Long-Term Improvement of Gait Kinematics in Young Children with Cerebral Palsy Treated with Botulinum Toxin Injections and Integrated/Intensive Rehabilitation: A 5-Year Retrospective Observational Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Settings and Inclusion Criteria
5.2. BoNT-A Treatment and Rehabilitation Program
5.3. Data Collection Procedure
5.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D.; Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy, April 2005. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; Carlin, J.B.; Reddihough, D.S. Distribution of motor types in cerebral palsy: How do registry data compare? Dev. Med. Child Neurol. 2011, 53, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 2, 15082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonikowski, M.; Sławek, J. Safety and efficacy of Botulinum toxin type A preparations in cerebral palsy–an evidence-based review. Neurol. Neurochir. Pol. 2021, 55, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Molenaers, G.; Desloovere, K.; Fabry, G.; De Cock, P. The effects of quantitative gait assessment and botulinum toxin a on musculoskeletal surgery in children with cerebral palsy. J. Bone Jt. Surg. 2006, 88, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Scholtes, V.A.; Dallmeijer, A.J.; Knol, D.L.; Speth, L.A.; Maathuis, C.G.; Jongerius, P.H.; Becher, J.G. The combined effect of lower-limb multilevel botulinum toxin type a and comprehensive rehabilitation on mobility in children with cerebral palsy: A randomized clinical trial. Arch. Phys. Med. Rehabil. 2006, 87, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Bonikowski, M.; Chrościnska-Krawczyk, M.; Pyrzanowska, W. Functional improvement of young children with cerebral palsy treated with integrated/intensive rehabilitation and botulinum toxin injections. Neurol. Neurochir. Pol. 2023, 57, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Dursun, N.; Akyuz, M.; Gokbel, T.; Akarsu, M.; Yilmaz, E.; Karacan, C.; Dursun, E. GMFCS level improvement in children with cerebral palsy treated with repeat botulinum toxin injections and intensive rehabilitation: A retrospective study. J. Pediatr. Rehabil. Med. 2022, 15, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.N.; Graham, H.K. Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy. Eur. J. Neurol. 1999, 6, s23–s35. [Google Scholar] [CrossRef]
- Dursun, N.; Bonikowski, M.; Dabrowski, E.; Matthews, D.; Gormley, M.; Tilton, A.; Carranza, J.; Grandoulier, A.S.; Picaut, P.; Delgado, M.R. Efficacy of Repeat AbobotulinumtoxinA (Dysport®) Injections in Improving Gait in Children with Spastic Cerebral Palsy. Dev. Neurorehabil. 2020, 23, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Juneja, M.; Jain, R.; Gautam, A.; Khanna, R.; Narang, K. Effect of multilevel lower-limb botulinum injections & intensive physical therapy on children with cerebral palsy. Indian J. Med. Res. 2017, 146, S8–S14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dursun, N.; Gokbel, T.; Akarsu, M.; Dursun, E. Randomized Controlled Trial on Effectiveness of Intermittent Serial Casting on Spastic Equinus Foot in Children with Cerebral Palsy After Botulinum Toxin-A Treatment. Am. J. Phys. Med. Rehabil. 2017, 96, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Mackey, A.H.; Lobb, G.L.; Walt, S.E.; Stott, N.S. Reliability and validity of the Observational Gait Scale in children with spastic diplegia. Dev. Med. Child Neurol. 2003, 45, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, E.S.; Rodrigues, B.M.; Barroso, M.; Menezes, C.J.; Lucena, R.S.; Nora, D.B.; Melo, A. Botulinum toxin type A for the treatment of the spastic equinus foot in cerebral palsy. Pediatr. Neurol. 2006, 34, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Koman, L.A.; Brashear, A.; Rosenfeld, S.; Chambers, H.; Russman, B.; Rang, M.; Root, L.; Ferrari, E.; Garcia de Yebenes Prous, J.; Smith, B.P.; et al. Botulinum toxin type a neuromuscular blockade in the treatment of equinus foot deformity in cerebral palsy: A multicenter, open-label clinical trial. Pediatrics 2001, 108, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Burnfield, J.M. Gait Analysis. In Normal and Patological Function; Slack Inc.: San Francisco, CA, USA, 2010. [Google Scholar]
- Opheim, A.; Jahnsen, R.; Olsson, E.; Stanghelle, J.K. Walking function, pain, and fatigue in adults with cerebral palsy: A 7-year follow-up study. Dev. Med. Child Neurol. 2009, 51, 381–388. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, R.; Horgan, F.; O’Brien, T.; French, H. The natural history of crouch gait in bilateral cerebral palsy: A systematic review. Res. Dev. Disabil. 2018, 80, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Jahnsen, R.; Villien, L.; Aamodt, G.; Stanghelle, J.K.; Holm, I. Musculoskeletal pain in adults with cerebral palsy compared with the general population. J. Rehabil. Med. 2004, 36, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Cloodt, E.; Rosenblad, A.; Rodby-Bousquet, E. Demographic and modifiable factors associated with knee contracture in children with cerebral palsy. Dev. Med. Child Neurol. 2018, 60, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.C.; Damiano, D.L.; Abel, M.F. The evolution of gait in childhood and adolescent cerebral palsy. J. Pediatr. Orthop. 1997, 17, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.J.; Ounpuu, S.; DeLuca, P.A.; Romness, M.J. Natural progression of gait in children with cerebral palsy. J. Pediatr. Orthop. 2002, 22, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Wren, T.A.; Rethlefsen, S.; Kay, R.M. Prevalence of specific gait abnormalities in children with cerebral palsy: Influence of cerebral palsy subtype, age, and previous surgery. J. Pediatr. Orthop. 2005, 25, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, S.; Spina, S.; Picelli, A.; Baricich, A.; Francisco, G.E.; Molteni, F.; Wissel, J.; Santamato, A. The Role of Botulinum Toxin Type-A in Spasticity: Research Trends from a Bibliometric Analysis. Toxins 2024, 16, 184. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Hammersley, M.L.; Jones, R.A.; Morgan, P.J.; Collins, C.E.; Okely, A. Goal setting for weight-related behavior change in children: An exploratory study. Nutr. Health 2018, 24, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Molenaers, G.; Fagard, K.; Van Campenhout, A.; Desloovere, K. Botulinum toxin A treatment of the lower extremities in children with cerebral palsy. J. Child. Orthop. 2013, 7, 383–387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bartlett, D.J.; Palisano, R.J. A multivariate model of determinants of motor change for children with cerebral palsy. Phys. Ther. 2000, 80, 598–614. [Google Scholar] [CrossRef] [PubMed]
- Wright, F.V.; Rosenbaum, P.L.; Goldsmith, C.H.; Law, M.; Fehlings, D.L. How do changes in body functions and structures, activity, and participation relate in children with cerebral palsy? Dev. Med. Child Neurol. 2008, 50, 283–289. [Google Scholar] [CrossRef] [PubMed]
Assessment Number | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Max 22 | 1 R (N = 200) | 1 L (N = 200) | 2 R (N = 200) | 2 L (N = 200) | 3R (N = 200) | 3 L (N = 200) | 4R (N = 200) | 4 L (N = 200) | 5R (N = 200) | 5 L (N = 200) | 6R (N = 200) | 6 L (N = 200) | Test |
2 | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0,5% (N = 1) | 0,5% (N = 1) | 0,5% (N = 1) | 0,5% (N = 1) | |
3 | 3,5% (N = 7) | 3,5% (N = 7) | 1% (N = 2) | 1% (N = 2) | 1% (N = 2) | 1% (N = 2) | 1% (N = 2) | 1% (N = 2) | 0,5% (N = 1) | 0,5% (N = 1) | 0,5% (N = 1) | 0,5% (N = 1) | |
4 | 8,5% (N = 17) | 8,5% (N = 17) | 2,5% (N = 5) | 2,5% (N = 5) | 1,5% (N = 3) | 1,5% (N = 3) | 1,5% (N = 3) | 1,5% (N = 3) | 1,5% (N = 3) | 1,5% (N = 3) | 1,5% (N = 3) | 2% (N = 4) | |
5 | 6,5% (N = 13) | 6,5% (N = 13) | 7% (N = 14) | 7% (N = 14) | 3,5% (N = 7) | 4% (N = 8) | 2,5% (N = 5) | 3% (N = 6) | 2% (N = 4) | 2% (N = 4) | 2,5% (N = 5) | 2% (N = 4) | |
6 | 5,5% (N = 11) | 5,5% (N = 11) | 5,5% (N = 11) | 6% (N = 12) | 3,5% (N = 7) | 3% (N = 6) | 3% (N = 6) | 2,5% (N = 5) | 5% (N = 10) | 4,5% (N = 9) | 4% (N = 8) | 4% (N = 8) | |
7 | 8,5% (N = 17) | 8,5% (N = 17) | 5% (N = 10) | 4,5% (N = 9) | 7% (N = 14) | 7% (N = 14) | 4% (N = 8) | 4% (N = 8) | 2,5% (N = 5) | 3,5% (N = 7) | 2,5% (N = 5) | 2,5% (N = 5) | |
8 | 6,5% (N = 13) | 6% (N = 12) | 6% (N = 12) | 5,5% (N = 11) | 4% (N = 8) | 4% (N = 8) | 6,5% (N = 13) | 5,5% (N = 11) | 5,5% (N = 11) | 4% (N = 8) | 4% (N = 8) | 4% (N = 8) | |
9 | 11,5% (N = 23) | 12% (N = 24) | 11% (N = 22) | 11% (N = 22) | 9,5% (N = 19) | 9,5% (N = 19) | 7% (N = 14) | 7,5% (N = 15) | 5,5% (N = 11) | 7% (N = 14) | 7% (N = 14) | 7% (N = 14) | |
10 | 10,5% (N = 21) | 9% (N = 18) | 12% (N = 24) | 11,5% (N = 23) | 11% (N = 22) | 10,5% (N = 21) | 11,5% (N = 23) | 11% (N = 22) | 10,5% (N = 21) | 10% (N = 20) | 11,5% (N = 23) | 9,5% (N = 19) | |
11 | 12% (N = 24) | 12,5% (N = 25) | 9,5% (N = 19) | 9,5% (N = 19) | 12,5% (N = 25) | 12% (N = 24) | 13% (N = 26) | 12% (N = 24) | 12,5% (N = 25) | 12% (N = 24) | 12% (N = 24) | 12,5% (N = 25) | |
12 | 10% (N = 20) | 10% (N = 20) | 12,5% (N = 25) | 11% (N = 22) | 12% (N = 24) | 10,5% (N = 21) | 13% (N = 26) | 13% (N = 26) | 13,5% (N = 27) | 12% (N = 24) | 14,5% (N = 29) | 13% (N = 26) | |
13 | 9% (N = 18) | 9% (N = 18) | 12% (N = 24) | 14% (N = 28) | 15,5% (N = 31) | 15,5% (N = 31) | 16% (N = 32) | 15% (N = 30) | 15% (N = 30) | 16,5% (N = 33) | 14% (N = 28) | 16% (N = 32) | |
14 | 5% (N = 10) | 6,5% (N = 13) | 9,5% (N = 19) | 10,5% (N = 21) | 10,5% (N = 21) | 12,5% (N = 25) | 10,5% (N = 21) | 11,5% (N = 23) | 13% (N = 26) | 12,5% (N = 25) | 12,5% (N = 25) | 12,5% (N = 25) | |
15 | 2% (N = 4) | 1% (N = 2) | 4% (N = 8) | 4% (N = 8) | 5,5% (N = 11) | 5% (N = 10) | 7% (N = 14) | 8% (N = 16) | 7,5% (N = 15) | 8% (N = 16) | 8% (N = 16) | 8,5% (N = 17) | |
16 | 1% (N = 2) | 1% (N = 2) | 2,5% (N = 5) | 1,5% (N = 3) | 3% (N = 6) | 3% (N = 6) | 3% (N = 6) | 3% (N = 6) | 4% (N = 8) | 4% (N = 8) | 4% (N = 8) | 4% (N = 8) | |
17 | 0% (N = 0) | 0,5% (N = 1) | 0% (N = 0) | 0,5% (N = 1) | 0% (N = 0) | 1% (N = 2) | 0,5% (N = 1) | 1,5% (N = 3) | 1% (N = 2) | 1,5% (N = 3) | 1% (N = 2) | 1,5% (N = 3) | |
Median | 9 (7–12) | 9 (7–12) | 10,5 (8–13) | 11 (9–13) | 11 (9–13) | 11 (9–13) | 11,5 (9–13) | 12 (10–14) | 12 (10–14) | 12 (10–14) | 12 (10–14) | 12 (10–14) | Kruskal–Wallis (p < 0,001) |
Range | 3–16 | 3–17 | 3–16 | 3–17 | 3–16 | 3–17 | 3–17 | 3–17 | 2–17 | 2–17 | 2–17 | 2–17 | |
Comparison of the total OGS scores achieved during the first and sixth assessments. | Mann–Whitney U (p < 0,001) |
Change in Total OGS Score | Right Lower Limb N = 200 | Left Lower Limb N = 200 |
---|---|---|
−3 | 0,5% (N = 1) | 0,5% (N = 1) |
−2 | 3% (N = 6) | 2% (N = 4) |
−1 | 5% (N = 10) | 4,5% (N = 9) |
0 | 15% (N = 30) | 15% (N = 30) |
1 | 17% (N = 34) | 17,5% (N = 35) |
2 | 18% (N = 36) | 18% (N = 36) |
3 | 15,5% (N = 31) | 17% (N = 34) |
4 | 10,5% (N = 21) | 11,5% (N = 23) |
5 | 8% (N = 16) | 6,5% (N = 13) |
6 | 4% (N = 8) | 4% (N = 8) |
7 | 1,5% (N = 3) | 2% (N = 4) |
Assessment Number | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gait Pattern (Score) | 1R (N = 200) | 1L (N = 200) | 2R (N = 200) | 2L (N = 200) | 3R (N = 200) | 3L (N = 200) | 4R (N = 200) | 4L (N = 200) | 5R (N = 200) | 5L (N = 200) | 6R (N = 200) | 6L (N = 200) | Test R | Test L | |
Initial Foot Contact | Toe (0) | 36% (N = 72) | 35% (N = 70) | 18% (N = 36) | 17,5% (N = 35) | 14% (N = 28) | 13,5% (N = 27) | 11,5% (N = 23) | 11,5% (N = 23) | 9,5% (N = 19) | 9,5% (N = 19) | 7,5% (N = 15) | 9% (N = 18) | ||
Forefoot (1) | 55% (N = 110) | 54,5% (N = 109) | 70,5% (N = 141) | 68,5% (N = 137) | 73% (N = 146) | 71% (N = 142) | 71,5% (N = 143) | 68,5% (N = 137) | 70,5% (N = 141) | 69% (N = 138) | 72% (N = 144) | 69% (N = 138) | |||
Flat Foot (2) | 9% (N = 18) | 10,5% (N = 21) | 11,5% (N = 23) | 14% (N = 28) | 13% (N = 26) | 15% (N = 30) | 16,5% (N = 33) | 19% (N = 38) | 19,5% (N = 39) | 21% (N = 42) | 20% (N = 40) | 21,5% (N = 43) | |||
Heel (3) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0,5% (N = 1) | 0,5% (N = 1) | 1% (N = 2) | 0,5% (N = 1) | 0,5% (N = 1) | 0,5% (N = 1) | 0,5% (N = 1) | |||
Median | 1 (0–1) | 1 (0–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | Kruskal–Wallis (p < 0,001) | Kruskal–Wallis (p < 0,001) | |
Range | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | |||
Comparison of the scores for initial foot contact achieved during the first and sixth assessments. | Mann–Whitney U (p < 0,001) | Mann–Whitney U (p < 0,001) | |||||||||||||
Foot Contact at Midstance | Toe/Toe (0) | 64% (N = 128) | 64% (N = 128) | 52,5% (N = 105) | 51% (N = 102) | 47,5% (N = 95) | 46% (N = 92) | 42,5% (N = 85) | 40,5% (N = 81) | 39,5% (N = 79) | 38,5% (N = 77) | 39,5% (N = 79) | 37,5% (N = 75) | ||
Flat Foot/Early Heel Rise (1) | 30% (N = 60) | 29,5% (N = 59) | 41% (N = 82) | 41,5% (N = 83) | 46,5% (N = 93) | 46,5% (N = 93) | 50% (N = 100) | 50,5% (N = 101) | 51% (N = 102) | 51,5% (N = 103) | 50,5% (N = 101) | 51,5% (N = 103) | |||
Flat Foot/No Early Heel Rise (2) | 6% (N = 12) | 6,5% (N = 13) | 6,5% (N = 13) | 7,5% (N = 15) | 6% (N = 12) | 7,5% (N = 15) | 7,5% (N = 15) | 9% (N = 18) | 9,5% (N = 19) | 10% (N = 20) | 10% (N = 20) | 11% (N = 22) | |||
Median | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | Kruskal–Wallis (p < 0,001) | Kruskal–Wallis (p < 0,001) | |
Range | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | |||
Comparison of the scores for foot contact at midstance achieved during the first and sixth assessments. | Mann–Whitney U (p < 0,001) | Mann–Whitney U (p < 0,001) | |||||||||||||
Timing of Heel Rise | No Heel Rise (−1) | 3% (N = 6) | 3% (N = 6) | 3% (N = 6) | 3,5% (N = 7) | 2,5% (N = 5) | 3% (N = 6) | 4,5% (N = 9) | 5% (N = 10) | 5% (N = 10) | 5% (N = 10) | 5,5% (N = 11) | 5,5% (N = 11) | ||
No Heel Contact (0) | 61,5% (N = 123) | 61% (N = 122) | 49% (N = 98) | 48,2% (N = 96) | 45% (N = 90) | 44% (N = 88) | 40,2% (N = 80) | 38,5% (N = 77) | 37% (N = 74) | 36% (N = 72) | 36,5% (N = 73) | 35% (N = 70) | |||
Before 25% Stance (1) | 22% (N = 44) | 21% (N = 42) | 30% (N = 60) | 28,6% (N = 57) | 31,5% (N = 63) | 30% (N = 60) | 35,2% (N = 70) | 34% (N = 68) | 35% (N = 70) | 35% (N = 70) | 35% (N = 70) | 35% (N = 70) | |||
Between 25 and 50% Stance (2) | 12,5% (N = 25) | 13,5% (N = 27) | 17% (N = 34) | 18,1% (N = 36) | 20% (N = 40) | 21,5% (N = 43) | 19,1% (N = 38) | 21% (N = 42) | 21,5% (N = 43) | 22% (N = 44) | 21,5% (N = 43) | 22,5% (N = 45) | |||
At Terminal Stance (3) | 1% (N = 2) | 1,5% (N = 3) | 1% (N = 2) | 1,5% (N = 3) | 1% (N = 2) | 1,5% (N = 3) | 1% (N = 2) | 1,5% (N = 3) | 1,5% (N = 3) | 2% (N = 4) | 1,5% (N = 3) | 2% (N = 4) | |||
Median | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | Chi-squared (p = 0,0065) | Chi-squared (p = 0,0037) | |
Range | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | |||
Comparison of the scores for the timing of heel rise achieved during the first and sixth assessments. | Mann–Whitney U (p = 0,0001) | Mann–Whitney U (p = 0,0001) | |||||||||||||
Foot Clearance | Poor (0) | 88% (N = 176) | 89% (N = 178) | 88,5% (N = 177) | 88,5% (N = 177) | 87,5% (N = 175) | 87% (N = 174) | 86% (N = 172) | 85% (N = 170) | 84,5% (N = 169) | 83,5% (N = 167) | 82,5% (N = 165) | 83,5% (N = 167) | Chi-squared (p = 0,4796) | Chi-squared (p = 0,4208) |
Normal (1) | 12% (N = 24) | 11% (N = 22) | 11,5% (N = 23) | 11,5% (N = 23) | 12,5% (N = 25) | 13% (N = 26) | 14% (N = 28) | 15% (N = 30) | 15,5% (N = 31) | 16,5% (N = 33) | 17,5% (N = 35) | 16,5% (N = 33) | |||
Comparison of the scores for foot clearance achieved during the first and sixth assessments. | Fisher (p < 0,001) | Fisher (p < 0,001) | |||||||||||||
Knee Position at Midstance | Knee Hyperextension 5–10° (−2) | 0,5% (N = 1) | 0,5% (N = 1) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | 0% (N = 0) | ||
Knee Hyperextension < 5° (−1) | 9% (N = 18) | 10,5% (N = 21) | 9,5% (N = 19) | 11% (N = 22) | 9% (N = 18) | 8,5% (N = 17) | 7% (N = 14) | 6,5% (N = 13) | 5% (N = 10) | 4,5% (N = 9) | 4% (N = 8) | 3,5% (N = 7) | |||
Normal (0) | 63% (N = 126) | 62% (N = 124) | 63% (N = 126) | 61,5% (N = 123) | 65,5% (N = 131) | 65% (N = 130) | 63% (N = 126) | 64% (N = 128) | 61,5% (N = 123) | 62,5% (N = 125) | 63% (N = 126) | 63% (N = 126) | |||
Knee Flexion < 10° (1) | 16,5% (N = 33) | 16% (N = 32) | 20,5% (N = 41) | 19,5% (N = 39) | 17,5% (N = 35) | 17,5% (N = 35) | 21% (N = 42) | 20% (N = 40) | 22,5% (N = 45) | 21% (N = 42) | 21% (N = 42) | 20,5% (N = 41) | |||
Knee Flexion 10–15° (2) | 9,5% (N = 19) | 9,5% (N = 19) | 6% (N = 12) | 7% (N = 14) | 6,5% (N = 13) | 7,5% (N = 15) | 7% (N = 14) | 7,5% (N = 15) | 7,5% (N = 15) | 8,5% (N = 17) | 8% (N = 16) | 9% (N = 18) | |||
Knee Flexion > 15° (3) | 1,5% (N = 3) | 1,5% (N = 3) | 1% (N = 2) | 1% (N = 2) | 1,5% (N = 3) | 1,5% (N = 3) | 2% (N = 4) | 2% (N = 4) | 3,5% (N = 7) | 3,5% (N = 7) | 4% (N = 8) | 4% (N = 8) | |||
Median | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | Kruskal– Wallis (p = 0,0793) | Kruskal–Wallis (p = 0,0502) | |
Range | −2–3 | −2–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | −1–3 | |||
Comparison of the scores for knee position at midstance achieved during the first and sixth assessments. | Mann–Whitney U (p = 0,0621) | Mann–Whitney U (p = 0,0233) | |||||||||||||
Knee Position at Terminal Stance | Knee Flexion (0) | 69,5% (N = 139) | 69,5% (N = 139) | 61,5% (N = 123) | 63% (N = 126) | 52,5% (N = 105) | 54% (N = 108) | 50% (N = 100) | 52% (N = 104) | 48,5% (N = 97) | 48,5% (N = 97) | 49% (N = 98) | 49% (N = 98) | ||
Knee Extension (1) | 30,5% (N = 61) | 30,5% (N = 61) | 38,5% (N = 77) | 37% (N = 74) | 47,5% (N = 95) | 46% (N = 92) | 50% (N = 100) | 48% (N = 96) | 51,5% (N = 103) | 51,5% (N = 103) | 51% (N = 102) | 51% (N = 102) | |||
Median | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0,5 (0–1) | 0 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | Kruskal– Wallis (p < 0,001) | Kruskal–Wallis (p < 0,001) | |
Range | 0–1 | 0–1 | 0–1 | 0–1 | 0–1 | 0–1 | 0–1 | 0–1 | 0–1 | 0–1 | 0–2 | 0–1 | |||
Comparison of the scores for knee position at terminal stance achieved during the first and sixth assessments. | Mann–Whitney U (p < 0,001) | Mann–Whitney U (p < 0,001) | |||||||||||||
Knee Position during Terminal Swing | Knee Flexion > 45° (0) | 1,5% (N = 3) | 1% (N = 2) | 1% (N = 2) | 0,5% (N = 1) | 0,5% (N = 1) | 0,5% (N = 1) | 1% (N = 2) | 0,5% (N = 1) | 1% (N = 2) | 0,5% (N = 1) | 1% (N = 2) | 1% (N = 2) | ||
Knee Flexion 31–45° (1) | 2% (N = 4) | 2% (N = 4) | 1,5% (N = 3) | 1,5% (N = 3) | 3% (N = 6) | 3% (N = 6) | 4% (N = 8) | 3,5% (N = 7) | 7,5% (N = 15) | 8% (N = 16) | 8,5% (N = 17) | 10% (N = 20) | |||
Knee Flexion 16–30° (2) | 61,5% (N = 123) | 60,5% (N = 121) | 63% (N = 126) | 62,5% (N = 125) | 67,5% (N = 135) | 67% (N = 134) | 66,5% (N = 133) | 68% (N = 136) | 64% (N = 128) | 65,5% (N = 131) | 62,5% (N = 125) | 61% (N = 122) | |||
Knee Extension or Knee Flexion ≤ 15° (3) | 35% (N = 70) | 36,5% (N = 73) | 34,5% (N = 69) | 35,5% (N = 71) | 29% (N = 58) | 29,5% (N = 59) | 28,5% (N = 57) | 28% (N = 56) | 27,5% (N = 55) | 26% (N = 52) | 28% (N = 56) | 28% (N = 56) | |||
Median | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | 2 (2–3) | Kruskal– Wallis (p = 0,0755) | Kruskal–Wallis (p = 0,0078) | |
Range | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | 0–3 | |||
Comparison of the scores for knee position during terminal swing achieved during the first and sixth assessments. | Mann–Whitney U (p = 0,0328) | Mann–Whitney U (p = 0,0078) | |||||||||||||
Hip Position at Terminal Stance | Hip Flexion (0) | 42,5% (N = 85) | 43,5% (N = 87) | 35,5% (N = 71) | 37% (N = 74) | 28% (N = 56) | 29,5% (N = 59) | 31% (N = 62) | 32% (N = 64) | 30,5% (N = 61) | 31,5% (N = 63) | 30% (N = 60) | 31% (N = 62) | ||
Hip in Neutral (1) | 55,5% (N = 111) | 55% (N = 110) | 62% (N = 124) | 61% (N = 122) | 70% (N = 140) | 68,5% (N = 137) | 65% (N = 130) | 64,5% (N = 129) | 61% (N = 122) | 60,5% (N = 121) | 61% (N = 122) | 61% (N = 122) | |||
Hip Extension (2) | 2% (N = 4) | 1,5% (N = 3) | 2,5% (N = 5) | 2% (N = 4) | 2% (N = 4) | 2% (N = 4) | 4% (N = 8) | 3,5% (N = 7) | 8,5% (N = 17) | 8% (N = 16) | 9% (N = 18) | 8% (N = 16) | |||
Median | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 1 (0–1) | Kruskal– Wallis (p = 0,0051) | Kruskal–Wallis (p = 0,0054) | |
Range | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | 0–2 | |||
Comparison of the scores for hip position at terminal stance achieved during the first and sixth assessments. | Mann–Whitney U (p = 0,0012) | Mann–Whitney U (p = 0,0014) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyrzanowska, W.; Chrościńska-Krawczyk, M.; Bonikowski, M. Long-Term Improvement of Gait Kinematics in Young Children with Cerebral Palsy Treated with Botulinum Toxin Injections and Integrated/Intensive Rehabilitation: A 5-Year Retrospective Observational Study. Toxins 2025, 17, 142. https://doi.org/10.3390/toxins17030142
Pyrzanowska W, Chrościńska-Krawczyk M, Bonikowski M. Long-Term Improvement of Gait Kinematics in Young Children with Cerebral Palsy Treated with Botulinum Toxin Injections and Integrated/Intensive Rehabilitation: A 5-Year Retrospective Observational Study. Toxins. 2025; 17(3):142. https://doi.org/10.3390/toxins17030142
Chicago/Turabian StylePyrzanowska, Weronika, Magdalena Chrościńska-Krawczyk, and Marcin Bonikowski. 2025. "Long-Term Improvement of Gait Kinematics in Young Children with Cerebral Palsy Treated with Botulinum Toxin Injections and Integrated/Intensive Rehabilitation: A 5-Year Retrospective Observational Study" Toxins 17, no. 3: 142. https://doi.org/10.3390/toxins17030142
APA StylePyrzanowska, W., Chrościńska-Krawczyk, M., & Bonikowski, M. (2025). Long-Term Improvement of Gait Kinematics in Young Children with Cerebral Palsy Treated with Botulinum Toxin Injections and Integrated/Intensive Rehabilitation: A 5-Year Retrospective Observational Study. Toxins, 17(3), 142. https://doi.org/10.3390/toxins17030142