Microorganism-Based Strategies for the Control of Cyanobacterial Blooms: A Review of Recent Progress
Abstract
1. Introduction
2. Microorganisms Directly Lysing Cyanobacteria
2.1. Algicidal Bacteria
2.2. Algicidal Fungi
2.2.1. Direct Physical Contact and Lysis Mechanisms
2.2.2. Metabolite-Mediated Molecular Damage
2.2.3. Dual Mechanism Driven by Photosensitization
2.3. Cyanophages
3. Microbial Regulation of Aquatic Environments to Inhibit Cyanobacteria
3.1. Nitrogen-Cycling Microorganisms
3.1.1. Anammox Bacteria
3.1.2. Disruption of Cyanobacterial Nitrogen Fixation
3.1.3. Integrated Management Prospects
3.2. Phosphorus-Cycling Microorganisms
3.2.1. Polyphosphate-Accumulating Bacteria
3.2.2. Periphytic Biofilms
3.2.3. External P Control
3.3. Photosynthetic Bacteria
4. Combined Applications of Microorganisms with Other Technologies
4.1. Microbial + Biofilm Technology
4.2. Microbial + Phytoremediation
4.3. Microbial + Physical/Chemical Methods
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vu, H.P.; Nguyen, L.N.; Zdarta, J.; Nga, T.T.V.; Nghiem, L.D. Blue-Green Algae in Surface Water: Problems and Opportunities. Curr. Pollut. Rep. 2020, 6, 105–122. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, Y.; Wang, J.; Li, H.; Wang, Z.; Zheng, Z. Microbial Community Dynamics and Assembly Mechanisms across Different Stages of Cyanobacterial Bloom in a Large Freshwater Lake. Sci. Total Environ. 2024, 907, 168207. [Google Scholar] [CrossRef]
- Zer, H.; Matan, R.; Rasin, D.; Soroka, Y.; Carmi, N.; Schoffman, H.; Keren, N.; Nickelsen, J.; Ostersetzer-Biran, O. The Toxic Effects of Meta-tyrosine Are Related to Its Misincorporation into the Proteome and to Altered Metabolism in Cyanobacteria. FEBS J. 2025, 292, 5439–5456. [Google Scholar] [CrossRef] [PubMed]
- Saleem, F.; Jiang, J.L.; Li, E.; Tran, K.; Boere, A.; Rahman, M.; Paschos, A.; Westrick, J.A.; Zastepa, A.; Edge, T.A.; et al. Regional and Longitudinal Dynamics of Cyanobacterial Blooms/Cyanobiome and Cyanotoxin Production in the Great Lakes Area. Toxins 2024, 16, 471. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Xiao, Y.; Zhang, Y.; Yu, Y.; Zheng, Z.; Liu, Y.; Li, Q. The Impact of Cyanobacteria Blooms on the Aquatic Environment and Human Health. Toxins 2022, 14, 658. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.; Redouane, E.M.; Freitas, M.; Amaral, S.; Azevedo, T.; Loss, L.; Máthé, C.; Mohamed, Z.A.; Oudra, B.; Vasconcelos, V. Impacts of Microcystins on Morphological and Physiological Parameters of Agricultural Plants: A Review. Plants 2021, 10, 639. [Google Scholar] [CrossRef]
- Lakshmikandan, M.; Li, M.; Pan, B. Cyanobacterial Blooms in Environmental Water: Causes and Solutions. Curr. Pollut. Rep. 2024, 10, 606–627. [Google Scholar] [CrossRef]
- Long, C.; Worthy, G.; Paperno, R.; Ceriani, S.; Mansfield, K. Harmful Algal Bloom Impacts on Juvenile Green Turtle Foraging Ecology: Insights from Stable Isotope Analysis. Mar. Ecol. Prog. Ser. 2024, 728, 59–73. [Google Scholar] [CrossRef]
- Anabtawi, H.M.; Lee, W.H.; Al-Anazi, A.; Mohamed, M.M.; Aly Hassan, A. Advancements in Biological Strategies for Controlling Harmful Algal Blooms (HABs). Water 2024, 16, 224. [Google Scholar] [CrossRef]
- Visser, P.M.; Ibelings, B.W.; Bormans, M.; Huisman, J. Artificial Mixing to Control Cyanobacterial Blooms: A Review. Aquat. Ecol. 2016, 50, 423–441. [Google Scholar] [CrossRef]
- Anantapantula, S.; Wittenzeller, S.; Gladfelter, M.F.; Tenison, S.E.; Zinnert, H.; Belfiore, A.P.; Wilson, A.E. Copper Sulfate Treatment Harms Zooplankton and Ultimately Promotes Algal Blooms: A Field Mesocosm Experiment. Harmful Algae 2025, 142, 102800. [Google Scholar] [CrossRef]
- Taylor, F.J.R. Parasitism of the Toxin-Producing Dinoflagellate Gonyaulax catenella by the Endoparasitic Dinoflagellate Amoebophrya ceratii. J. Fish. Res. Board Can. 1968, 25, 2241–2245. [Google Scholar] [CrossRef]
- Sigee, D.C.; Glenn, R.; Andrews, M.J.; Bellinger, E.G.; Butler, R.D.; Epton, H.A.S.; Hendry, R.D. Biological Control of Cyanobacteria: Principles and Possibilities. Hydrobiologia 1999, 395–396, 161–172. [Google Scholar] [CrossRef]
- Ren, S.; Jin, Y.; Ma, J.; Zheng, N.; Zhang, J.; Peng, X.; Xie, B. Isolation and Characterization of Algicidal Bacteria from Freshwater Aquatic Environments in China. Front. Microbiol. 2023, 14, 1156291. [Google Scholar] [CrossRef]
- Park, B.S.; Park, C.-S.; Shin, Y.; Yoon, S.; Han, M.-S.; Kang, Y.-H. Different Algicidal Modes of the Two Bacteria Aeromonas Bestiarum HYD0802-MK36 and Pseudomonas Syringae KACC10292T against Harmful Cyanobacteria Microcystis aeruginosa. Toxins 2022, 14, 128. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Wang, M.-H.; Jia, R.-B.; Li, L. Removal of Cyanobacteria by an Aeromonas sp. Desalin. Water Treat. 2012, 47, 205–210. [Google Scholar] [CrossRef]
- Sun, P.; Lin, H.; Wang, G.; Zhang, X.; Zhang, Q.; Zhao, Y. Wheat Bran Enhances the Cytotoxicity of Immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa. PLoS ONE 2015, 10, e0136429. [Google Scholar] [CrossRef]
- Ruangrit, K.; Phinyo, K.; Chailungka, S.; Duangjan, K.; Naree, A.; Thasana, J.; Kamopas, W.; Seanpong, S.; Pekkoh, J.; Noirungsee, N. Enhanced Nitrate Removal in Aquatic Systems Using Biochar Immobilized with Algicidal Bacillus sp. AK3 and Denitrifying Alcaligenes sp. M3: A Synergistic Approach. PLoS ONE 2025, 20, e0318416. [Google Scholar] [CrossRef]
- Benegas, G.R.S.; Bernal, S.P.F.; De Oliveira, V.M.; Passarini, M.R.Z. Antimicrobial Activity against Microcystis aeruginosa and Degradation of Microcystin-LR by Bacteria Isolated from Antarctica. Environ. Sci. Pollut. Res. 2021, 28, 52381–52391. [Google Scholar] [CrossRef]
- Font-Nájera, A.; Morón-López, J.; Glińska, S.; Balcerzak, Ł.; Grzyb, T.; Mankiewicz-Boczek, J. Algicidal Bacteria Induce a Molecular Stress Response in Microcystis aeruginosa and Aphanizomenon gracile Leading to Physiological Alterations and Cell Death. Int. Biodeterior. Biodegrad. 2024, 189, 105763. [Google Scholar] [CrossRef]
- Liu, J.; Yang, C.; Chi, Y.; Wu, D.; Dai, X.; Zhang, X.; Igarashi, Y.; Luo, F. Algicidal Characterization and Mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake. J. Basic Microbiol. 2019, 59, 1112–1124. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Forchhammer, K. Bacterial Predation on Cyanobacteria. Microb. Physiol. 2021, 31, 99–108. [Google Scholar] [CrossRef]
- Caiola, M.G.; Pellegrini, S. Lysis of Microcystis aeruginosa (Kütz.) by Bdellovibrio-like bacteria. J. Phycol. 1984, 20, 471–475. [Google Scholar] [CrossRef]
- Waso, M.; Reyneke, B.; Havenga, B.; Khan, S.; Khan, W. Insights into Bdellovibrio spp. Mechanisms of Action and Potential Applications. World J. Microbiol. Biotechnol. 2021, 37, 85. [Google Scholar] [CrossRef]
- Liu, F.; Qin, L.; Zhu, S.; Chen, H.; Al-Haimi, A.A.N.M.; Xu, J.; Zhou, W.; Wang, Z. Applications-Oriented Algicidal Efficacy Research and in-Depth Mechanism of a Novel Strain Brevibacillus sp. on Microcystis aeruginosa. Environ. Pollut. 2023, 330, 121812. [Google Scholar] [CrossRef]
- Lemes, G.A.F.; Kersanach, R.; Pinto, L.D.S.; Dellagostin, O.A.; Yunes, J.S.; Matthiensen, A. Biodegradation of Microcystins by Aquatic Burkholderia sp. from a South Brazilian Coastal Lagoon. Ecotoxicol. Environ. Saf. 2008, 69, 358–365. [Google Scholar] [CrossRef]
- Zhang, C.; Massey, I.Y.; Liu, Y.; Huang, F.; Gao, R.; Ding, M.; Xiang, L.; He, C.; Wei, J.; Li, Y.; et al. Identification and Characterization of a Novel Indigenous Algicidal Bacterium Chryseobacterium Species against Microcystis aeruginosa. J. Toxicol. Environ. Health A 2019, 82, 845–853. [Google Scholar] [CrossRef]
- Stewart, J.R.; Brown, R.M. Cytophaga That Kills or Lyses Algae. Science 1969, 164, 1523–1524. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Xu, Y.; Li, P.; Zhang, K.; Jiang, X.; Zheng, T.; Wang, H. Stress of Algicidal Substances from a Bacterium Exiguobacterium sp. H10 on Microcystis aeruginosa. Lett. Appl. Microbiol. 2017, 64, 57–65. [Google Scholar] [CrossRef]
- Berg, K.A.; Lyra, C.; Sivonen, K.; Paulin, L.; Suomalainen, S.; Tuomi, P.; Rapala, J. High Diversity of Cultivable Heterotrophic Bacteria in Association with Cyanobacterial Water Blooms. ISME J. 2009, 3, 314–325. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H.; Zheng, S.; Hao, Z.; Wang, H.; Liu, C. Screening and Application of Microorganisms That Inhibit Cyanobacteria Blooms. ACS Agric. Sci. Technol. 2024, 4, 203–213. [Google Scholar] [CrossRef]
- Chen, H.; Fu, L.; Luo, L.; Lu, J.; White, W.L.; Hu, Z. Induction and Resuscitation of the Viable but Nonculturable State in a Cyanobacteria-Lysing Bacterium Isolated from Cyanobacterial Bloom. Microb. Ecol. 2012, 63, 64–73. [Google Scholar] [CrossRef]
- Jeong, S.; Le, V.V.; Ko, S.-R.; Kang, M.; Kim, M.-S.; Li, Z.; Ahn, C.-Y. Selective Cyanobactericidal Activity of Nocardioides convexus MS16 against Microcystis aeruginosa, Mediated by Direct Attack. Algal Res. 2025, 90, 104165. [Google Scholar] [CrossRef]
- Wang, S.; Yang, S.; Zuo, J.; Hu, C.; Song, L.; Gan, N.; Chen, P. Simultaneous Removal of the Freshwater Bloom-Forming Cyanobacterium Microcystis and Cyanotoxin Microcystins via Combined Use of Algicidal Bacterial Filtrate and the Microcystin-Degrading Enzymatic Agent, MlrA. Microorganisms 2021, 9, 1594. [Google Scholar] [CrossRef]
- Zhou, S.; Yin, H.; Tang, S.; Peng, H.; Yin, D.; Yang, Y.; Liu, Z.; Dang, Z. Physiological Responses of Microcystis aeruginosa against the Algicidal Bacterium Pseudomonas aeruginosa. Ecotoxicol. Environ. Saf. 2016, 127, 214–221. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Z.; Huang, Q.; Xiao, X.; Wang, X.; Zhang, F.; Wang, X.; Liu, Y.; Hu, C. Isolation, Identification and Characterization of Phytoplankton-Lytic Bacterium CH-22 against Microcystis aeruginosa. Limnologica 2011, 41, 70–77. [Google Scholar] [CrossRef]
- Su, J.F.; Shao, S.C.; Ma, F.; Lu, J.S.; Zhang, K. Bacteriological Control by Raoultella sp. R11 on Growth and Toxins Production of Microcystis aeruginosa. Chem. Eng. J. 2016, 293, 139–150. [Google Scholar] [CrossRef]
- Li, D.; Kang, X.; Chu, L.; Wang, Y.; Song, X.; Zhao, X.; Cao, X. Algicidal Mechanism of Raoultella Ornithinolytica against Microcystis aeruginosa: Antioxidant Response, Photosynthetic System Damage and Microcystin Degradation. Environ. Pollut. 2021, 287, 117644. [Google Scholar] [CrossRef]
- Zhu, X.; Shen, Y.; Chen, X.; Hu, Y.O.O.; Xiang, H.; Tao, J.; Ling, Y. Biodegradation Mechanism of Microcystin-LR by a Novel Isolate of Rhizobium sp. TH and the Evolutionary Origin of the mlrA Gene. Int. Biodeterior. Biodegrad. 2016, 115, 17–25. [Google Scholar] [CrossRef]
- Shi, M. A Novel Bacterium Saprospira sp. Strain PdY3 Forms Bundles and Lyses Cyanobacteria. Front. Biosci. 2006, 11, 1916. [Google Scholar] [CrossRef]
- Fei, Y.; Wei, H.Y.; Li, X.Q.; Li, Y.H.; Li, X.B.; Yin, L.H.; Pu, P.Y. Isolation and Characterization of an Algicidal Bacterium Indigenous to Lake Taihu with a Red Pigment Able to Lyse Microcystis aeruginosa. Biomed. Environ. Sci. 2013, 26, 148–154. [Google Scholar] [CrossRef]
- Liu, W.; Yang, J.; Tian, Y.; Zhou, X.; Wang, S.; Zhu, J.; Sun, D.; Liu, C. An In Situ Extractive Fermentation Strategy for Enhancing Prodigiosin Production from Serratia Marcescens BWL1001 and Its Application to Inhibiting the Growth of Microcystis aeruginosa. Biochem. Eng. J. 2021, 166, 107836. [Google Scholar] [CrossRef]
- Li, Z.; Song, F.; Chen, M. Complete Genome Sequence of Shewanella sp. Strain Lzh-2, an Algicidal Bacterial Strain Isolated from Lake Taihu, People’s Republic of China. Microbiol. Resour. Announc. 2021, 10, e00339-21. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, Y.; Zhang, R.; Zhang, Z.; Hu, X.; Cheng, Y.; Geng, R.; Ma, Z.; Li, R. Discovery of a High-Efficient Algicidal Bacterium against Microcystis aeruginosa Based on Examinations toward Culture Strains and Natural Bloom Samples. Toxins 2023, 15, 220. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Adachi, K.; Nishijima, M.; Takadera, T.; Tamaki, S.; Harada, K.; Mochida, K.; Sano, H. β-Cyanoalanine Production by Marine Bacteria on Cyanide-Free Medium and Its Specific Inhibitory Activity toward Cyanobacteria. Appl. Environ. Microbiol. 2000, 66, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A Comprehensive Database of High-Quality Biomedical Graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Safferman, R.S.; Morris, M.-E. Algal Virus: Isolation. Science 1963, 140, 679–680. [Google Scholar] [CrossRef]
- Li, D.; Chen, X.; Wang, Y.; Huang, W.; Wang, Y.; Zhao, X.; Song, X.; Cao, X. Panoptic Elucidation of Algicidal Mechanism of Raoultella sp. S1 against the Microcystis aeruginosa by TMT Quantitative Proteomics. Chemosphere 2024, 352, 141287. [Google Scholar] [CrossRef] [PubMed]
- Noh, S.Y.; Jung, S.W.; Kim, B.H.; Katano, T.; Han, M.-S. Algicidal Activity of the Bacterium, Pseudomonas fluorescens SK09, to Mitigate Stephanodiscus hantzschii (Bacillariophyceae) Blooms Using Field Mesocosms. J. Freshw. Ecol. 2017, 32, 477–488. [Google Scholar] [CrossRef]
- Zeng, G.; Wang, P.; Wang, Y. Algicidal Efficiency and Mechanism of Phanerochaete Chrysosporium against Harmful Algal Bloom Species. Algal Res. 2015, 12, 182–190. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Hashem, M.; Alamri, S.A. Growth Inhibition of the Cyanobacterium Microcystis aeruginosa and Degradation of Its Microcystin Toxins by the Fungus Trichoderma Citrinoviride. Toxicon 2014, 86, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Gao, P.; Wang, J.; Zhang, J.; Zhang, M.; Sun, D. Algicidal Molecular Mechanism and Toxicological Degradation of Microcystis aeruginosa by White-Rot Fungi. Toxins 2020, 12, 406. [Google Scholar] [CrossRef]
- Miao, F.; Zuo, J.; Liu, X.; Ji, N. Algicidal Activities of Secondary Metabolites of Marine Macroalgal-Derived Endophytic Fungi. J. Oceanol. Limnol. 2019, 37, 112–121. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Yuan, Z.; Lu, L.; Liu, X.; Zhu, X.; Wang, L.; Liu, C.; Rao, Y. Cercosporin-Bioinspired Photoinactivation of Harmful Cyanobacteria under Natural Sunlight via Bifunctional Mechanisms. Water Res. 2022, 215, 118242. [Google Scholar] [CrossRef]
- Li, Q.; Yang, F.; Zhou, C.-Z. Cyanophages: Billions of Years of Coevolution with Cyanobacteria. Annu. Rev. Microbiol. 2025, 79, 639–661. [Google Scholar] [CrossRef]
- Guo, Y.; Dong, X.; Li, H.; Tong, Y.; Liu, Z.; Jin, J. Cyanophage Engineering for Algal Blooms Control. Viruses 2024, 16, 1745. [Google Scholar] [CrossRef] [PubMed]
- Ni, T.; Zeng, Q. Diel Infection of Cyanobacteria by Cyanophages. Front. Mar. Sci. 2016, 2, 123. [Google Scholar] [CrossRef]
- Cordero, O.X. Endemic Cyanophages and the Puzzle of Phage-bacteria Coevolution. Environ. Microbiol. 2017, 19, 420–422. [Google Scholar] [CrossRef]
- Xu, W.; Xu, Y.; Huang, X.; Hu, X.; Su, H.; Li, Z.; Yang, K.; Wen, G.; Cao, Y. Addition of Algicidal Bacterium CZBC1 and Molasses to Inhibit Cyanobacteria and Improve Microbial Communities, Water Quality and Shrimp Performance in Culture Systems. Aquaculture 2019, 502, 303–311. [Google Scholar] [CrossRef]
- Hao, A.; Haraguchi, T.; Kuba, T.; Kai, H.; Lin, Y.; Iseri, Y. Effect of the Microorganism-Adherent Carrier for Nitzschia Palea to Control the Cyanobacterial Blooms. Ecol. Eng. 2021, 159, 106127. [Google Scholar] [CrossRef]
- Yang, C.; Hou, X.; Wu, D.; Chang, W.; Zhang, X.; Dai, X.; Du, H.; Zhang, X.; Igarashi, Y.; Luo, F. The Characteristics and Algicidal Mechanisms of Cyanobactericidal Bacteria, a Review. World J. Microbiol. Biotechnol. 2020, 36, 188. [Google Scholar] [CrossRef] [PubMed]
- Morón-López, J.; Serwecińska, L.; Balcerzak, Ł.; Glińska, S.; Mankiewicz-Boczek, J. Algicidal Bacteria against Cyanobacteria: Practical Knowledge from Laboratory to Application. Crit. Rev. Environ. Sci. Technol. 2024, 54, 239–266. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Gardner, W.S.; Lehmann, M.F.; Guindon, A.; Bird, D.F. Benthic Nitrogen Regeneration, Fixation, and Denitrification in a Temperate, Eutrophic Lake: Effects on the Nitrogen Budget and Cyanobacteria Blooms. Limnol. Oceanogr. 2016, 61, 1406–1423. [Google Scholar] [CrossRef]
- Gao, Y.; O’Neil, J.; Stoecker, D.; Cornwell, J. Photosynthesis and Nitrogen Fixation during Cyanobacteria Blooms in an Oligohaline and Tidal Freshwater Estuary. Aquat. Microb. Ecol. 2014, 72, 127–142. [Google Scholar] [CrossRef]
- Zhang, H.; Niu, L.; Ma, B.; Huang, T.; Liu, T.; Liu, X.; Liu, X.; Shi, Y.; Liu, H.; Li, H.; et al. Novel Insights into Aerobic Denitrifying Bacterial Communities Augmented Denitrification Capacity and Mechanisms in Lake Waters. Sci. Total Environ. 2023, 864, 161011. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, R.; Wu, Y.; Lürling, M.; Cai, H.; Jiang, H.-L.; Liu, X. Bioavailable Phosphorus (P) Reduction Is Less than Mobile P Immobilization in Lake Sediment for Eutrophication Control by Inactivating Agents. Water Res. 2017, 109, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Dudhane, A.; Mhaindarkar, V. Biological Control of Cyanobacteria Using Polyphosphate Accumulating Bacteria Isolated from Activated Sludge. J. Pure Appl. Microbiol. 2011, 5, 469–471. [Google Scholar]
- Lu, H.; Wan, J.; Li, J.; Shao, H.; Wu, Y. Periphytic Biofilm: A Buffer for Phosphorus Precipitation and Release between Sediments and Water. Chemosphere 2016, 144, 2058–2064. [Google Scholar] [CrossRef]
- Breton, F.; Martínez, C. Persistence of Harmful Algal Blooms under Conditions of Internal Phosphorus Loading. Nonlinear Anal. Real World Appl. 2026, 88, 104479. [Google Scholar] [CrossRef]
- Kim, M.-S.; Ko, S.-R.; Kang, M.; Jeong, S.; Lee, H.; Shin, Y.; Kim, K.; Ahn, C.-Y. Growth Inhibition of Harmful Cyanobacterium Microcystis by Picocyanobacterium Cyanobium: Transcriptome-Based Interaction Analysis. Harmful Algae 2025, 148, 102923. [Google Scholar] [CrossRef]
- Liang, Z.; Zhong, H.; Zhao, Q. Enhancing Mixed-Species Microalgal Biofilms for Wastewater Treatment: Design, Construction, Evaluation and Optimisation. Bioresour. Technol. 2025, 430, 132600. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Li, G. Acorus Calamus Root Extracts to Control Harmful Cyanobacteria Blooms. Ecol. Eng. 2016, 94, 95–101. [Google Scholar] [CrossRef]
- Li, H.; Pan, G. Simultaneous Removal of Harmful Algal Blooms and Microcystins Using Microorganism- and Chitosan-Modified Local Soil. Environ. Sci. Technol. 2015, 49, 6249–6256. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tai, Y.; Wan, X.; Ruan, W.; Man, Y.; Wang, J.; Yang, Y.; Yang, Y. Enhanced Removal of Microcystis Bloom and Microcystin-LR Using Microcosm Constructed Wetlands with Bioaugmentation of Degrading Bacteria. Chemosphere 2018, 210, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.; Mohamed, M.M.; Jung, J. Novel Treatment of Microcystis aeruginosa Using Chitosan-Modified Nanobubbles. Environ. Pollut. 2022, 292, 118458. [Google Scholar] [CrossRef]

| Algicidal Bacteria | Target Algal Species | Mechanism (Certainty Level) | Algicidal Efficacy/Extent | Reference |
|---|---|---|---|---|
| Aeromonas | Microcystis aeruginosa, Microcystis flos-aquae, Anabaena cylindrica, Dolichospermum flos-aquae, Nodularia spumigena | Direct contact-dependent lysis via intracellular protease-like substances; disrupts cell structure (High) | 91% lysis of M. aeruginosa; extremely low activity against non-target algae | [15,16] |
| Alcaligenes | Microcystis aeruginosa | Disrupts cell membranes, photosynthetic lamellae, and phycobiliproteins (Medium) | Algicidal rate: 74.41% (high algal density) to 88.45% (low algal density); wheat bran-supplemented immobilization enhances efficacy to 95.49% | [17,18] |
| Arthrobacter | Microcystis aeruginosa | Presumed secretion of algicidal metabolites (Low; mechanism not elaborated) | Inhibits growth of M. aeruginosa; no quantitative efficacy provided | [19] |
| Bacillus | Microcystis aeruginosa, Aphanizomenon gracile, Aphanizomenon flos-aquae, Microcystis viridis, Microcystis wesenbergi, Oscillatoria tenuis, Nostoc punctiforme, Dolichospermum flos-aquae, Limnospira maxima | Secretes enzymes/metabolites that disrupt cell walls/membranes; direct lysis (High) | Reduces cyanobacterial density from 600,000 to 80,000 cells/mL; eliminates harmful algae in Dianchi Lake; high efficacy against diverse cyanobacteria | [18,20,21,22] |
| Bdellovibrio | Microcystis aeruginosa | Obligate endosymbiotic predation; enzyme-mediated degradation of host cellular components (High) | Lyses M. aeruginosa and Phormidium luridum; invades host cells for internal lysis | [22,23,24] |
| Brevibacillus | Microcystis aeruginosa | Presumed secretion of algicidal active substances (Low; mechanism not elaborated) | Inhibits growth of M. aeruginosa | [25] |
| Burkholderia | Microcystis aeruginosa | Biodegradation of microcystins; indirect growth inhibition (Medium) | Suppresses M. aeruginosa proliferation; degrades cyanotoxins | [26] |
| Chryseobacterium | Microcystis aeruginosa | Secretes heat-stable extracellular substances; disrupts cell membranes and photosynthetic systems (High) | 72-h algicidal rate: 80%; time-dependent lysis (35% at 24 h, 62% at 48 h) | [27] |
| Cytophaga | Nostoc muscorum, Leptolyngbya boryana | Direct cell lysis (Medium) | Lyses target cyanobacterial cells | [28] |
| Exiguobacterium | Microcystis aeruginosa | Secretes glycolipid-like substances; damages cell walls/membranes and inhibits chlorophyll synthesis (Medium) | Highly effective against M. aeruginosa 7820; reduces intracellular pigment content | [29] |
| Flavobacterium | Microcystis sp., Anabaena sp. | Presumed secretion of algicidal metabolites (Low; mechanism not elaborated) | Inhibits the growth of target cyanobacteria | [30] |
| Flexibacter | Oscillatoria williamsii | Direct cell lysis (Medium) | Lyses O. williamsii | [13] |
| Lysinibacillus | Microcystis aeruginosa | Presumed secretion of algicidal substances (Low; mechanism not elaborated) | Inhibits growth of M. aeruginosa | [31] |
| Microbacterium | Microcystis aeruginosa | Presumed algicidal activity (Low; mechanism not elaborated) | Inhibits growth of M. aeruginosa | [32] |
| Morganella | Microcystis aeruginosa, Aphanizomenon gracile | Induces molecular stress response leading to cell death (Medium) | Suppresses growth of target cyanobacteria | [20] |
| Myxococcus | Anabaena, Microcystis, Oscillatoria, Phormidium | Extracellular predation; collective secretion of hydrolytic enzymes (High) | Captures and lyses diverse cyanobacteria via aqueous colonies | [13,22] |
| Nocardioides | Microcystis aeruginosa | Direct physical attack; adheres to cell surfaces, disrupts structure, and downregulates photosynthetic/toxin-related genes (High) | 1-day algicidal rate: 84%; 2-day rate: 98%; specific to M. aeruginosa (no impact on most non-target algae) | [33] |
| Paenibacillus | Microcystis aeruginosa | Secretes extracellular active substances; disrupts cell membranes and cell walls (High) | Algicidal rate: 89.51–90.48% against M. aeruginosa; potent against cyanobacteria, minimal impact on green algae | [34] |
| Pseudoalteromonas | Microcystis aeruginosa | Presumed algicidal activity (Low; mechanism not elaborated) | Inhibits growth of M. aeruginosa | [15,35] |
| Pseudomonas | Microcystis aeruginosa | Secretes enzymes/secondary metabolites; disrupts cell walls/membranes (High) | Maximum algicidal effect (MAE) from −17.4% to 83.2% (mesophilic/cold conditions); no efficacy in flowing water | [36] |
| Raoultella | Microcystis aeruginosa | Damages photosynthetic systems; inhibits carbohydrate metabolism and DNA replication/repair (High) | 72-h kill rate from 37.21% (high algal density) to 96.23% (low algal density); induces flocculation | [37,38] |
| Rhizobium | Microcystis aeruginosa | Biodegradation of microcystin-LR via mlrA gene (Medium) | Inhibits M. aeruginosa growth; degrades cyanotoxins | [39] |
| Saprospira | Anabaena sp. | Forms bundles to lyse cyanobacterial cells (Medium) | Lyses Anabaena sp. | [40] |
| Serratia | Microcystis aeruginosa | Synthesizes serratiamycin; dose-dependent algicidal activity (High) | 3.0 μg/L serratiamycin achieves 91.1% algicidal rate | [41,42] |
| Shewanella | Microcystis aeruginosa | Presumed algicidal activity (Low; mechanism not elaborated) | Inhibits growth of M. aeruginosa | [43] |
| Sphingomonas | Microcystis, Anabaena | Presumed secretion of algicidal metabolites (Low; mechanism not elaborated) | Inhibits growth of target cyanobacteria | [30] |
| Staphylococcus | Microcystis aeruginosa | Presumed algicidal activity (Low; mechanism not elaborated) | Inhibits growth of M. aeruginosa | [32] |
| Stappia | Microcystis aeruginosa | Presumed algicidal activity (Low; mechanism not elaborated) | Inhibits growth of M. aeruginosa | [32] |
| Streptomyces | Microcystis aeruginosa, Dolichospermum sp., Pseudanabaena sp., Anabaena sp., Synechocystis sp. | Secretes algicidal active substances (Medium) | Inhibits growth of diverse cyanobacteria | [13,44] |
| Vibrio | Oscillatoria amphibia | Produces β-cyanoalanine; specific inhibition (Medium) | Inhibits growth of O. amphibia | [45] |
| Microorganism Type | Representative Genera/Species | Algicidal Mechanism | Advantages | Limitations | Reference |
|---|---|---|---|---|---|
| Algicidal Bacteria | Bacillus, Pseudomonas, Aeromonas, Raoultella | Secrete hydrolytic enzymes, reactive oxygen species (ROS), organic acids, or lipopeptides to lyse cyanobacterial cells | Fast-acting; some strains are non-toxic; environmentally friendly; can degrade cyanotoxins | Susceptible to environmental conditions; competition with indigenous microbes; short survival in open waters | [59,60,61,62] |
| Algicidal Fungi | Phanerochaete chrysosporium, Trichoderma citrinoviride | Induce oxidative stress; disrupt photosynthetic gene expression; produce secondary metabolites (e.g., cercosporin) | Can simultaneously inhibit growth and degrade toxins; effective even in low concentrations | Growth rate slower than bacteria; less studied; ecological safety needs assessment | [52,53,54] |
| Cyanophages (Cyanobacterial Viruses) | Cyanophages infecting Microcystis, Synechococcus, etc. | Adsorption, penetration, replication, lysis of host cells (via phage-induced cell rupture) | High specificity; can be engineered for targeted control; low ecological footprint | Host-specificity limits spectrum; ecological interactions complex; still under development for field use | [56,58] |
| Strategy Type | Specific Strategy | Advantages | Limitations | Typical Application Cases | Suitable Water Bodies | Reference |
|---|---|---|---|---|---|---|
| Direct Algicidal Microorganisms | Algicidal bacteria (Bacillus, Pseudomonas) | Rapid cell lysis; eco-friendly; toxin degradation | Sensitive to environmental changes; short persistence | Bacillus cereus lysed Microcystis | Freshwater lakes, reservoirs | [14,15,21,37] |
| Algicidal fungi (Phanerochaete, Trichoderma) | Oxidative stress induction; toxin degradation; metabolite secretion | Slower action; limited field data | Phanerochaete chrysosporium suppressed Microcystis | Shallow lakes, ponds | [50,51,52] | |
| Cyanophages | High specificity; self-replicating; low ecological footprint | Host specificity; possible resistance | Ma-LMM01 infects Microcystis | Mesocosms; potential field use | [55,56,57,58] | |
| Indirect Microbial Regulation | Nitrogen cycle manipulation (denitrifiers) | Nitrogen depletion limits bloom resurgence | Possible N2O release; microbial competition | P. stutzeri improved denitrification | Eutrophic lakes, rivers | [63,65] |
| Phosphorus cycling microbes | Reduce soluble P via adsorption/precipitation | Re-release under anoxia; variable effectiveness | Bacillus strains mineralized and absorbed P | Wetlands, shallow lakes | [66,67,73] | |
| Microbial-Plant Synergy | Microbial-macrophyte consortia | Synergistic nutrient uptake; microbial shelter | Seasonality; ecological complexity | Chlorella-bacteria removed N, P, and inhibited blooms | Constructed wetlands, buffer zones | [71,74] |
| Microbial + Physicochemical | Microbes + flocculants/clays/UV | Fast-acting; synergistic effects; multi-target removal | Additive cost and safety; microbial viability risk | Bacteria + Phoslock removed P | Emergency bloom control in lakes | [66,73,75] |
| Biofilm Reactor Systems | Floating/fixed microbial biofilms | Long-term action; stable; reusable systems | Biofilm detachment; engineering complexity | Biofilms reduced Microcystis | Canals, low-flow eutrophic waters | [68,71] |
| Research Focus | Core Concept | Advantages and Innovations | Challenges and Open Questions | Development Trend | Reference |
|---|---|---|---|---|---|
| Synthetic/Engineered Microbes | Use of synthetic biology to design custom microbes with enhanced algicidal or nutrient-transforming abilities | Target specificity; multi-functionality; toxin degradation; controllable traits | Environmental release risk; gene stability; biosafety regulation | Rapid development; field trials increasing | [55,56,62] |
| Smart Delivery Systems | Microcapsules, hydrogels, nanocarriers to deliver microbial agents or enzymes | Improved stability and survivability; targeted release; reduced environmental impact | Material compatibility; scale-up cost; release kinetics control | Applied in precision treatment strategies | [18,73,75] |
| Multi-omics Tools | Integration of metagenomics, transcriptomics, proteomics, metabolomics | Mechanistic insights; identification of novel functional strains and pathways | Data integration complexity; expensive infrastructure; interpretation challenges | Becoming standard in microbial ecology | [2,34,48,70] |
| Ecological Safety Assessment | Long-term monitoring of microbial intervention effects on biodiversity and ecosystem functions | Ensures environmental sustainability and public acceptance | Time-consuming; standard evaluation metrics still evolving | Policy-driven demand increasing | [62,63,64] |
| Microbial Consortia Design | Constructing synergistic microbial communities for stable and resilient bloom suppression | Increased ecological stability; better resistance to environmental variability | Community dynamics hard to predict; interspecies competition | Moving from mono- to multi-strain applications | [18,31,34,71,74] |
| Hybrid Integrated Approaches | Coupling microbial methods with physical, chemical, or ecological tools | Synergistic effect; emergency responsiveness; multiple inhibition paths | System integration; risk of overcomplication | Widely adopted in practical water management | [66,73,74,75] |
| AI and Modeling Support | Using machine learning and ecological modeling to predict outcomes and optimize strategies | Predictive deployment; data-driven optimization; reduced field testing burden | Model generalization; requires large datasets | Early-stage, with growing interest | [2,46,69,71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Meng, S.; Wu, X.; Shen, H.; Wang, D.; Qiu, T.; Li, W.; Chen, J.; Li, L.; Liang, B.; et al. Microorganism-Based Strategies for the Control of Cyanobacterial Blooms: A Review of Recent Progress. Toxins 2025, 17, 604. https://doi.org/10.3390/toxins17120604
Zhang W, Meng S, Wu X, Shen H, Wang D, Qiu T, Li W, Chen J, Li L, Liang B, et al. Microorganism-Based Strategies for the Control of Cyanobacterial Blooms: A Review of Recent Progress. Toxins. 2025; 17(12):604. https://doi.org/10.3390/toxins17120604
Chicago/Turabian StyleZhang, Wangle, Shiyuan Meng, Xiaoxu Wu, Hong Shen, Dongqin Wang, Tong Qiu, Weijie Li, Jiping Chen, Ling Li, Bingbing Liang, and et al. 2025. "Microorganism-Based Strategies for the Control of Cyanobacterial Blooms: A Review of Recent Progress" Toxins 17, no. 12: 604. https://doi.org/10.3390/toxins17120604
APA StyleZhang, W., Meng, S., Wu, X., Shen, H., Wang, D., Qiu, T., Li, W., Chen, J., Li, L., Liang, B., Zhao, M., Deng, X., & Zhou, C. (2025). Microorganism-Based Strategies for the Control of Cyanobacterial Blooms: A Review of Recent Progress. Toxins, 17(12), 604. https://doi.org/10.3390/toxins17120604

