Identification of Unknown Biological Toxin Proteins Using Mass Spectrometry: A Case Study on De Novo Sequencing of Ricin
Abstract
1. Introduction
2. Results and Discussion
2.1. Peptide De Novo Sequencing
2.2. First-Round Sequence Assembly
2.3. Second-Round Sequence Assembly
3. Conclusions
4. Materials and Methods
4.1. Sample Preparation
4.2. Liquid Chromatography and Mass Spectrometry Analysis
4.3. Peptide De Novo Sequencing
4.4. First-Round Sequence Assembly
4.5. Homologous Sequences Database Search
4.6. Second-Round Sequence Assembly
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987, 262, 8128–8130. [Google Scholar] [CrossRef]
- Olsnes, S.; Kozlov, J.V. Ricin. Toxicon 2001, 39, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Van Deurs, B.; Pedersen, L.R.; Sundan, A.; Olsnes, S.; Sandvig, K. Receptor-mediated endocytosis of a ricin-colloidal gold conjugate in vero cells: Intracellular routing to vaculoar and tubulo-vesicular portions of the endosomal system. Exp. Cell Res. 1985, 159, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Wesche, J.; Rapak, A.; Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 1999, 274, 34443–34449. [Google Scholar] [CrossRef]
- Sandvig, K.; Spilsberg, B.; Lauvrak, S.U.; Torgersen, M.L.; Iversen, T.-G.; Van Deurs, B. Pathways followed by protein toxins into cells. Int. J. Med. Microbiol. 2004, 293, 483–490. [Google Scholar] [CrossRef]
- Pincus, S.H.; Bhaskaran, M.; Brey, R.N., III; Didier, P.J.; Doyle-Meyers, L.A.; Roy, C.J. Clinical and pathological findings associated with aerosol exposure of macaques to ricin toxin. Toxins 2015, 7, 2121–2133. [Google Scholar] [CrossRef]
- Sowa-Rogozińska, N.; Sominka, H.; Nowakowska-Gołacka, J.; Sandvig, K.; Słomińska-Wojewódzka, M. Intracellular transport and cytotoxicity of the protein toxin ricin. Toxins 2019, 11, 350. [Google Scholar] [CrossRef]
- König, S.; Obermann, W.M.; Eble, J.A. The current state-of-the-art identification of unknown proteins using mass spectrometry exemplified on de novo sequencing of a venom protease from Bothrops moojeni. Molecules 2022, 27, 4976. [Google Scholar] [CrossRef]
- Janik, E.; Ceremuga, M.; Saluk-Bijak, J.; Bijak, M. Biological toxins as the potential tools for bioterrorism. Int. J. Mol. Sci. 2019, 20, 1181. [Google Scholar] [CrossRef]
- Moshiri, M.; Hamid, F.; Etemad, L. Ricin toxicity: Clinical and molecular aspects. Rep. Biochem. Mol. Biol. 2016, 4, 60. [Google Scholar]
- Griffiths, G.; Newman, H.; Gee, D. Identification and quantification of ricin toxin in animal tissues using ELISA. J. Forensic Sci. Soc. 1986, 26, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo-Viret, V.; Splettstoesser, W.; Thullier, P. An immunochromatographic test for the diagnosis of ricin inhalational poisoning. Clin. Toxicol. 2007, 45, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Shyu, R.-H.; Shyu, H.-F.; Liu, H.-W.; Tang, S.-S. Colloidal gold-based immunochromatographic assay for detection of ricin. Toxicon 2002, 40, 255–258. [Google Scholar] [CrossRef]
- Sousa, R.B.; Lima, K.S.; Santos, C.G.; França, T.C.; Nepovimova, E.; Kuca, K.; Dornelas, M.R.; Lima, A.L. A new method for extraction and analysis of ricin samples through MALDI-TOF-MS/MS. Toxins 2019, 11, 201. [Google Scholar] [CrossRef]
- Chen, D.; Bryden, W.A.; Fenselau, C. Rapid analysis of ricin using hot acid digestion and MALDI-TOF mass spectrometry. J. Mass Spectrom. 2018, 53, 1013–1017. [Google Scholar] [CrossRef]
- Dorner, B.G.; Zeleny, R.; Harju, K.; Hennekinne, J.-A.; Vanninen, P.; Schimmel, H.; Rummel, A. Biological toxins of potential bioterrorism risk: Current status of detection and identification technology. TrAC Trends Anal. Chem. 2016, 85, 89–102. [Google Scholar] [CrossRef]
- Zhao, L.; Svetec, N.; Begun, D.J. De novo genes. Annu. Rev. Genet. 2024, 58, 211–232. [Google Scholar] [CrossRef]
- Yanes, L.; Accinelli, G.G.; Wright, J.; Ward, B.J.; Clavijo, B.J. A Sequence Distance Graph framework for genome assembly and analysis. F1000Research 2019, 8, 1490. [Google Scholar] [CrossRef]
- Jeong, K.; Kim, S.; Pevzner, P.A. UniNovo: A universal tool for de novo peptide sequencing. Bioinformatics 2013, 29, 1953–1962. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, L.; Shan, B.; Chen, W.; Xie, M.; Yuen, D.; Zhang, W.; Zhang, Z.; Lajoie, G.A.; Ma, B. PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteom. 2012, 11, M111.010587. [Google Scholar] [CrossRef]
- Pieri, M.; Lombardi, A.; Basilicata, P.; Mamone, G.; Picariello, G. Proteomics in forensic sciences: Identification of the nature of the last meal at autopsy. J. Proteome Res. 2018, 17, 2412–2420. [Google Scholar] [CrossRef]
- Yang, Y.; Shevchenko, A.; Knaust, A.; Abuduresule, I.; Li, W.; Hu, X.; Wang, C.; Shevchenko, A. Proteomics evidence for kefir dairy in Early Bronze Age China. J. Archaeol. Sci. 2014, 45, 178–186. [Google Scholar] [CrossRef]
- Keller, J.I.; Lima-Cordón, R.; Monroy, M.C.; Schmoker, A.M.; Zhang, F.; Howard, A.; Ballif, B.A.; Stevens, L. Protein mass spectrometry detects multiple bloodmeals for enhanced Chagas disease vector ecology. Infect. Genet. Evol. 2019, 74, 103998. [Google Scholar] [CrossRef] [PubMed]
- Mai, Z.-B.; Zhou, Z.-H.; He, Q.-Y.; Zhang, G. Highly robust de novo full-length protein sequencing. Anal. Chem. 2022, 94, 3467–3475. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.; Wang, H.; Liu, F.; Song, Y.; Lu, J.; Zhang, Y. Homo-Tag-Assembler Assay for Full-Length Antibody Sequencing. Anal. Chem. 2025, 97, 16525–16532. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, T.; Nunez de Villavicencio Diaz, T.; Reitzel, C.; Lange, V.; Park, M.; Beadle, E.; Wu, L.; Jovic, M.; Dubois, R.M.; Couzens, A.L.; et al. De novo protein sequencing of antibodies for identification of neutralizing antibodies in human plasma post SARS-CoV-2 vaccination. Nat. Commun. 2024, 15, 8790. [Google Scholar] [CrossRef]
- Muth, T.; Hartkopf, F.; Vaudel, M.; Renard, B.Y. A potential golden age to come—Current tools, recent use cases, and future avenues for de novo sequencing in proteomics. Proteomics 2018, 18, 1700150. [Google Scholar] [CrossRef]
- Muth, T.; Renard, B.Y. Evaluating de novo sequencing in proteomics: Already an accurate alternative to database-driven peptide identification? Brief. Bioinform. 2018, 19, 954–970. [Google Scholar] [CrossRef] [PubMed]
- Bozza, W.P.; Tolleson, W.H.; Rosado, L.A.R.; Zhang, B. Ricin detection: Tracking active toxin. Biotechnol. Adv. 2015, 33, 117–123. [Google Scholar] [CrossRef]
- Morsa, D.; Baiwir, D.; La Rocca, R.; Zimmerman, T.A.; Hanozin, E.; Grifnée, E.; Longuespée, R.; Meuwis, M.-A.; Smargiasso, N.; Pauw, E.D.; et al. Multi-enzymatic limited digestion: The next-generation sequencing for proteomics? J. Proteome Res. 2019, 18, 2501–2513. [Google Scholar] [CrossRef]
- Liang, L.-H.; Cheng, X.; Yu, H.-L.; Yang, Y.; Mu, X.-H.; Chen, B.; Li, X.-S.; Wu, J.-N.; Yan, L.; Liu, C.-C.; et al. Quantitative detection of ricin in beverages using trypsin/Glu-C tandem digestion coupled with ultra-high-pressure liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Schulte, D.; Snijder, J. A Handle on Mass Coincidence Errors in de Novo sequencing of antibodies by bottom-up proteomics. J. Proteome Res. 2024, 23, 3552–3559. [Google Scholar] [CrossRef]
- Worbs, S.; Skiba, M.; Söderström, M.; Rapinoja, M.-L.; Zeleny, R.; Russmann, H.; Schimmel, H.; Vanninen, P.; Fredriksson, S.-Å.; Dorner, B.G. Characterization of ricin and R. communis agglutinin reference materials. Toxins 2015, 7, 4906–4934. [Google Scholar] [CrossRef]
- Tran, N.H.; Rahman, M.Z.; He, L.; Xin, L.; Shan, B.; Li, M. Complete de novo assembly of monoclonal antibody sequences. Sci. Rep. 2016, 6, 31730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dubiak, K.M.; Huber, P.W.; Dovichi, N.J. Miniaturized filter-aided sample preparation (MICRO-FASP) method for high throughput, ultrasensitive proteomics sample preparation reveals proteome asymmetry in Xenopus laevis embryos. Anal. Chem. 2020, 92, 5554–5560. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, P.; Hong, J.; Li, N.; Zhang, Y.; Deng, Y. Deep Membrane Proteome Profiling of Rat Hippocampus in Simulated Complex Space Environment by SWATH. Space Sci. Technol. 2021, 2021, 9762372. [Google Scholar] [CrossRef]






| Ricin A Chain | Ricin B Chain | |||
|---|---|---|---|---|
| ALPS | HDPS | ALPS | HDPS | |
| Coverage | 100% | 100% | 100% | 100% |
| Accuracy | 95.88% | 98.13% | 95.80% | 98.47% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wang, H.; Wen, J.; Xu, J.; Zhu, S.; Wang, F.; Zhang, Y. Identification of Unknown Biological Toxin Proteins Using Mass Spectrometry: A Case Study on De Novo Sequencing of Ricin. Toxins 2025, 17, 564. https://doi.org/10.3390/toxins17110564
Song Y, Wang H, Wen J, Xu J, Zhu S, Wang F, Zhang Y. Identification of Unknown Biological Toxin Proteins Using Mass Spectrometry: A Case Study on De Novo Sequencing of Ricin. Toxins. 2025; 17(11):564. https://doi.org/10.3390/toxins17110564
Chicago/Turabian StyleSong, Yubo, Hao Wang, Junjie Wen, Jiale Xu, Siyu Zhu, Fuli Wang, and Yongqian Zhang. 2025. "Identification of Unknown Biological Toxin Proteins Using Mass Spectrometry: A Case Study on De Novo Sequencing of Ricin" Toxins 17, no. 11: 564. https://doi.org/10.3390/toxins17110564
APA StyleSong, Y., Wang, H., Wen, J., Xu, J., Zhu, S., Wang, F., & Zhang, Y. (2025). Identification of Unknown Biological Toxin Proteins Using Mass Spectrometry: A Case Study on De Novo Sequencing of Ricin. Toxins, 17(11), 564. https://doi.org/10.3390/toxins17110564

