Toxicity Assessment of Catechins on Representative Aquatic Organisms and Terrestrial Plant
Abstract
:1. Introduction
2. Results
2.1. HPLC Analysis of Crude Catechin and Catechin Hydrate
2.2. Larvicidal Effects of Crude Catechin and Catechin Hydrate on the Survival of D. magna
2.3. Larvicidal Effects of Crude Catechin and Catechin Hydrate on the Survival of A. salina
2.4. Inhibitory Effect of Crude Catechin and Catechin Hydrate on Germination of L. sativa
2.5. Toxicity of Crude Catechin and Catechin Hydrate on Cell Density of Freshwater C. vulgaris
2.6. Toxicity of Crude Catechin and Catechin Hydrate on Cell Density of Seawater C. vulgaris
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Sample Preparation
5.2. Catechin Hydrate and Catechin Extracts
5.3. HPLC Analysis
5.4. A. salina and D. magna Lethality Test
5.5. L. sativa Germination Assays
5.6. Yield Inhibition Test of C. vulgaris
5.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LC-50 | Lethal concentration 50, the effective toxicant concentration capable of killing 50% of the organisms |
DCW | Dry cell weight |
OD | Optical density |
BBM | Bold’s Basal Medium |
HPLC | High-performance liquid chromatography |
EC | Epicatechin |
EGC | Epigallocatechin |
ECG | Epicatechin gallate |
EGCG | Epigallocatechin gallate |
References
- Fathima, A.; Rao, J.R. Selective toxicity of catechin—A natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol. 2016, 100, 6395–6402. [Google Scholar] [CrossRef] [PubMed]
- Al-Hazzani, A.A.; Alshatwi, A.A. Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem. Toxicol. 2011, 49, 3281–3286. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Rajput, R.; Nag, P.; Kumar, S.; Singh, M. Synthesis, characterization and evaluation of antioxidant properties of catechin hydrate nanoparticles. J. Drug Deliv. Sci. Technol. 2017, 39, 398–407. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Gliszczyńska-Świgło, A.; Szymusiak, H.; Tyrakowska, B. The influence of stereochemistry on the antioxidant properties of catechin epimers. Eur. Food Res. Technol. 2012, 235, 1001–1009. [Google Scholar] [CrossRef]
- Kim, J.M.; Heo, H.J. The roles of catechins in regulation of systemic inflammation. Food Sci. Biotechnol. 2022, 31, 957–970. [Google Scholar] [CrossRef]
- Scalia, S.; Marchetti, N.; Bianchi, A. Comparative evaluation of different co-antioxidants on the photochemical- and functional-stability of epigallocatechin-3-gallate in topical creams exposed to simulated sunlight. Molecules 2013, 18, 574–587. [Google Scholar] [CrossRef]
- Sentkowska, A. Content of selenoaminoacids and catechins in Chinese green teas. Eur. Food Res. Technol. 2021, 247, 613–622. [Google Scholar] [CrossRef]
- Senanayake, S.P.J.N. Green tea extract: Chemistry, antioxidant properties and food applications—A review. J. Funct. Foods 2013, 5, 1529–1541. [Google Scholar] [CrossRef]
- Chan, P.T.; Fong, P.; Cheung, Y.L.; Huang, Y.; Kwok, W.; Ho, K.; Chen, Z.-Y. Biochemical and molecular action of nutrients jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J. Nutr. 1999, 129, 1094–1101. [Google Scholar] [CrossRef]
- Nagao, T.; Meguro, S.; Soga, S.; Otsuka, A.; Tomonobu, K.; Fumoto, S.; Chikama, A.; Mori, K.; Yuzawa, M.; Watanabe, H.; et al. Tea catechins suppress accumulation of body fat in humans. J. Oleo Sci. 2001, 5, 717–728. [Google Scholar] [CrossRef]
- Nagao, T.; Komine, Y.; Soga, S.; Meguro, S.; Hase, T.; Tanaka, Y.; Tokimitsu, I. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am. J. Clin. Nutr. 2005, 81, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Hase, T.; Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhao, J.; Li, Y.; Wang, Y.; Qiu, T.; Wu, Y.; Dong, W.; Mailhot, G. Improving Fenton-like system with catechin, an environmental-friendly polyphenol: Effects and mechanism. Chem. Eng. J. 2021, 426, 127946. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Boostani, S.; Babazadeh, A.; Rehman, A.; Rezaei, A.; Akbari-Alavijeh, S.; Shaddel, R.; Jafari, S.M. Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res. Int. 2001, 142, 110186. [Google Scholar] [CrossRef]
- De la Vega, A.C.S.; Cruz-Alcalde, A.; Mazón, C.S.; Martí, C.B.; Diaz-Cruz, M.S. Nano-TiO2 phototoxicity in fresh and seawater: Daphnia magna and Artemia sp. as proxies. Water 2021, 13, 55. [Google Scholar] [CrossRef]
- Harwanto, D.; Negara, B.F.S.P.; Tirtawijaya, G.; Meinita, M.D.N.; Choi, J.S. Evaluation of toxicity of crude phlorotannins and phloroglucinol using different model organisms. Toxins 2022, 14, 312. [Google Scholar] [CrossRef]
- Fuertes, I.; Piña, B.; Barata, C. Changes in lipid profiles in Daphnia magna individuals exposed to low environmental levels of neuroactive pharmaceuticals. Sci. Total Environ. 2020, 733, 139029. [Google Scholar] [CrossRef]
- Szabelak, A.; Bownik, A. Behavioral and physiological responses of Daphnia magna to salicylic acid. Chemosphere 2021, 270, 128660. [Google Scholar] [CrossRef]
- Adamczuk, M. Environmentally realistic concentrations of ibuprofen influence life histories but not population dynamics of Daphnia magna. Sci. Total Environ. 2022, 848, 157783. [Google Scholar] [CrossRef]
- Cristóvão, M.B.; Bernardo, J.; Bento-Silva, A.; Ressureição, M.; Bronze, M.R.; Crespo, J.G.; Pereira, V.J. Treatment of anticancer drugs in a real wastewater effluent using nanofiltration: A pilot scale study. Sep. Purif. Technol. 2022, 288, 1206565. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Bownik, A.; Dudka, J.; Kowal, K.; Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci. Total Environ. 2021, 763, 143038. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.M.; Fracasso, D.S.; Visentin, A.P.V.; Cassini, C.; Scariot, F.J.; Danetti, S.; Echeverrigaray, S.; Moura, S.; Touguinha, L.B.; Branco, C.S.; et al. Dual effect of the herbal matcha green tea (Camellia sinensis L. Kuntze) supplement in EA.hy926 endothelial cells and Artemia salina. J. Ethnopharmacol. 2022, 298, 115564. [Google Scholar] [CrossRef] [PubMed]
- Milhem, M.M.; Al-Hiyasat, A.S.; Darmani, H. Toxicity testing of restorative dental materials using brine shrimp larvae (Artemia salina). J. Appl. Oral Sci. 2008, 16, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, J.W.A.; Costa, A.R.; da Silva, M.A.P.; Rocha, M.I.; Boligon, A.A.; da Rocha, J.B.T.; Barros, L.M.; Kamdem, J.P. Chemical composition and toxicological evaluation of Hyptis suaveolens (L.) Poiteau (LAMIACEAE) in Drosophila melanogaster and Artemia salina. S. Afr. J. Bot. 2017, 113, 437–442. [Google Scholar] [CrossRef]
- Minello, L.; Mattiello, G.S.; Cassini, C.; Touguinha, L.A.; Paim, L.F.; Moura, S.; Salvador, M.; Branco, C.S. Chemical characterization, in vivo safety profile and effects of the extract from unconventional food plant Acca sellowiana (O. Berg) Burret on endothelial cells under glucose overload. J. Pharm. Biomed. Anal. 2024, 248, 116304. [Google Scholar] [CrossRef]
- Oliveira, M.A.; dos Santos, C.A.L.; da Silva Teles, B.R.; Oliveira, C.V.B.; da Silva, V.B.; Pereira, A.L.G.; Rodrigues, V.L.C.; Fonseca, V.J.A.; dos Santos Santana, M.; Lima, C.M.G.; et al. Chemical composition, antifungal activity and toxicological evaluation of Lippia sidoides Cham. J. Agric. Food Res. 2024, 18, 101333. [Google Scholar] [CrossRef]
- Kim, Y.D.; Choi, J.-S. Larvicidal effects of Korean seaweed extracts on brine shrimp Artemia salina. J. Anim. Plant Sci. 2017, 27, 1039–1046. [Google Scholar]
- Balamurugan, V.; Ragavendran, C.; Arulbalachandran, D.; Alrefaei, A.F.; Rajendran, R. Green synthesis of silver nanoparticles using Pandanus tectorius aerial root extract: Characterization, antibacterial, cytotoxic, and photocatalytic properties, and ecotoxicological assessment. Inorg. Chem. Commun. 2024, 168, 112882. [Google Scholar] [CrossRef]
- Tigre, R.C.; Silva, N.H.; Santos, M.G.; Honda, N.K.; Falcão, E.P.S.; Pereira, E.C. Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicol. Environ. Saf. 2012, 84, 125–132. [Google Scholar] [CrossRef]
- Bertan, A.S.; Teles, A.G.D.X.; de Oliveira, B.C.T.; Ferreira, L.M.R.; Thiel, N.A.; Fieira, C.; Chiarelotto, M.; Manosso, F.C.; Pokrywiecki, J.C.; Tonial, I.B.; et al. Influence of the seasons on the water quality of the Marmeleiro River (Paraná, Brazil) using different bioindicators. Discov. Appl. Sci. 2020, 2, 1825. [Google Scholar] [CrossRef]
- Guzmán-Morales, A.R.; Cruz-La Paz, O.; Valdés-Carmenate, R.; Valdés-Hernández, P.A. Evaluation of heavy metal contamination and accumulation in lettuce (Lactuca sativa L.) plants. Cult. Trop. 2021, 42, e03. [Google Scholar]
- Izquierdo-Díaz, M.; Hansen, V.; Barrio-Parra, F.; De Miguel, E.; You, Y.; Magid, J. Assessment of lettuces grown in urban areas for human consumption and as bioindicators of atmospheric pollution. Ecotoxicol. Environ. Saf. 2023, 256, 114883. [Google Scholar] [CrossRef] [PubMed]
- De Moura, D.R.; Araujo, E.C.G.; Borges, C.H.A.; Araujo, L.H.B.; de Lima, T.V.; Silva, T.C.; da Nobrega, C.C. Alellopathic effects of aqueous extracts from Bambusa vulgaris Schrad. Ex J. C. Wendl. on seed germination and vigor from Lactuca sativa. Afr. J. Agric. Res. 2018, 13, 1954–1958. [Google Scholar]
- Souza, M.M.V.; Souza, A.D.V.; Rodrigues, A.A.; Batista, P.F.; Castro, S.T.; Silva, I.M.H.L.; Jakelaitis, A.; Costa, A.C.; Sales, J.F. The allelopathic effects of aqueous Talinum triangulare (Jacq.) wild extracts on the development of Lactuca sativa L. seedlings. Braz. J. Biol. 2024, 84, e279983. [Google Scholar] [CrossRef]
- Qian, L.; Qi, S.; Cao, F.; Zhang, J.; Zhao, F.; Li, C.; Wang, C. Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris. Environ. Pollut. 2018, 242, 171–181. [Google Scholar] [CrossRef]
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults—Results of a systematic review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef]
- Chobot, V.; Huber, C.; Trettenhahn, G.; Hadacek, F. (±)-Catechin: Chemical weapon, antioxidant, or stress regulator? J. Chem. Ecol. 2009, 35, 980–996. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, R.; Alrasheed, R.A.; Almatar, H.M.A.; Al-Ramadan, A.S.; Amir, M.; Sarafroz, M. Quantification and evaluations of catechin hydrate polymeric nanoparticles used in brain targeting for the treatment of epilepsy. Pharmaceutics 2020, 12, 203. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Neves, V.; Martins, A.; Rauter, A.P.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers’ infusions and decoctions: A comparison with green tea (Camellia sinensis). Food Chem. 2016, 200, 322–329. [Google Scholar] [CrossRef]
- Ivorra, L.; Cardoso, P.G.; Chan, S.K.; Tagulao, K.; Cruzeiro, C. Environmental characterization of 4,4′-dichlorobenzophenone in surface waters from Macao and Hong Kong coastal areas (Pearl River Delta) and its toxicity on two biological models: Artemia salina and Daphnia magna. Ecotoxicol. Environ. Saf. 2019, 171, 1–11. [Google Scholar] [CrossRef]
- Choi, J.-S.; Choi, I.S. Inhibitory effect of marine green algal extracts on the germination of Lactuca sativa seeds. J. Environ. Biol. 2016, 37, 207–213. [Google Scholar] [PubMed]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 2017, 313, 1251–1257. [Google Scholar] [CrossRef]
- Na, J.; Kim, Y.; Song, J.; Shim, T.; Cho, K.; Jung, J. Evaluation of the combined effect of elevated temperature and cadmium toxicity on Daphnia magna using a simplified DEBtox model. Environ. Pollut. 2021, 291, 118250. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V.; Golding, J.B.; Nguyen, M.; Roach, P.D. Extraction and isolation of catechins from tea. J. Sep. Sci. 2010, 33, 3415–3428. [Google Scholar] [CrossRef]
- Vinayak, R.C.; Sudha, S.A.; Chatterji, A. Bio-screening of a few green seaweeds from India for their cytotoxic and antioxidant potential. J. Sci. Food Agric. 2011, 91, 2471–2476. [Google Scholar] [CrossRef]
- Kang, S.M.; Khan, A.L.; Hussain, J.; Ali, L.; Kamran, M.; Waqas, M.; Lee, I.J. Rhizonin A from Burkholderia sp. KCTC11096 and its growth promoting role in lettuce seed germination. Molecules 2012, 17, 7980–7988. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Abou-Shanab, R.A.I.; Ji, M.K.; Choi, J.; Kim, J.O.; Jeon, B.H. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 2016, 205, 183–190. [Google Scholar] [CrossRef]
- Beula, M.; Ravikumar, S.; Ali, M.S. Mosquito larvicidal efficacy of seaweed extracts against dengue vector of Aedes aegypti. Asian Pac. J. Trop. Biomed. 2011, 1, S143–S146. [Google Scholar] [CrossRef]
Incubation Time (h) | Survival Rate (%) of Daphnia magna Straus Neonates | LC-50 (µg/mL) | ||||
---|---|---|---|---|---|---|
Control | Crude Catechin (mg/mL) | |||||
0.5 | 1.0 | 2.0 | 3.0 | |||
24 | 100.00 ± 0.00 | 73.00 ± 2.90 * | 64.00 ± 6.30 * | 45.00 ± 4.10 * | 10.00 ± 4.10 * | 1174 |
48 | 94.00 ± 7.50 | 43.00 ± 8.70 * | 10.00 ± 8.20 * | 0.00 ± 0.00 * | 0.00 ± 0.00 * | |
72 | 85.00 ± 7.10 | 28.00 ± 5.00 * | 4.00 ± 2.50 * | 0.00 ± 0.00 * | 0.00 ± 0.00 * | |
Incubation Time (h) | Control | Catechin Hydrate (mg/mL) | LC-50 (µg/mL) | |||
0.01 | 0.05 | 0.1 | 0.5 | |||
24 | 100.00 ± 0.00 | 88.00 ± 2.90 * | 68.00 ± 7.60 * | 38.00 ± 2.90 * | 0.00 ± 0.00 * | 54 |
48 | 92.00 ± 2.90 | 70.00 ± 5.00 * | 55.00 ± 5.00 * | 28.00 ± 2.90 * | 0.00 ± 0.00 * | 39 |
72 | 77.00 ± 2.90 | 40.00 ± 5.00 * | 20.00 ± 5.00 * | 7.00 ± 2.90 * | 0.00 ± 0.00 * | 7 |
Incubation Time (h) | Survival Rate (%) of Artemia salina L. Nauplii | LC-50 (µg/mL) | ||||
---|---|---|---|---|---|---|
Control | Crude Catechin (mg/mL) | |||||
0.5 | 1.0 | 2.0 | 3.0 | |||
24 | 100.00 ± 0.00 | 100.00 ± 0.00 | 99.00 ± 2.50 | 54.00 ± 8.50 * | 16.00 ± 4.80 * | 1895 |
48 | 98.00 ± 2.90 | 85.00 ± 4.10 * | 20.00 ± 4.10 * | 0.00 ± 0.00 * | 0.00 ± 0.00 * | |
72 | 93.00 ± 2.90 | 33.00 ± 8.70 * | 13.00 ± 6.50 * | 0.00 ± 0.00 * | 0.00 ± 0.00 * | |
Incubation Time (h) | Control | Catechin hydrate (mg/mL) | LC-50 (µg/mL) | |||
0.01 | 0.05 | 0.1 | 0.5 | |||
24 | 100.00 ± 0.00 | 90.00 ± 0.00 * | 63.00 ± 2.90 * | 45.00 ± 5.00 * | 40.00 ± 5.00 * | 153 |
48 | 97.00 ± 2.90 | 80.00 ± 2.90 * | 52.00 ± 7.60 * | 37.00 ± 5.80 * | 28.00 ± 2.90 * | 70 |
72 | 83.00 ± 2.90 | 42.00 ± 2.90 * | 23.00 ± 2.90 * | 10.00 ± 10.00 * | 0.00 ± 0.00 * | 9 |
Incubation Time (h) | Germination Rate (%) of Lactuca sativa L. Seeds (Radicle Length of L. sativa Seeds in mm) | |||||||
---|---|---|---|---|---|---|---|---|
Control | Crude Catechin (mg/mL) | |||||||
1.0 | 10.0 | 50.0 | ||||||
24 | 82.50 ± 12.60 | 87.50 ± 15.00 | 35.00 ± 10.00 * | 0.00 ± 0.00 * | ||||
(3.84 ± 0.46) | (3.11 ± 0.50) | (1.95 ± 0.39 *) | (0.00 ± 0.00 *) | |||||
48 | 90.00 ± 8.16 | 95.00 ± 10.00 | 55.00 ± 5.80 * | 0.00 ± 0.00 * | ||||
(11.34 ± 2.66) | (7.53 ± 1.25) | (3.08 ± 0.41 *) | (0.00 ± 0.00 *) | |||||
72 | 95.00 ± 5.80 | 97.50 ± 5.00 | 75.00 ± 5.80 * | 0.00 ± 0.00 * | ||||
(17.72 ± 3.57) | (12.67 ± 2.27) | (3.64 ± 0.56 *) | (0.00 ± 0.00 *) | |||||
96 | 95.00 ± 5.80 | 97.50 ± 5.00 | 75.00 ± 5.80 * | 0.00 ± 0.00 * | ||||
(23.61 ± 4.64) | (18.02 ± 3.42) | (4.71 ± 1.03 *) | (0.00 ± 0.00 *) | |||||
Incubation Time (h) | Control | Catechin Hydrate (mg/mL) | ||||||
0.1 | 0.5 | 1.0 | 5.0 | 10.0 | ||||
24 | 83.30 ± 5.80 | 73.30 ± 5.80 | 73.30 ± 5.80 | 70.00 ± 10.00 | 60.00 ± 17.30 | 16.70 ± 11.60 * | ||
(4.10 ± 0.43) | (4.47 ± 0.07) | (4.79 ± 0.55) | (4.42 ± 0.37) | (2.95 ± 0.41 *) | (1.89 ± 0.08 *) | |||
48 | 90.00 ± 10.00 | 83.30 ± 5.80 | 80.00 ± 10.00 | 70.00 ± 10.00 | 73.30 ± 20.80 | 33.30 ± 15.30 * | ||
(15.74 ± 1.60) | (13.26 ± 0.62 *) | (13.40 ± 1.48) | (12.95 ± 2.31) | (4.33 ± 0.56 *) | (2.40 ± 0.39 *) | |||
72 | 93.30 ± 5.80 | 83.30 ± 5.80 | 86.70 ± 5.80 | 83.30 ± 15.30 | 90.00 ± 10.00 | 33.30 ± 15.30 * | ||
(24.54 ± 2.48) | (21.93 ± 1.84) | (20.80 ± 3.52) | (15.56 ± 1.31 *) | (5.85 ± 0.92 *) | (2.63 ± 0.60 *) | |||
96 | 93.30 ± 5.80 | 83.30 ± 5.80 | 90.00 ± 0.00 | 83.30 ± 15.30 | 90.00 ± 10.00 | 33.30 ± 15.30 * | ||
(33.03 ± 1.56) | (29.75 ± 1.00 *) | (26.53 ± 1.23 *) | (20.23 ± 3.14 *) | (6.08 ± 0.27 *) | (2.72 ± 0.62 *) |
Incubation Time (h) | Cell Density of Freshwater Chlorella vulgaris Beijerinck (106 cells/mL) | ||||||
---|---|---|---|---|---|---|---|
Control | Crude Catechin (mg/mL) | ||||||
0.5 | 1.0 | 2.0 | |||||
0 | 1.08 ± 0.02 | 1.05 ± 0.06 | 1.05 ± 0.06 | 1.06 ± 0.01 | |||
24 | 1.16 ± 0.05 | 1.50 ± 0.04 * | 1.42 ± 0.06 * | 1.17 ± 0.06 | |||
48 | 2.02 ± 0.08 | 2.33 ± 0.07 * | 2.27 ± 0.07 * | 1.50 ± 0.04 * | |||
72 | 3.71 ± 0.24 | 3.84 ± 0.10 | 3.31 ± 0.22 * | 1.58 ± 0.05 * | |||
96 | 4.26 ± 0.14 | 4.60 ± 0.17 * | 3.40 ± 0.08 * | 1.90 ± 0.06 * | |||
Yield inhibition | −(4.61) ± 0.83% | 12.29 ± 1.60% | 33.84 ± 0.60% | ||||
Incubation Time (h) | Control | Catechin Hydrate (mg/mL) | |||||
0.05 | 0.1 | 0.5 | 1.0 | ||||
0 | 1.11 ± 0.05 | 1.13 ± 0.04 | 1.10 ± 0.06 | 1.12 ± 0.06 | 1.15 ± 0.05 | ||
24 | 1.28 ± 0.04 | 1.59 ± 0.10 * | 1.56 ± 0.29 * | 1.56 ± 0.07 * | 1.33 ± 0.02 * | ||
48 | 2.02 ± 0.09 | 2.22 ± 0.27 | 2.09 ± 0.28 | 2.39 ± 0.04 * | 1.64 ± 0.06 * | ||
72 | 3.56 ± 0.22 | 3.99 ± 0.33 * | 3.61 ± 0.35 | 2.82 ± 0.07 * | 1.64 ± 0.05 * | ||
96 | 4.04 ± 0.18 | 4.74 ± 0.16 * | 4.28 ± 0.18 * | 3.10 ± 0.06 * | 1.68 ± 0.05 * | ||
Yield inhibition | −(8.10) ± 1.22% | −(2.91) ± 1.03% | 13.85 ± 1.53% | 34.91 ± 1.26% |
Incubation Time (h) | Cell Density of Seawater Chlorella vulgaris Beijerinck (106 cells/mL) | ||||
---|---|---|---|---|---|
Control | Crude Catechin (mg/mL) | ||||
0.5 | 1.0 | 2.0 | |||
0 | 1.06 ± 0.04 | 1.02 ± 0.04 | 1.04 ± 0.04 | 1.06 ± 0.05 | |
24 | 1.18 ± 0.04 | 1.22 ± 0.04 | 1.36 ± 0.18 | 1.23 ± 0.08 | |
48 | 1.77 ± 0.08 | 1.90 ± 0.08 * | 1.97 ± 0.13 * | 1.37 ± 0.25 * | |
72 | 3.06 ± 0.21 | 3.52 ± 0.26 * | 2.49 ± 0.25 * | 1.55 ± 0.20 * | |
96 | 3.96 ± 0.19 | 4.25 ± 0.19 * | 2.63 ± 0.19 * | 1.61 ± 0.16 * | |
Yield inhibition | −(2.61) ± 1.21% | 19.90 ± 2.29% | 35.26 ± 1.06% | ||
Incubation Time (h) | Control | Catechin Hydrate (mg/mL) | |||
0.05 | 0.1 | 0.5 | 1.0 | ||
0 | 1.12 ± 0.07 | 1.15 ± 0.06 | 1.09 ± 0.04 | 1.15 ± 0.09 | 1.12 ± 0.13 |
24 | 1.25 ± 0.04 | 1.36 ± 0.11 * | 1.56 ± 0.22 * | 1.35 ± 0.09 * | 1.32 ± 0.08 * |
48 | 2.29 ± 0.08 | 2.21 ± 0.10 | 2.20 ± 0.17 | 1.91 ± 0.12 * | 1.46 ± 0.09 * |
72 | 3.35 ± 0.16 | 3.57 ± 0.14 * | 3.41 ± 0.25 | 2.28 ± 0.13 * | 1.72 ± 0.08 |
96 | 3.87 ± 0.29 | 4.15 ± 0.16 * | 3.98 ± 0.18 | 2.77 ± 0.09 * | 1.50 ± 0.09 * |
Yield inhibition | −(5.92) ± 2.18% | −(1.71) ± 2.21% | 16.37 ± 1.53% | 35.97 ± 1.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, K.M.I.; An, H.-R.; Negara, B.F.S.P.; Tirtawijaya, G.; Meinita, M.D.N.; Sohn, J.-H.; Harwanto, D.; Choi, J.-S. Toxicity Assessment of Catechins on Representative Aquatic Organisms and Terrestrial Plant. Toxins 2025, 17, 244. https://doi.org/10.3390/toxins17050244
Bashir KMI, An H-R, Negara BFSP, Tirtawijaya G, Meinita MDN, Sohn J-H, Harwanto D, Choi J-S. Toxicity Assessment of Catechins on Representative Aquatic Organisms and Terrestrial Plant. Toxins. 2025; 17(5):244. https://doi.org/10.3390/toxins17050244
Chicago/Turabian StyleBashir, Khawaja Muhammad Imran, Hye-Ryeon An, Bertoka Fajar Surya Perwira Negara, Gabriel Tirtawijaya, Maria Dyah Nur Meinita, Jae-Hak Sohn, Dicky Harwanto, and Jae-Suk Choi. 2025. "Toxicity Assessment of Catechins on Representative Aquatic Organisms and Terrestrial Plant" Toxins 17, no. 5: 244. https://doi.org/10.3390/toxins17050244
APA StyleBashir, K. M. I., An, H.-R., Negara, B. F. S. P., Tirtawijaya, G., Meinita, M. D. N., Sohn, J.-H., Harwanto, D., & Choi, J.-S. (2025). Toxicity Assessment of Catechins on Representative Aquatic Organisms and Terrestrial Plant. Toxins, 17(5), 244. https://doi.org/10.3390/toxins17050244