Furosemide and the Symptom Burden: The Potential Mediating Role of Uremic Toxins in Patients with CKD
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Study Participants
2.2. Symptom Score Items at Baseline
2.3. Association Between the Furosemide Dose and the Symptom Score
2.4. The Mediating Effect of the Furosemide Dose on the Symptom Burden, via an Accumulation of Uremic Toxins
3. Discussion
4. Materials and Methods
4.1. Data Source and Population
4.2. Furosemide Prescription
4.3. Symptom Score
4.4. Serum Concentrations of UTs and Other Centralised Measurements
4.5. Covariates
4.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalantar-Zadeh, K.; Lockwood, M.B.; Rhee, C.M.; Tantisattamo, E.; Andreoli, S.; Balducci, A.; Laffin, P.; Harris, T.; Knight, R.; Kumaraswami, L.; et al. Patient-Centred Approaches for the Management of Unpleasant Symptoms in Kidney Disease. Nat. Rev. Nephrol. 2022, 18, 185–198. [Google Scholar] [CrossRef]
- Speyer, E.; Tu, C.; Zee, J.; Sesso, R.; Lopes, A.A.; Moutard, E.; Omorou, A.Y.; Stengel, B.; Finkelstein, F.O.; Pecoits-Filho, R.; et al. Symptom Burden and Its Impact on Quality of Life in Patients With Moderate to Severe CKD: The International Chronic Kidney Disease Outcomes and Practice Patterns Study (CKDopps). Am. J. Kidney Dis. 2024, 84, 696–707.e1. [Google Scholar] [CrossRef]
- Lockwood, M.B.; Lash, J.P.; Pauls, H.; Chung, S.Y.; Samra, M.; Ryan, C.; Park, C.; DeVon, H.; Bronas, U.G. Physical Symptom Cluster Subgroups in Chronic Kidney Disease. Nurs. Res. 2020, 69, 100–108. [Google Scholar] [CrossRef]
- Weisbord, S.D.; Fried, L.F.; Mor, M.K.; Resnick, A.L.; Unruh, M.L.; Palevsky, P.M.; Levenson, D.J.; Cooksey, S.H.; Fine, M.J.; Kimmel, P.L.; et al. Renal Provider Recognition of Symptoms in Patients on Maintenance Hemodialysis. Clin. J. Am. Soc. Nephrol. 2007, 2, 960. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.W.; Hostetter, T.H. Uremia. N. Engl. J. Med. 2007, 357, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Karu, N.; McKercher, C.; Nichols, D.S.; Davies, N.; Shellie, R.A.; Hilder, E.F.; Jose, M.D. Tryptophan Metabolism, Its Relation to Inflammation and Stress Markers and Association with Psychological and Cognitive Functioning: Tasmanian Chronic Kidney Disease Pilot Study. BMC Nephrol. 2016, 17, 171. [Google Scholar] [CrossRef]
- Sorgdrager, F.J.H.; Naudé, P.J.W.; Kema, I.P.; Nollen, E.A.; Deyn, P.P.D. Tryptophan Metabolism in Inflammaging: From Biomarker to Therapeutic Target. Front. Immunol. 2019, 10, 2565. [Google Scholar] [CrossRef]
- Khan, T.M.; Patel, R.; Siddiqui, A.H. Furosemide. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Novak, J.E.; Ellison, D.H. Diuretics in States of Volume Overload: Core Curriculum 2022. Am. J. Kidney Dis. 2022, 80, 264–276. [Google Scholar] [CrossRef]
- Wieling, W.; Kaufmann, H.; Claydon, V.E.; van Wijnen, V.K.; Harms, M.P.M.; Juraschek, S.P.; Thijs, R.D. Diagnosis and Treatment of Orthostatic Hypotension. Lancet Neurol. 2022, 21, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.; Sharma, S. Hypokalemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Overview of Electrolytes-Hormonal and Metabolic Disorders. Available online: https://www.msdmanuals.com/home/hormonal-and-metabolic-disorders/electrolyte-balance/overview-of-electrolytes (accessed on 28 March 2025).
- Do, C.; Vasquez, P.C.; Soleimani, M. Metabolic Alkalosis Pathogenesis, Diagnosis, and Treatment: Core Curriculum 2022. Am. J. Kidney Dis. 2022, 80, 536–551. [Google Scholar] [CrossRef]
- Costes-Albrespic, M.; Alencar De Pinho, N.; Larabi, I.A.; Chamieh, C.E.; Laville, S.M.; Fouque, D.; Laville, M.; Frimat, L.; Alvarez, J.-C.; Massy, Z.A.; et al. Furosemide and Serum Protein-Bound Uraemic Toxin Concentrations in Patients with CKD. Kidney Int. Rep. 2025, 10, 2165–2177. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ospina, D.; Cote, M.R.; Bellido, L.C.; Calero, M.I.S.; Prieto, B.H.; Cuesta, S.D.; Herrera-Gómez, F.; Mujika-Marticorena, M.; Gonzalez-Parra, E.; Ortiz, M.J.I.; et al. Loop Diuretics in Anuric Hemodialysis Patients for the Clearance of Protein-Bound Uremic Toxins. Clin. Kidney J. 2025, 18, sfaf195. [Google Scholar] [CrossRef]
- Wulczyn, K.E.; Shafi, T.; Anderson, A.; Rincon-Choles, H.; Clish, C.B.; Denburg, M.; Feldman, H.I.; He, J.; Hsu, C.; Kelly, T.; et al. Metabolites Associated With Uremic Symptoms in Patients With CKD: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2024, 84, 49–61.e1. [Google Scholar] [CrossRef] [PubMed]
- Graboski, A.L.; Redinbo, M.R. Gut-Derived Protein-Bound Uremic Toxins. Toxins 2020, 12, 590. [Google Scholar] [CrossRef]
- Massy, Z.A.; Chesnaye, N.C.; Larabi, I.A.; Dekker, F.W.; Evans, M.; Caskey, F.J.; Torino, C.; Porto, G.; Szymczak, M.; Drechsler, C.; et al. The Relationship between Uremic Toxins and Symptoms in Older Men and Women with Advanced Chronic Kidney Disease. Clin. Kidney J. 2021, 15, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Sallée, M.; Dou, L.; Cerini, C.; Poitevin, S.; Brunet, P.; Burtey, S. The Aryl Hydrocarbon Receptor-Activating Effect of Uremic Toxins from Tryptophan Metabolism: A New Concept to Understand Cardiovascular Complications of Chronic Kidney Disease. Toxins 2014, 6, 934–949. [Google Scholar] [CrossRef]
- Hazrati, E.; Eftekhar, S.P.; Mosaed, R.; Shiralizadeh Dini, S.; Namazi, M. Understanding the Kynurenine Pathway: A Narrative Review on Its Impact across Chronic Pain Conditions. Mol. Pain. 2024, 20, 17448069241275097. [Google Scholar] [CrossRef]
- Hamed, S.A. Neurologic Conditions and Disorders of Uremic Syndrome of Chronic Kidney Disease: Presentations, Causes, and Treatment Strategies. Expert Rev. Clin. Pharmacol. 2019, 12, 61–90. [Google Scholar] [CrossRef]
- Lai, Y.-R.; Cheng, B.-C.; Lin, C.-N.; Chiu, W.-C.; Lin, T.-Y.; Chiang, H.-C.; Kuo, C.-E.A.; Huang, C.-C.; Lu, C.-H. The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases. Antioxidants 2022, 11, 2350. [Google Scholar] [CrossRef]
- Oosting, I.J.; Colombijn, J.M.T.; Kaasenbrood, L.; Liabeuf, S.; Laville, S.M.; Hooft, L.; Bots, M.L.; Verhaar, M.C.; Vernooij, R.W.M. Polypharmacy in Patients with CKD. Kidney360 2024, 5, 841–850. [Google Scholar] [CrossRef]
- Sinha, A.D.; Agarwal, R. Clinical Pharmacology of Antihypertensive Therapy for the Treatment of Hypertension in CKD. CJASN 2019, 14, 757–764. [Google Scholar] [CrossRef]
- Spertus, J.A.; Jones, P.G.; Sandhu, A.T.; Arnold, S.V. Interpreting the Kansas City Cardiomyopathy Questionnaire in Clinical Trials and Clinical Care. JACC 2020, 76, 2379–2390. [Google Scholar] [CrossRef]
- Greene, S.J.; Velazquez, E.J.; Anstrom, K.J.; Clare, R.M.; DeWald, T.A.; Psotka, M.A.; Ambrosy, A.P.; Stevens, G.; Rommel, J.J.; Alexy, T.; et al. Effect of Torsemide vs Furosemide on Symptoms and Quality of Life Among Patients Hospitalized for Heart Failure: The TRANSFORM-HF Randomized Clinical Trial. Circulation 2023, 148, 124–134. [Google Scholar] [CrossRef]
- Stengel, B.; Combe, C.; Jacquelinet, C.; Briancon, S.; Fouque, D.; Laville, M.; Frimat, L.; Pascal, C.; Herpe, Y.-E.; Deleuze, J.-F.; et al. The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) Cohort Study. Nephrol. Dial. Transplant. 2014, 29, 1500–1507. [Google Scholar] [CrossRef] [PubMed]
- Buggey, J.; Mentz, R.J.; Pitt, B.; Eisenstein, E.L.; Anstrom, K.J.; Velazquez, E.J.; O’Connor, C.M. A Reappraisal of Loop Diuretic Choice in Heart Failure Patients. Am. Heart J. 2015, 169, 323–333. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Mazzeo, P.; Fortunato, M.; Cadeddu Dessalvi, C.; Mariano, E.; Salzano, A.; Severino, P.; Fedele, F. The Changing Role of Loop Diuretics in Heart Failure Management across the Last Century. J. Clin. Med. 2024, 13, 1674. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, J.J.; Clark, A.L. Diuretic Treatment in Patients with Heart Failure: Current Evidence and Future Directions–Part I: Loop Diuretics. Curr. Heart Fail Rep. 2024, 21, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Kjekshus, J.; Wikstrand, J.; Cleland, J.G.F.; Komajda, M.; Wedel, H.; Waagstein, F.; McMurray, J.J.V. Loop Diuretics, Renal Function and Clinical Outcome in Patients with Heart Failure and Reduced Ejection Fraction. Eur. J. Heart Fail. 2016, 18, 328–336. [Google Scholar] [CrossRef]
- Virkud, A.V.; Chang, P.P.; Funk, M.J.; Kshirsagar, A.V.; Edwards, J.K.; Pate, V.; Kosorok, M.R.; Gower, E.W. Comparative Effect of Loop Diuretic Prescription on Mortality and Heart Failure Readmission. Am. J. Cardiol. 2024, 210, 208–216. [Google Scholar] [CrossRef]
- Täger, T.; Fröhlich, H.; Grundtvig, M.; Seiz, M.; Schellberg, D.; Goode, K.; Kazmi, S.; Hole, T.; Katus, H.A.; Atar, D.; et al. Comparative Effectiveness of Loop Diuretics on Mortality in the Treatment of Patients with Chronic Heart Failure-A Multicenter Propensity Score Matched Analysis. Int. J. Cardiol. 2019, 289, 83–90. [Google Scholar] [CrossRef]
- Mentz, R.J.; Anstrom, K.J.; Eisenstein, E.L.; Sapp, S.; Greene, S.J.; Morgan, S.; Testani, J.M.; Harrington, A.H.; Sachdev, V.; Ketema, F.; et al. Effect of Torsemide vs Furosemide After Discharge on All-Cause Mortality in Patients Hospitalized With Heart Failure: The TRANSFORM-HF Randomized Clinical Trial. JAMA 2023, 329, 214–223. [Google Scholar] [CrossRef]
- Li, X.; Si, J.; Liu, Y.; Xu, D. Real World Experience in Effect of Torsemide vs. Furosemide after Discharge in Patients with HFpEF. ESC Heart Fail. 2025, 12, 71–79. [Google Scholar] [CrossRef] [PubMed]
- De La Flor, J.C.; Coto Morales, B.; Basabe, E.; Rey Hernandez, M.; Zamora González-Mariño, R.; Rodríguez Tudero, C.; Benites Flores, I.; Espinoza, C.; Cieza Terrones, M.; Cigarrán Guldris, S.; et al. Effects of Sodium-Glucose Cotransporter-2 Inhibitors on Body Composition and Fluid Status in Cardiovascular Rehabilitation Patients with Coronary Artery Disease and Heart Failure. Medicina 2024, 60, 2096. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-K.; Chang, L.-C.; Chen, Y.-T.; Chen, C.-Y.; Hsu, H.-R.; Bai, S.; Lee, C.-C.; Jangir, H.; Sun, C.-Y.; Su, S.-C.; et al. Effects of SGLT2 Inhibitors on Modulating Protein-Bound Uremic Toxins and Gut Microbiota in Pre-Dialysis CKD Patients: A Matched Case-Control Study. Kidney360 2025, 6, 1472–1481. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, B.R.; Damery, S.; Aiyegbusi, O.L.; Anderson, N.; Calvert, M.; Cockwell, P.; Ferguson, J.; Horton, M.; Paap, M.C.S.; Sidey-Gibbons, C.; et al. Symptom Burden and Health-Related Quality of Life in Chronic Kidney Disease: A Global Systematic Review and Meta-Analysis. PLoS Med. 2022, 19, e1003954. [Google Scholar] [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC Classification and Defined Daily Dose Assignment 2024, 27th ed.; Norwegian Institute of Public Health: Oslo, Norway, 2023; Available online: https://atcddd.fhi.no/filearchive/publications/2024_guidelines__final_web.pdf (accessed on 27 October 2025).
- Hays, R.D.; Kallich, J.D.; Mapes, D.L.; Coons, S.J.; Carter, W.B. Development of the Kidney Disease Quality of Life (KDQOL) Instrument. Qual. Life Res. 1994, 3, 329–338. [Google Scholar] [CrossRef]
- Fabresse, N.; Uteem, I.; Lamy, E.; Massy, Z.; Larabi, I.A.; Alvarez, J.-C. Quantification of Free and Protein Bound Uremic Toxins in Human Serum by LC-MS/MS: Comparison of Rapid Equilibrium Dialysis and Ultrafiltration. Clin. Chim. Acta 2020, 507, 228–235. [Google Scholar] [CrossRef]
- Sumida, K.; Nadkarni, G.N.; Grams, M.E.; Sang, Y.; Ballew, S.H.; Coresh, J.; Matsushita, K.; Surapaneni, A.; Brunskill, N.; Chadban, S.J.; et al. Conversion of Urine Protein–Creatinine Ratio or Urine Dipstick Protein to Urine Albumin–Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis: An Individual Participant–Based Meta-Analysis. Ann. Intern. Med. 2020, 173, 426–435. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Smithson, M.; Verkuilen, J. A Better Lemon Squeezer? Maximum-Likelihood Regression with Beta-Distributed Dependent Variables. Psychol. Methods 2006, 11, 54–71. [Google Scholar] [CrossRef]
- Rosseel, Y. Lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Buuren, S.V.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Von Hippel, P.T. How Many Imputations Do You Need? A Two-Stage Calculation Using a Quadratic Rule. Sociol. Methods Res. 2020, 49, 699–718. [Google Scholar] [CrossRef] [PubMed]


| Potential Symptoms Furosemide Effect | Soreness in Muscle | Cramps | Dry Skin | Itchy Skin * | Nausea or Upset Stomach | Lack of Appetite | Faintness or Dizziness | Numbness in Hands or Feet |
|---|---|---|---|---|---|---|---|---|
| Hypotension | x | x | ||||||
| Metabolic Alkalosis | x | x | x | x | x | x | x | |
| Dehydration (including hypernatremia) | x | x | x | x | x | |||
| Hypokalaemia | x | x | x | |||||
| Hypocalcaemia | x | x | ||||||
| Hypomagnesemia | x | x | x | |||||
| Hyperuricemia | x | x | x | x |
| Characteristic | Overall N = 2053 | Furosemide Prescription | Missing Data (N, %) | |||
|---|---|---|---|---|---|---|
| None N = 1357 | 10–40 mg/day N = 400 | 60–120 mg/day N = 165 | >120 mg/day N = 131 | |||
| Age (years), median [IQR] | 68 [61; 76] | 67 [58; 74] | 71 [65; 79] | 72 [66; 80] | 71 [67; 77] | 0, 0% |
| Men | 1358 (66%) | 886 (65%) | 264 (66%) | 114 (69%) | 94 (72%) | 0, 0% |
| Smoker | 232 (11%) | 164 (12%) | 39 (10%) | 17 (10%) | 12 (9%) | 11, 0.5% |
| eGFR (mL/min/1.73 m2), mean (SD) | 35 (13) | 37 (13) | 31 (12) | 29 (11) | 28 (11) | 11, 0.5% |
| Albumin-to-creatinine ratio (mg/g), median [IQR] | 104 [20; 496] | 81 [17; 455] | 133 [24; 531] | 207 [34; 768] | 230 [42; 778] | 305, 15% |
| Diabetes | 818 (40%) | 423 (31%) | 197 (49%) | 102 (62%) | 96 (73%) | 5, 0.2% |
| Cardiovascular history | 1067 (52%) | 559 (41%) | 272 (68%) | 124 (76%) | 112 (85%) | 12, 0.6% |
| Coronary artery disease | 489 (24%) | 225 (17%) | 129 (33%) | 73 (45%) | 62 (48%) | 16, 0.8% |
| Heart failure | 261 (13%) | 73 (5%) | 76 (19%) | 46 (28%) | 66 (50%) | 3, 0.1% |
| Cerebrovascular disease | 220 (11%) | 122 (9%) | 47 (12%) | 28 (17%) | 23 (18%) | 17, 0.8% |
| Peripheral artery disease | 320 (16%) | 151 (11%) | 91 (23%) | 43 (26%) | 35 (27%) | 15, 0.7% |
| Obesity (BMI ≥ 30 kg/m2) | 711 (35%) | 362 (27%) | 175 (45%) | 85 (52%) | 89 (68%) | 35, 1.7% |
| C-reactive protein (mg/L), median [IQR] | 2.3 [1.1; 5.0] | 2.0 [0.9; 4.2] | 2.6 [1.3; 5.4] | 2.8 [1.5; 6.7] | 5.1 [2.0; 9.1] | 105, 5.1% |
| Serum albumin (g/L), mean (SD) | 41.0 [38.5; 43.3] | 41.3 [39.0; 43.6] | 40.6 [37.9; 42.7] | 40.0 [37.5; 42.5] | 39.0 [35.6; 41.5] | 7, 0.3% |
| Haemoglobin (g/dL), mean (SD) | 13.09 (1.66) | 13.29 (1.62) | 12.78 (1.79) | 12.90 (1.47) | 12.35 (1.57) | 30, 1.5% |
| Serum potassium (mmol/L) | 4.53 (0.51) | 4.54 (0.50) | 4.61 (0.54) | 4.45 (0.51) | 4.29 (0.51) | 6, 0.3% |
| Serum calcium (mmol/L) | 2.35 (0.13) | 2.36 (0.12) | 2.35 (0.14) | 2.34 (0.14) | 2.29 (0.18) | 66, 3.2% |
| Number of drugs prescribed, median [IQR] | 8 [5; 10] | 6 [4; 9] | 9 [8; 12] | 10 [8; 13] | 12 [9; 14] | 8, 0.4% |
| Uremic toxins, median [IQR] | ||||||
| Indoxyl sulphate (µM) | 0.24 [0.13; 0.44] | 0.21 [0.12; 0.38] | 0.28 [0.16; 0.50] | 0.33 [0.17; 0.63] | 0.45 [0.23; 0.80] | 0, 0% |
| Kynurenine (µM) | 0.61 [0.43; 0.86] | 0.56 [0.40; 0.79] | 0.71 [0.51; 0.94] | 0.75 [0.55; 0.96] | 0.85 [0.59; 1.22] | 0, 0% |
| P-cresyl sulphate (µM) | 0.99 [0.45; 1.90] | 0.82 [0.37; 1.57] | 1.33 [0.65; 2.19] | 1.36 [0.86; 2.93] | 1.65 [0.80; 3.46] | 0, 0% |
| Indole-3-Acetic Acid (µM) | 0.18 [0.13; 0.29] | 0.18 [0.13; 0.27] | 0.18 [0.14; 0.29] | 0.22 [0.14; 0.33] | 0.26 [0.17; 0.35] | 0, 0% |
| ∑UTs (µM) | 2.15 [1.37; 3.51] | 1.85 [1.22; 3.02] | 2.57 [1.68; 4.23] | 2.87 [1.97; 4.67] | 3.44 [2.28; 5.30] | 0, 0% |
| 8-item symptom score, median [IQR] | 78 [69; 88] | 81 [69; 91] | 78 [65; 88] | 75 [66; 84] | 72 [59; 81] | 0, 0% |
| 11-item symptom score, median [IQR] | 80 [66; 89] | 80 [68; 89] | 77 [64; 86] | 73 [61; 84] | 68 [58; 80] | 0, 0% |
| Furosemide Dose Category | Furosemide Dose Category + ∑PBUTs | |
|---|---|---|
| Exp (Estimate) (95%CI), Reference: No Furosemide Prescription | ||
| Crude | ||
| 10–40 mg/day | 0.90 (0.81–0.99) | 0.94 (0.85–1.04) |
| 60–120 mg/day | 0.80 (0.69–0.92) | 0.84 (0.73–0.97) |
| >120 mg/day | 0.57 (0.49–0.67) | 0.62 (0.53–0.72) |
| Adjusted * | ||
| 10–40 mg/day | 1.04 (0.94–1.16) | 1.05 (0.94–1.16) |
| 60–120 mg/day | 0.94 (0.81–1.09) | 0.95 (0.82–1.10) |
| >120 mg/day | 0.73 (0.62–0.87) | 0.74 (0.62–0.88) |
| Predicted absolute difference (95%CI) | ||
| Adjusted * | ||
| None—10–40 mg/day ** | −0.69 (−2.92–1.54) | −0.76 (−2.99–1.47) |
| None—60–120 mg/day ** | 1.01 (−2.34–4.35) | 0.91 (−2.43–4.24) |
| None—>120 mg/day ** | 5.67 (1.41–9.93) | 5.48 (1.22–9.74) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costes-Albrespic, M.; Liabeuf, S.; Larabi, I.-A.; Laville, S.M.; Stengel, B.; Omorou, A.Y.; Frimat, L.; Alvarez, J.-C.; Massy, Z.A.; Alencar de Pinho, N.; et al. Furosemide and the Symptom Burden: The Potential Mediating Role of Uremic Toxins in Patients with CKD. Toxins 2025, 17, 541. https://doi.org/10.3390/toxins17110541
Costes-Albrespic M, Liabeuf S, Larabi I-A, Laville SM, Stengel B, Omorou AY, Frimat L, Alvarez J-C, Massy ZA, Alencar de Pinho N, et al. Furosemide and the Symptom Burden: The Potential Mediating Role of Uremic Toxins in Patients with CKD. Toxins. 2025; 17(11):541. https://doi.org/10.3390/toxins17110541
Chicago/Turabian StyleCostes-Albrespic, Margaux, Sophie Liabeuf, Islam-Amine Larabi, Solène M. Laville, Bénédicte Stengel, Abdou Y. Omorou, Luc Frimat, Jean-Claude Alvarez, Ziad A. Massy, Natalia Alencar de Pinho, and et al. 2025. "Furosemide and the Symptom Burden: The Potential Mediating Role of Uremic Toxins in Patients with CKD" Toxins 17, no. 11: 541. https://doi.org/10.3390/toxins17110541
APA StyleCostes-Albrespic, M., Liabeuf, S., Larabi, I.-A., Laville, S. M., Stengel, B., Omorou, A. Y., Frimat, L., Alvarez, J.-C., Massy, Z. A., Alencar de Pinho, N., & the CKD-REIN Study Group. (2025). Furosemide and the Symptom Burden: The Potential Mediating Role of Uremic Toxins in Patients with CKD. Toxins, 17(11), 541. https://doi.org/10.3390/toxins17110541

