
- Jian, F.; Jayas, D.S. The Ecosystem Approach to Grain Storage. Agric. Res. 2012, 1, 148–156. [Google Scholar] [CrossRef]
- Sinha, R.N.; Wallace, H.A.H.; Chebib, F.S. Principal-component analysis of interrelations among fungi, mites, and insects in grain bulk ecosystems. Ecology 1969, 50, 536–547. [Google Scholar] [CrossRef]
- Gerken, A.R.; Morrison, W.R. Farm2Fork through the lens of community ecology: Concepts and applications in postharvest storage. Front. Sustain. Food Syst. 2023, 7, 1137683. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Riudavets, J.; Kavallieratos, N.G. Preventing stored-product insect infestations in packaged-food products. Stewart Postharvest Rev. 2011, 3, 8. [Google Scholar]
- Mason, L.J.; McDonough, M. Biology, behavior, and ecology of stored grain and legume insects. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G.W., Eds.; Kansas State University Research and Extension: Manhattan, KS, USA, 2012; pp. 7–20. [Google Scholar]
- Edde, P.A. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012, 48, 1–18. [Google Scholar] [CrossRef]
- Navarro, S.; Navarro, H. Insect pest management of oilseed crops, tree nuts and dried fruits. In Recent Advances in Stored Product Protection; Athanassiou, C.G., Arthur, C.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 99–141. [Google Scholar] [CrossRef]
- Fleurat-Lessard, F.; Dupuis, S.A. Comparative analysis of upper thermal tolerance and CO2 production rate during heat shock in two different European strains of Sitophilus zeamais (Coleoptera: Curculionidae). J. Stored Prod. Res. 2010, 46, 20–27. [Google Scholar] [CrossRef]
- Ponce, M.A.; Kim, T.N.; Morrison, W.R. A systematic review of the behavioral responses by stored-product arthropods to individual or blends of microbially produced volatile cues. Insects 2021, 12, 391. [Google Scholar] [CrossRef]
- Magan, N.; Hope, R.; Cairns, V.; Aldred, D. Post-Harvest Fungal Ecology: Impact of Fungal Growth and Mycotoxin Accumulation in Stored Grain. Eur. J. Plant Pathol. 2003, 109, 723–730. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Lucas-Bautista, J.A.; Arévalo-Galarza, M.L.; Bosquez-Molina, E. Volatile Organic Compounds as a Diagnostic Tool for Detecting Microbial Contamination in Fresh Agricultural Products: Mechanism of Action and Analytical Techniques. Processes 2024, 12, 1555. [Google Scholar] [CrossRef]
- Dunkel, F.V. The relationship of insects to the deterioration of stored grain by fungi. Int. J. Food Microbiol. 1988, 7, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Pfohl, K.; Karlovsky, P.; Dehne, H.-W.; Altincicek, B. Dissemination of Fusarium proliferatum by mealworm beetle Tenebrio molitor. PLoS ONE 2018, 13, e0204602. [Google Scholar] [CrossRef]
- Van Wyk, J.H.; Hodson, A.C.; Christensen, C.M. Microflora associated with the confused flour beetle, Tribolium confusum. Ann. Entomol. Soc. Am. 1959, 52, 452–463. [Google Scholar] [CrossRef]
- Yeh, M.Y. Dissemination of Toxigenic Fungi in Shelled Corn by Ahasverus advena and Tmboltum confuum. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 1979; 71p. [Google Scholar]
- David, M.H.; Mills, R.B.; Sauer, D.B. Development and oviposition of Ahasverus advena (Waltl) (Coleoptera, Silvanidae) on seven species of fungi. J. Stored Prod. Res. 1975, 10, 17–22. [Google Scholar] [CrossRef]
- Phelan, P.L.; Lin, H. Chemical characterization of fruit and fungal volatiles attractive to dried-fruit beetle, Carpophilus hemipterus (L.) (Coleoptera: Nitidulidae). J. Chem. Ecol. 1991, 17, 1253–1272. [Google Scholar] [CrossRef]
- Nansen, C.; Phillips, T.W.; Palmer, M.W. Analysis of the insect community in a stored-maize facility. Ecol. Res. 2004, 19, 197–207. [Google Scholar] [CrossRef]
- Davis, T.S.; Crippen, T.L.; Hofstetter, R.W.; Tomberlin, J.K. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 2013, 39, 840–859. [Google Scholar] [CrossRef]
- da Silva, G.L.; Esswein, I.Z.; Heidrich, D.; Dresch, F.; Maciel, M.J.; Pagani, D.M.; Valente, P.; Scroferneker, M.L.; Johann, L.; Ferla, N.J.; et al. Population growth of the stored product pest Tyrophagus putrescentiae (Acari: Acaridae) on environmentally and medically important fungi. Exp. Appl. Acarol. 2019, 78, 49–64. [Google Scholar] [CrossRef]
- Usseglio, V.L.; Dambolena, J.S.; Martinez, M.J.; Zunino, M.P. The role of fumonisins in the biological interaction between Fusarium verticillioides and Sitophilus zeamais. J. Chem. Ecol. 2020, 46, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Lussenhop, J.; Wicklow, D.T. Nitidulid beetles (Nitidulidae: Coleoptera) as vectors of Aspergillus flavus in pre-harvest maize. Trans. Mycol. Soc. Jpn. 1990, 31, 63–74. [Google Scholar]
- Wicklow, D.T. Epidemiology of Aspergillus flavus in corn. In Aflatoxin in Corn: New Perspectives; Shotwell, O.L., Hurburgh, C.R., Jr., Eds.; Research Bulletin 599; Iowa Agriculture and Home Economics Experiment Station, Iowa State University: Ames, IA, USA, 1991; pp. 315–328. [Google Scholar]
- Dowd, P.F. Nitidulids as vectors of mycotoxin-producing fungi. In Afl atoxin in Corn: New Perspectives; Shotwell, O., Hurburgh, C.R., Jr., Eds.; Research Bulletin 599; Iowa Agriculture and Home Economics Experiment Station, Iowa State University: Ames, IA, USA, 1991; pp. 335–342. [Google Scholar]
- Dowd, P.F. Sap beetles and mycotoxins in maize. Food Addit. Contam. 1995, 12, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, R.; Hossain, M. Chemical ecology of Carpophilus sap beetles (Coleoptera: Nitidulidae) and development of an environmentally friendly method of crop protection. Terr. Arthropod Rev. 2010, 3, 29–61. [Google Scholar] [CrossRef]
- Yun, T.S.; Park, S.Y.; Yu, J.; Hwang, Y.; Hong, K.J. Isolation and Identification of Fungal Species from the Insect Pest Tribolium castaneum in Rice Processing Complexes in Korea. Plant Pathol. J. 2018, 34, 356–366. [Google Scholar] [CrossRef]
- Duarte, S.; Magro, A.; Tomás, J.; Hilário, C.; Alvito, P.; Ferreira, R.B.; Carvalho, M.O. The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. Insects 2021, 12, 730. [Google Scholar] [CrossRef]
- Trucksess, M.W.; Scott, P.M. Mycotoxins in botanicals and dried fruits: A review. Food additives & contaminants. Food Addit. Contam. Part A 2008, 25, 181–192. [Google Scholar]
- Paster, N.; Barkai-Golan, R. Mouldy fruits and vegetables as a source of mycotoxins: Part 2. World Mycotoxin J. 2008, 1, 385–396. [Google Scholar] [CrossRef]
- Dharmaputra, O.S.; Halid, H.; Sunjaya, K.S. The effect of Sitophilus zeamais on fungal infection, aflatoxin production, moisture content and damage to kernels of stored maize. In Proceedings of the 6th International Working Conference on Stored-product Protection, Canberra, NSW, Australia, 17–23 April 1994; Highley, E., Wright, E.J., Banks, H.J., Champ, B.R., Eds.; Stored product protection. CAB International: Wallingford, UK, 1994; pp. 981–984. [Google Scholar]
- Buda, V.; Apšegaite, V.; Blažyte-Cereškiene, L.; Butkiene, R.; Nedveckyte, I.; Peciulyte, D. Response of moth Plodia interpunctella to volatiles of fungus-infected and uninfected wheat grain. J. Stored Prod. Res. 2016, 69, 152–158. [Google Scholar] [CrossRef]
- Aucamp, J.L. The role of mite vectors in the development of aflatoxin in groundnuts. J Stored Prod Res. 1969, 5, 245–249. [Google Scholar] [CrossRef]
- Franzolin, M.R.; Gambale, W.; Cuero, R.G.; Correa, B. Interaction between toxigenic Aspergillus flavus and mites (Tyrophagus putrescentiae Schrank) on maize grains: Effects on fungal growth and aflatoxin production. J. Stored Prod. Res. 1999, 35, 215–224. [Google Scholar] [CrossRef]
- Hubert, J.; Stejskal, V.; Munzbergova, Z.; Kubatova, A.; Vanova, M.; Zdarkova, E. Mites and fungi in heavily infested stores in the Czech Republic. J. Econ. Entomol. 2004, 97, 2144–2153. [Google Scholar] [CrossRef]
- Thomas, M.C.; Dicke, R.J. Response of the grain mite Acarus siro (Acarina: Acaridae), to fungi associated with stored-food commodities. Ann. Entomol. Soc. Am. 1971, 64, 63–68. [Google Scholar] [CrossRef]
- Armitage, D.M.; Georges, C.L. The effect of three species of mites upon fungal growth on wheat. Exp. Appl. Acarol. 1986, 2, 111–124. [Google Scholar] [CrossRef]
- Okamoto, M.; Matsumoto, K.; Wada, Y.; Nakano, H. Studies on antifungal effect of mite alarm pheromone citral. 1. Evaluation of antifungal effect of Citral. Jpn. J Sanit. Zool. 1978, 29, 255–260. [Google Scholar] [CrossRef]
- Matsumoto, K.; Wada, Y.; Okamoto, M. The alarm pheromone of grain mites and its antifungal effect. Recent Adv. Acarol. 1979, 1, 243–249. [Google Scholar]
- Kuwahara, Y.; Leal, W.S.; Suzuki, T.; Maeda, M.; Masutani, T. Pheromone study on astigmatidmite XXIV: Antifungal activity of Caloglyphus polyphyllae sex pheromone and other mite exudates. Naturwissenschaften 1989, 76, 578–579. [Google Scholar] [CrossRef]
- Hubert, J.; Jarosık, V.; Mourek, J.; Kubatova, A.; Zdarkova, E. Astigmatid mite growth and fungi preference (Acari: Acaridida): Comparisons in laboratory experiments. Pedobiologia 2004, 48, 205–214. [Google Scholar] [CrossRef]
- Rodriguez, J.G.; Potts, M.F.; Rodriguez, L.D. Mycotoxin toxicity to Tyrophagus putrescentiae. J. Econ. Entomol. 1980, 73, 282–284. [Google Scholar] [CrossRef]
- Nesvorná, M.; Gabrielova, L.; Hubert, J. Suitability of a range of Fusarium species to sustain populations of three stored product mite species (Acari: Astigmata). J. Stored Prod. Res. 2012, 48, 37–45. [Google Scholar] [CrossRef]
- Smrž, J.; Soukalová, H.; Čatská, V.; Hubert, J. Feeding patterns of Tyrophagus putrescentiae (Sarcoptiformes: Acaridae) indicate that mycophagy is not a single and homogeneous category of nutritional biology. J. Insect Sci. 2016, 16, 94. [Google Scholar] [CrossRef]
- Coombs, C.; Woodroffe, G. Evaluation of some of the factors involved in ecological succession in an insect population breeding in stored wheat. J. Anim. Ecol. 1973, 42, 305–322. [Google Scholar] [CrossRef]
- Allotey, J. Storage insect pests of cereal in small scale farming community and their control. Int. J. Trop. Insect Sci. 1991, 12, 679–693. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 594/2012 of 5 July 2012 amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Off. J. Eur. Union 2012, 176, 43–45. [Google Scholar]
- Adler, C.; Athanassiou, C.G.; Carvalho, M.O.; Emekci, M.; Gvozdenac, S.; Hamel, D.; Riudavets, J.; Stejskal, V.; Trdan, S.; Trematerra, P. Changes in the distribution and pest risk of stored product insects in Europe due to global warming: Need for pan-European pest monitoring and improved food-safety. J. Stored Prod. Res. 2022, 97, 01977. [Google Scholar] [CrossRef]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef]
- Chiotta, M.L.; Sosa, D.M.; Ponsone, M.L.; Chulze, S.N. Effect of water activity and temperature on growth of Aspergillus carbonarius and Aspergillus tubingensis and their interactions on ochratoxin A production. World Mycotoxin J. 2015, 8, 99–105. [Google Scholar] [CrossRef]
- García-Cela, E.; Crespo-Sempere, A.; Ramos, A.J.; Sanchis, V.; Marin, S. Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards. Int. J. Food Microbiol. 2014, 173, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Magan, N.; Aldred, D.; Mylona, K.; Lambert, R.J. Limiting mycotoxins in stored wheat. Food Addit. Contam. 2010, 27, 644–650. [Google Scholar] [CrossRef]
- Sanchís, V.; Magan, N. Environmental profiles for growth and mycotoxin production. In Mycotoxins in Food: Detection and Control; Magan, N., Olsen, M., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2004; pp. 174–189. [Google Scholar]
- Napoli, C.; Marcotrigiano, V.; Pagliarone, C.N.; Montagna, M.T. Mycotoxins in food: Legislation and thresholds. Ig. Sanita Pubbl. 2009, 65, 607–620. [Google Scholar]
- Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food: Perspectives in a global and European context. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Adeyeye, S.A.O. Fungal mycotoxins in foods: A review. Cogent. Food Agric 2016, 2, 10–1080. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miliordos, D.-E.; Baliota, G.V.; Athanassiou, C.G.; Natskoulis, P.I. Review on the Occurrence of Mycotoxigenic Fungi in Dried Fruits and the Role of Stored-Product Insects. Toxins 2025, 17, 313. https://doi.org/10.3390/toxins17070313
Miliordos D-E, Baliota GV, Athanassiou CG, Natskoulis PI. Review on the Occurrence of Mycotoxigenic Fungi in Dried Fruits and the Role of Stored-Product Insects. Toxins. 2025; 17(7):313. https://doi.org/10.3390/toxins17070313
Chicago/Turabian StyleMiliordos, Dimitrios-Evangelos, Georgia V. Baliota, Christos G. Athanassiou, and Pantelis I. Natskoulis. 2025. "Review on the Occurrence of Mycotoxigenic Fungi in Dried Fruits and the Role of Stored-Product Insects" Toxins 17, no. 7: 313. https://doi.org/10.3390/toxins17070313
APA StyleMiliordos, D.-E., Baliota, G. V., Athanassiou, C. G., & Natskoulis, P. I. (2025). Review on the Occurrence of Mycotoxigenic Fungi in Dried Fruits and the Role of Stored-Product Insects. Toxins, 17(7), 313. https://doi.org/10.3390/toxins17070313