Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications
Abstract
:1. Introduction
2. Overview of Conventional Therapeutic Applications and Formulations
2.1. A Wide Range of Conventional Therapeutic Applications
2.2. Variability in the BoNT Formulations
1822 | Justinus Kerner | Sausage poison (envisioned therapeutic potential) |
1870 | Müller | Disease called “botulism” (Latin: botulus meaning sausage) |
1895 | Van Ermengem | Clostridium botulinum (microorganism causing botulism) |
1919 | G.S. Burke | Minimum lethal dose established in guinea pigs |
1928 | Herman Sommer | Isolation and purification of BoNT |
1946 | Carl Lamanna Edward Schantz | Neurotoxin activity determined using the LD50 test BTA produced in the crystalline form |
1949 | Arnold Burgen | BoNT induces the blockade of the neuromuscular transmission |
1950 | Vernon Brooks | BoNT/A: -blockade of acetylcholine from motor nerve endings |
1960s | Schantz/Scott | BoNT/A to treat strabismus in monkeys |
1980 | Scott | BoNT/A to treat strabismus in humans |
1987 | Drs. Jean and Alastair Carruthers | Ophthalmologists treating patients for involuntary blinking discover the cosmetic benefits of BoNT/A |
1988 | Allergan | First clinical trial on Oculinum (BoNT/A) |
1989 | FDA Allergan | First official indications: strabismus, blepharospasm, hemifacial spasm, and dystonia Allergan buys and renames Oculinum as Botox® |
1990 | MHRA | Dysport® (abobotulinumtoxinA, Ipsen) (~) approval for dystonia |
1993 | Montecucco and Schiavo | SNAP-25 is the molecular target of BoNT/A |
1995 | MHRA | Dysport® (abobotulinumtoxinA, Ipsen, Wrexham, UK) approval for strabismus in the UK [63] |
1997 | China | Approval of Lantox® (lanbotulinum toxin A, Lanzhou Institute of Biological Products, Lanzhou, China) for strabismus, blepharospasm, and hemifacial spasm. |
1999 | FDA | (New) Botox® (onabotulinumtoxinA, Allergan, Irvine, CA, USA) approval for cervical dystonia |
2000 | FDA | First BoNT/B: NeuroBloc® approved for cervical dystonia |
2002 | FDA | Botox® approved for cosmetic uses as Botox Cosmetics® (Australia, Switzerland, Taiwan, and Singapore) Lantox® approval in Republic of Korea |
2003 | AFSSAPS | Botox product approved under Vistabel® name (France) |
2004 | FDA | Botox® approved for primary axillary hyperhidrosis |
2005 | EMA | Xeomin® (incobotulinumtoxinA, Merz, Frankfurt, Germany) approved for blepharospasm and cervical dystonia in adults (Germany). |
2006 | MHRA | Botox® approved under the name Vistabel® for glabellar lines |
2006 | Korean FDA | Neuronox® (MedyTox, Seoul, Republic of Korea) approved for blepharospasm (Meditoxin®, Botulift®, Cunox®) |
2007 | India | Approves Boto genie® (Bio-med Ltd., Ghaziabad, India) |
2009 | MHRA FDA | Azzalure® approval for treatment of glabellar lines Dysport® (Abobotulinum) approved for glabellar lines and cervical dystonia |
2010 | FDA | Botox® approval for adult upper limb spasticity Xeomin® (Incobotulinum) approval for cervical dystonia and blepharospasm |
2011 | FDA | Botox® approval for chronic migraine and urinary incontinence Xeomin® (incobotulinumtoxinA) approval as Bocouture® for glabellar lines in adult patients |
2012 | NHS UK China | Botox® approval for chronic migraine Lantox® approval for glabellar frown lines BoNT/A-specific cell-based potency assay to replace the mouse bioassay [64] |
2013 | Korean FDA FDA Japan | Nabota® (Daewoongs Pharmaceuticals, Hwaseong, Republic of Korea) approval Evosyal®, Daewong/Evolus-Alphaeon R. Korea/USA Botox® approval for overactive bladder Nerbloc® (Eisai, Tokyo, Japan) approval |
2014 | China Korea | CBTX-A approved as Lantox® and Prosigne® (Lanzhou Institute of Biological Products, Lanzhou, China) (Hengli®, Lanzox®, CBTX-A®, Redux®, Liftox®, Dituroxal®) Botulax®, Zentox®, Regenox® (Hugel Pharma, Gangwon-do, Republic of Korea) |
2015 | FDA EMA | Xeomin® (incobotulinumtoxinA) and Dysport® (AbobotulinumtoxinA) approval for adult upper limb spasticity Approves Bocouture® for combined upper facial lines |
2016 | Korean FDA FDA | Approval of Coretox® (Medytox, no complexing proteins, no biological excipients) Approval of Dysport® for children lower limb spasticity |
2017 | FDA and EMA, Russia | Botox® and Dysport® approval for adult lower limb spasticity Relatox® approval (Microgen, Moscow, Russia) |
2018 | FDA | Approval of Botox® for forehead wrinkles and Xeomin® for sialorrhea |
2019 | FDA | Approval of Botox® for paediatric upper limb spasticity Approval of Jeuveau® (Nabota) for glabellar lines Approval of Neuronox ® for glabellar lines Approval of Botulax® by PDUFA (Hugel R., Gangwon-d, Korea BT-A, Botox® analogue) |
2022 | FDA | Approval of RT002 (DaxibotulinumtoxinA) for glabellar lines Revance Therapeutics (Nashville, TN, USA) |
2022 | Korean FDA | Masport® Masoundarou I.R. Iran BT-A, Dysport® analogue CosmeTox® Transdermal USA BT-A, creme Lantox® registered in Republic of Korea. EB-001 BONTi/Allergan (Irvine, CA, USA) BT-E |
2023 | FDA | MCL005 Malvern Cosmeceuticals UK BT-A, topic gel ANT-1207 Anterios/Allergan USA BT-A, lotion DaxibotulinumtoxinA (Daxxify®, Revance, Nashville, TN, USA) is a novel BoNTA preparation for cervical dystonia |
2024 | FDA | Approves Letybo® (Hugel, Gangwon-do, Republic of Korea) |
Abo-Botulinum-Toxin A (Dysport®) | Inco-Botulinum-Toxin A (Xeomin®) | Ona-Botulinum-Toxin A (Botox®) | Rima-Botulinum-Toxin B (Myobloc®/Neurobloc®) | Pra-Botulinum-Toxin A (Nabota®) | Leti-Botulinum Toxin A (Botulax®) | Daxibotulinum-Toxin A (Daxxify®) | |
---|---|---|---|---|---|---|---|
Toxinotype | A1 | A1 | A1 | B | A1 | A1 | A1 |
Strain | Hall | Hall | Hall | Bean | Hall | CBFC26 | Hall |
Complex Size | >500 kD | 150 kD | 900 kD | 700 kD | 900 kD | 900 kD | 150 kD |
Excipients | HSA (125 µg) Lactose | HSA (1 mg) Sucrose | HSA (500 µg) Sodium chloride | HSA (500 µg/mL) Sodium succinate Sodium chloride | HSA (500 µg/mL) Sodium Chloride 0.9 mg | HSA (250 µg) Sodium chloride 0.9 mg | RTP004 peptide 11.7 µg, L-histidine (0.14 mg), L-histidine-HCl monohydrate (0.65 mg), polysorbate 20 (0.1 mg), Trehalose dihydrate (36 mg). |
Solubilization | Saline solution | Saline solution | Saline solution | N/A | Saline solution | Saline solution | |
pH | 7 | 7 | 7 | 5.6 | 5.5 | ||
Units/vial | 300, 500 | 100, 200 | 100, 200 | 2500, 5000, 10,000 | 100 | 100, 200 | 50, 100 |
Shelf life (Months) | 24 | 36 | 36 | 24 | 36 | 24 | |
Protein content (ng/vial) | 4.35 | 0.6 | 5 | 25, 50, 100 |
Name | Other Name | Toxinotype | Indications | Status | Origin |
---|---|---|---|---|---|
Prabotulinumtoxin A | ABP-450 | BoNT/A1 | Migraine, cervical distonia | Phase 2 | AEON Biopharma, Irvine, CA, USA |
Neubotulinumtoxin A | none | BoNT/A1 | Primary axillary hyperhidrosis, cervical distonia | Phase 3 | Medytox, Inc., Seoul, Republic of Korea |
Letibotulinumtoxin A | none | BoNT/A1 | Glabellar Lines | Phase 3 | Hugel Inc., Seoul, Republic of Korea |
Relabotulinumtoxin A | QM-1114 | BoNT/A1 | Glabellar lines and lateral canthal lines | Phase 3 | Galderma, Courbevoie, France |
Nivobotulinumtoxin A | Innotox | BoNT/A1 | Glabellar Lines | Approved in Korea | Medytox, Inc., Seoul, Republic of Korea |
Trenibotulinumtoxin E | none | BoNT/E | Glabellar Lines | Phase 3 | Allergan Aesthetics, Irvine, CA, USA |
A2NTX | none | BoNT/A2 | Cervical distonia | Phase 1 | Shionogi Pharma, Osaka, Osaka, Japan |
IPN10200 | none | Engineered A/B | Adult upper limb spasticity; upper facial lines | Phase 2 | Ipsen Pharma, Paris, France |
Gemibotulinumtoxin A | none | BoNT/A1 | Post-operative atrial fibrillation | Phase 2 | AbbVie, North Chicago, IL, USA |
Daxibotulinumtoxin A | none | BoNT/A1 | Adult upper limb spasticity; migraine | Phase 2 | Revance, Nashville, TN, USA |
3. An Expanding Range of Indications
3.1. Urology
3.1.1. Neurogenic Detrusor Overactivity (NDO)
3.1.2. Overactive Bladder
3.2. Off-Label Uses
3.2.1. Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS)
3.2.2. Female Sexual Dysfunctions
3.2.3. Erectile Dysfunctions
3.2.4. Acute Dysmenorrhoea and Pelvic Pain Syndrome
3.2.5. Chronic Pain
3.2.6. Trigeminal Neuralgia
3.2.7. Low Back Pain, Sciatica, and Pyalgia
3.2.8. Arthropathy
3.2.9. Benefits of BoNT Injections in Cancer Therapies
4. Exploration of Therapeutic Potential of BoNTs Toxinotypes or Subtypes
4.1. Variability between Toxinotypes
4.2. Variability between BoNT Subtypes
5. Modelling BoNTs for Non-Neuronal Targeting
6. Future Approaches and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erbguth, F.J.; Naumann, M. Historical aspects of botulinum toxin: Justinus Kerner (1786–1862) and the “sausage poison”. Neurology 1999, 53, 1850–1853. [Google Scholar] [CrossRef] [PubMed]
- van Ermengem, E. A New Anaerobic Bacillus and Its Relation to Botulism. Rev. Infect. Dis. 1979, 1, 701–719. [Google Scholar] [CrossRef] [PubMed]
- Popoff, M.R. Botulinum toxins, Diversity, Mode of Action, Epidemiology of Botulism in France. In Botulinum Toxin; Nikolay, S., Ed.; IntechOpen: London, UK, 2018; pp. 1–28. [Google Scholar]
- Scott, A.B.; Magoon, E.H.; McNeer, K.W.; Stager, D.R. Botulinum treatment of strabismus in children. Trans. Am. Ophthalmol. Soc. 1989, 87, 174–180, discussion 80–84. [Google Scholar] [PubMed]
- Chaddock, J.A. Future Developments: Engineering the Neurotoxin. In Clinical Applications of Botulinum Neurotoxin; Foster, K.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 177–192. [Google Scholar]
- Mazuet, C.; Legeay, C.; Sautereau, J.; Ma, L.; Bouchier, C.; Bouvet, P.; Popoff, M. Diversity of Group I and II Clostridium botulinum Strains from France Including Recently Identified Subtypes. Genome Biol. Evol. 2016, 8, 1643–1660. [Google Scholar] [CrossRef] [PubMed]
- Aureli, P.; Fenicia, L.; Pasolini, B.; Gianfranceschi, M.; McCroskey, L.M.; Hatheway, C.L. Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J. Infect. Dis. 1986, 154, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum toxin as a biological weapon: Medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Hatheway, C.L. Toxigenic clostridia. Clin. Microbiol. Rev. 1990, 3, 66–98. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Seveso, M.; Caccin, P.; Schiavo, G.; Montecucco, C. Tetanus and botulinum neurotoxins: Turning bad guys into good by research. Toxicon 2001, 39, 27–41. [Google Scholar] [CrossRef]
- Rigoni, M.; Caccin, P.; Johnson, E.A.; Montecucco, C.; Rossetto, O. Site-directed mutagenesis identifies active-site residues of the light chain of botulinum neurotoxin type A. Biochem. Biophys. Res. Commun. 2001, 288, 1231–1237. [Google Scholar] [CrossRef]
- Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000, 80, 717–766. [Google Scholar] [CrossRef]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Montecucco, C.; Schiavo, G. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 1995, 28, 423–472. [Google Scholar] [CrossRef] [PubMed]
- Montal, M. Botulinum neurotoxin: A marvel of protein design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Montal, M. Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. Toxicon 2013, 75, 101–107. [Google Scholar] [CrossRef]
- Muraro, L.; Tosatto, S.; Motterlini, L.; Rossetto, O.; Montecucco, C. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem. Biophys. Res. Commun. 2009, 380, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Herreros, J.; Schiavo, G. Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. Int. J. Med. Microbiol. 2002, 291, 447–453. [Google Scholar] [CrossRef]
- Lalli, G.; Herreros, J.; Osborne, S.L.; Montecucco, C.; Rossetto, O.; Schiavo, G. Functional characterisation of tetanus and botulinum neurotoxins binding domains. J. Cell Sci. 1999, 112 Pt 16, 2715–2724. [Google Scholar] [CrossRef]
- Collins, M.D.; East, A.K. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J. Appl. Microbiol. 1998, 84, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Jin, R. Assembly and function of the botulinum neurotoxin progenitor complex. Curr. Top. Microbiol. Immunol. 2013, 364, 21–44. [Google Scholar]
- Lee, K.; Zhong, X.; Gu, S.; Kruel, A.M.; Dorner, M.B.; Perry, K.; Rummel, A.; Dong, M. and R. Jin Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 2014, 344, 1405–1410. [Google Scholar] [CrossRef]
- Fujinaga, Y.; Matsumura, T.; Jin, Y.; Takegahara, Y.; Sugawara, Y. A novel function of botulinum toxin-associated proteins: HA proteins disrupt intestinal epithelial barrier to increase toxin absorption. Toxicon 2009, 54, 583–586. [Google Scholar] [CrossRef]
- Aoki, K.R. Pharmacology and immunology of botulinum toxin serotypes. J. Neurol. 2001, 248 (Suppl. S1), 3–10. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.P.; Barbieri, J.T. Light Chain Diversity among the Botulinum Neurotoxins. Toxins 2018, 10, 268. [Google Scholar] [CrossRef]
- Smith, L.A.; Rusnak, J.M. Botulinum neurotoxin vaccines: Past, present, and future. Crit. Rev. Immunol. 2007, 27, 303–318. [Google Scholar] [CrossRef]
- Peck, M.W.; Stringer, S.C.; Carter, A.T. Clostridium botulinum in the post-genomic era. Food Microbiol. 2011, 28, 183–191. [Google Scholar] [CrossRef]
- Barash, J.R.; Arnon, S.S. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J. Infect. Dis. 2014, 209, 183–191. [Google Scholar] [CrossRef]
- Dover, N.; Barash, J.R.; Hill, K.K.; Xie, G.; Arnon, S.S. Molecular characterization of a novel botulinum neurotoxin type H gene. J. Infect. Dis. 2014, 209, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Maslanka, S.E.; Luquez, C.; Dykes, J.K.; Tepp, W.H.; Pier, C.L.; Pellett, S.; Raphael, B.; Kalb, S.R.; Barr, J.R.; Rao, A.; et al. A Novel Botulinum Neurotoxin, Previously Reported as Serotype H, Has a Hybrid-Like Structure with Regions of Similarity to the Structures of Serotypes A and F and Is Neutralized with Serotype A Antitoxin. J. Infect. Dis. 2016, 213, 379–385. [Google Scholar] [CrossRef]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.; Martínez-Carranza, M.; Dong, M. and P. Stenmark. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 14130. [Google Scholar] [CrossRef]
- Zhang, S.; Lebreton, F.; Mansfield, M.J.; Miyashita, S.I.; Zhang, J.; Schwartzman, J.A.; Tao, L.; Masuyer, G.; Martínez-Carranza, M.; Stenmark, P.; et al. Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host Microbe 2018, 23, 169–176.e6. [Google Scholar] [CrossRef] [PubMed]
- Contreras, E.; Masuyer, G.; Qureshi, N.; Chawla, S.; Dhillon, H.S.; Lee, H.L.; Chen, J.; Stenmark, P.; Gill, S. A neurotoxin that specifically targets Anopheles mosquitoes. Nat. Commun. 2019, 10, 2869. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.W.T.; Lobb, B.; Mansfield, M.; Zhen, W.; Tan, H.; Wu, Z.; Pellett, S.; Dong, M.; Doxey, A.C. Identification of divergent botulinum neurotoxin homologs in Paeniclostridium ghonii. bioRxiv 2022. [Google Scholar] [CrossRef]
- Guo, J.; Pan, X.; Zhao, Y.; Chen, S. Engineering Clostridia Neurotoxins with elevated catalytic activity. Toxicon 2013, 74, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Masuyer, G.; Zhang, S.; Barkho, S.; Shen, Y.; Henriksson, L.; Kosenina, S.; Dong, M.; Stenmark, P. Structural characterisation of the catalytic domain of botulinum neurotoxin X-high activity and unique substrate specificity. Sci. Rep. 2018, 8, 4518. [Google Scholar] [CrossRef] [PubMed]
- Gregg, B.M.; Matsumura, T.; Wentz, T.G.; Tepp, W.H.; Bradshaw, M.; Stenmark, P.; Johnson, E.A.; Fujinaga, Y.; Pellett, S. Botulinum neurotoxin X lacks potency in mice and in human neurons. mBio 2024, 15, e0310623. [Google Scholar] [CrossRef] [PubMed]
- Zornetta, I.; Azarnia Tehran, D.; Arrigoni, G.; Anniballi, F.; Bano, L.; Leka, O.; Zanotti, G.; Binz, T.; Montecucco, C. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci. Rep. 2016, 6, 30257. [Google Scholar] [CrossRef]
- Smith, T.J.; Schill, K.M.; Williamson, C.H.D. Navigating the Complexities Involving the Identification of Botulinum Neurotoxins (BoNTs) and the Taxonomy of BoNT-Producing Clostridia. Toxins 2023, 15, 545. [Google Scholar] [CrossRef] [PubMed]
- Schantz, E.J.; Johnson, E.A. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol. Rev. 1992, 56, 80–99. [Google Scholar] [CrossRef]
- Scott, A.B.; Honeychurch, D.; Brin, M.F. Early development history of Botox (onabotulinumtoxinA). Medicine 2023, 102, e32371. [Google Scholar] [CrossRef]
- Ting, P.T.; Freiman, A. The story of Clostridium botulinum: From food poisoning to Botox. Clin. Med. 2004, 4, 258–261. [Google Scholar] [CrossRef]
- Dressler, D. Botulinum toxin therapy: Its use for neurological disorders of the autonomic nervous system. J. Neurol. 2013, 260, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D. Botulinum toxin drugs: Brief history and outlook. J. Neural Transm. 2016, 123, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Medical therapy and botulinum toxin in dystonia. Adv. Neurol. 1998, 78, 169–183. [Google Scholar] [PubMed]
- Jankovic, J.; Brin, M.F. Therapeutic uses of botulinum toxin. N. Engl. J. Med. 1991, 324, 1186–1194. [Google Scholar] [PubMed]
- Fonfria, E.; Maignel, J.; Lezmi, S.; Martin, V.; Splevins, A.; Shubber; SKalinichev, M.; Foster, K.; Picaut, P.; Krupp, J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins 2018, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Laing, T.A.; Laing, M.E.; O’Sullivan, S.T. Botulinum toxin for treatment of glandular hypersecretory disorders. J. Plast. Reconstr. Aesthet. Surg. 2008, 61, 1024–1028. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Dhaliwal, H.P.; Kukreja, R.V.; Singh, B.R. The Botulinum Toxin as a Therapeutic Agent: Molecular Structure and Mechanism of Action in Motor and Sensory Systems. Semin. Neurol. 2016, 36, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Aurora, S.K.; Winner, P.; Freeman, M.C.; Spierings, E.L.; Heiring, J.O.; DeGryse, R.E.; VanDenburgh, A.; Nolan, M.E.; Turkel, C. OnabotulinumtoxinA for treatment of chronic migraine: Pooled analyses of the 56-week PREEMPT clinical program. Headache 2011, 51, 1358–1373. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, G.W.; Kim, M.J.; Yang, K.Y.; Kim, S.T.; Bae, Y.C.; Ahn, D.K. Antinociceptive Effects of Transcytosed Botulinum Neurotoxin Type A on Trigeminal Nociception in Rats. Korean J. Physiol. Pharmacol. 2015, 19, 349–355. [Google Scholar] [CrossRef]
- Burstein, R.; Zhang, X.; Levy, D.; Aoki, K.R.; Brin, M.F. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: Therapeutic implications for migraine and other pains. Cephalalgia 2014, 34, 853–869. [Google Scholar] [CrossRef] [PubMed]
- Grando, S.A.; Zachary, C.B. The non-neuronal and nonmuscular effects of botulinum toxin: An opportunity for a deadly molecule to treat disease in the skin and beyond. Br. J. Dermatol. 2018, 178, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Schlessinger, J.; Gilbert, E.; Cohen, J.L.; Kaufman, J. New Uses of AbobotulinumtoxinA in Aesthetics. Aesthet. Surg. J. 2017, 37 (Suppl. S1), S45–S58. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.H.; Song, S.H.; Yoon, S.J.; Koo, J.H.; Yoo, K.Y. The Effect of Botulinum Toxin on Hair Follicle Cell Regeneration Under Continuous Stress Conditions: A Pilot Animal Study. Neurotox. Res. 2022, 40, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Hanchanale, V.S.; Rao, A.R.; Martin, F.L.; Matanhelia, S.S. The unusual history and the urological applications of botulinum neurotoxin. Urol. Int. 2010, 85, 125–130. [Google Scholar] [CrossRef]
- Anandan, C.; Jankovic, J. Botulinum Toxin in Movement Disorders: An Update. Toxins 2021, 13, 42. [Google Scholar] [CrossRef]
- Scaglione, F. Conversion Ratio between Botox®, Dysport®, and Xeomin® in Clinical Practice. Toxins 2016, 8, 65. [Google Scholar] [CrossRef]
- DAXXIFY® Becomes First Facial Injectable to be Named to TIME’s Best Inventions. Available online: https://www.businesswire.com/news/home/20231026772907/en/DAXXIFY%C2%AE-Becomes-First-Facial-Injectable-to-be-Named-to-TIME%E2%80%99s-Best-Inventions (accessed on 9 April 2024).
- Solish, N.; Carruthers, J.; Kaufman, J.; Rubio, R.G.; Gross, T.M.; Gallagher, C.J. Overview of DaxibotulinumtoxinA for Injection: A Novel Formulation of Botulinum Toxin Type A. Drugs 2021, 81, 2091–2101. [Google Scholar] [CrossRef]
- Dressler, D. Therapeutically relevant features of botulinum toxin drugs. Toxicon 2020, 175, 64–68. [Google Scholar] [CrossRef]
- Gary, D. Monheit, Andy Pickett AbobotulinumtoxinA: A 25-Year History. Aesthet. Surg. J. 2017, 37 (Suppl. S1), S4–S11. [Google Scholar] [CrossRef]
- Fernández-Salas, E.; Wang, J.; Molina, Y.; Nelson, J.B.; Jacky, B.P.; Aoki, K.R. Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. PLoS ONE 2012, 7, e49516. [Google Scholar] [CrossRef] [PubMed]
- Rasetti-Escargueil, C.; Lemichez, E.; Popoff, M.R. Variability of Botulinum Toxins: Challenges and Opportunities for the Future. Toxins 2018, 10, 374. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D.; Johnson, E.A. Botulinum toxin therapy: Past, present and future developments. J. Neural Transm. 2022, 129, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.; Baker, M.R.; Chatterjee, S.; Kumar, H. Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. Toxins 2021, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Inukai, Y. Role of proteolytic enzyme in toxin production by clostridium botulinum type A. Jpn. J. Vet. Res. 1963, 11, 143–151. [Google Scholar] [CrossRef]
- Jones, R.G.; Liu, Y.; Halls, C.; Thorpe, S.J.; Longstaff, C.; Matejtschuk, P.; Sesardic, D. Release of proteolytic activity following reduction in therapeutic human serum albumin containing products: Detection with a new neoepitope endopeptidase immunoassay. J. Pharm. Biomed. Anal. 2011, 54, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Brin, M.F.; James, C.; Maltman, J. Botulinum toxin type A products are not interchangeable: A review of the evidence. Biologics 2014, 8, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Donald, S.; Elliott, M.; Gray, B.; Hornby, F.; Lewandowska, A.; Marlin, S.; Favre-Guilmard, C.; Périer, C.; Cornet, S.; Kalinichev, M.; et al. A comparison of biological activity of commercially available purified native botulinum neurotoxin serotypes A1 to F1 in vitro, ex vivo, and in vivo. Pharmacol. Res. Perspect. 2018, 6, e00446. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.W.; Carruthers, A.; Fagien, S.; Lowe, N.J. Comparisons among botulinum toxins: An evidence-based review. Plast. Reconstr. Surg. 2008, 121, 413e–422e. [Google Scholar] [CrossRef]
- Takeuchi, T.; Okuno, T.; Miyashiro, A.; Kohda, T.; Miyamoto, R.; Izumi, Y.; Kozaki, S.; Kaji, R. Clinical Safety and Tolerability of A2NTX, a Novel Low-Molecular-Weight Neurotoxin Derived from Botulinum Neurotoxin Subtype A2, in Comparison with Subtype A1 Toxins. Toxins 2021, 13, 824. [Google Scholar] [CrossRef]
- Spiegel, L.L.; Ostrem, J.L.; Bledsoe, I.O. FDA Approvals and Consensus Guidelines for Botulinum Toxins in the Treatment of Dystonia. Toxins 2020, 12, 332. [Google Scholar] [CrossRef] [PubMed]
- Albanese, A.; Abbruzzese, G.; Dressler, D.; Duzynski, W.; Khatkova, S.; Marti, M.J.; Mir, P.; Montecucco, C.; Moro, E.; Pinter, M.; et al. Practical guidance for CD management involving treatment of botulinum toxin: A consensus statement. J. Neurol. 2015, 262, 2201–2213. [Google Scholar] [CrossRef]
- FDA. BOTOX (onabotulinumtoxinA) Label. Allergan, Inc. U.S. U.S. Food and Drug Administration Website. 2023. Available online: https://www.accessdata.fda.gov/Drugsatfda_docs/Label/2011/103000s5236lbl.Pdf (accessed on 8 April 2024).
- Dieter, A.A.; Wu, J.M.; Siddiqui, N.Y.; Degoski, D.J.; Brooks, J.M.; Dolber, P.C.; Fraser, M.O. Characterizing the Bladder’s Response to Onabotulinum Toxin Type A Using a Rat Model. Female Pelvic. Med. Reconstr. Surg. 2016, 22, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Denys, P.; Joussain, C. Intradetrusor botulinum toxin as the first-line treatment for neurogenic detrusor overactivity: Pro. Prog. Urol. 2023, 33, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Giannantoni, A.; Gubbiotti, M.; Rubilotta, E.; Balzarro, M.; Antonelli, A.; Bini, V. IncobotulinumtoxinA versus onabotulinumtoxinA intradetrusor injections in patients with neurogenic detrusor overactivity incontinence: A double-blind, randomized, non-inferiority trial. Minerva Urol. Nephrol. 2022, 74, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Maignel, J.; Martin, V.; Assaly, R.; Vogt, M.L.; Retailleau, K.; Hornby, F.; Laugerotte, A.; Lezmi, S.; Denys, P.; Krupp, J.; et al. BoNT/A1 Secondary Failure for the Treatment of Neurogenic Detrusor Overactivity: An Ex Vivo Functional Study. Toxins 2022, 14, 77. [Google Scholar] [CrossRef]
- Andretta, E.; Zuliani, C.; Cavallari, F.; Artuso, G. Poster 670, 43rd Annual Meeting of the International Continence Society. Neurourol. Urodyn. 2013, 32, 507–932. [Google Scholar]
- Benecke, R. Clinical relevance of botulinum toxin immunogenicity. BioDrugs 2012, 26, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Nitti, V.W.; Dmochowski, R.; Herschorn, S.; Sand, P.; Thompson, C.; Nardo, C.; Yan, X.; Haag-Molkenteller, C.; EMBARK Study Group. OnabotulinumtoxinA for the Treatment of Patients with Overactive Bladder and Urinary Incontinence: Results of a Phase 3, Randomized, Placebo Controlled Trial. J. Urol. 2017, 197, S216–S223. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, O.; Honda, M.; Yamanishi, T.; Sekiguchi, Y.; Fujii, K.; Nakayama, T.; Mogi, T. OnabotulinumtoxinA (botulinum toxin type A) for the treatment of Japanese patients with overactive bladder and urinary incontinence: Results of single-dose treatment from a phase III, randomized, double-blind, placebo-controlled trial (interim analysis). Int. J. Urol. 2020, 27, 227–234. [Google Scholar] [CrossRef]
- Leppilahti, M.; Sairanen, J.; Tammela, T.L.; Aaltomaa, S.; Lehtoranta, K.; Auvinen, A. Finnish Interstitial Cystitis-Pelvic Pain Syndrome Study Group Prevalence of clinically confirmed interstitial cystitis in women: A population based study in Finland. J. Urol. 2005, 174, 581–583. [Google Scholar] [CrossRef]
- Lee, C.L.; Kuo, H.C. Intravesical botulinum toxin a injections do not benefit patients with ulcer type interstitial cystitis. Pain Physician 2013, 16, 109–116. [Google Scholar]
- Pinto, R.A.; Costa, D.; Morgado, A.; Pereira, P.; Charrua, A.; Silva, J.; Cruz, F. Intratrigonal OnabotulinumtoxinA Improves Bladder Symptoms and Quality of Life in Patients with Bladder Pain Syndrome/Interstitial Cystitis: A Pilot, Single Center, Randomized, Double-Blind, Placebo Controlled Trial. J. Urol. 2018, 199, 998–1003. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Kuo, H.C. A Prospective, Multicenter, Double-Blind, Randomized Trial of Bladder Instillation of Liposome Formulation OnabotulinumtoxinA for Interstitial Cystitis/Bladder Pain Syndrome. J. Urol. 2017, 198, 376–382. [Google Scholar] [CrossRef]
- Dick, B.; Natale, C.; Reddy, A.; Akula, K.P.; Yousif, A.; Hellstrom, W.J.G. Application of Botulinum Neurotoxin in Female Sexual and Genitourinary Dysfunction: A Review of Current Practices. Sex. Med. Rev. 2021, 9, 57–63. [Google Scholar] [CrossRef]
- Reddy, A.G.; Dick, B.P.; Natale, C.; Akula, K.P.; Yousif, A.; Hellstrom, W.J.G. Application of Botulinum Neurotoxin in Male Sexual Dysfunction: Where Are We Now? Sex. Med. Rev. 2021, 9, 320–330. [Google Scholar] [CrossRef]
- Ghanem, H.; Raheem, A.A.; AbdelRahman, I.F.S.; Johnson, M.; Abdel-Raheem, T. Botulinum Neurotoxin and Its Potential Role in the Treatment of Erectile Dysfunction. Sex. Med. Rev. 2018, 6, 135–142. [Google Scholar] [CrossRef]
- Ghanem, H.M. Re: Botox for Erectile Dysfunction. J. Sex. Med. 2017, 14, 865. [Google Scholar] [CrossRef]
- Giuliano, F.; Denys, P.; Joussain, C. Safety and Effectiveness of Repeated Botulinum Toxin A Intracavernosal Injections in Men with Erectile Dysfunction Unresponsive to Approved Pharmacological Treatments: Real-World Observational Data. Toxins 2023, 15, 382. [Google Scholar] [CrossRef]
- Giuliano, F.; Denys, P.; Joussain, C. Effectiveness and Safety of Intracavernosal IncobotulinumtoxinA (Xeomin®) 100 U as an Add-on Therapy to Standard Pharmacological Treatment for Difficult-to-Treat Erectile Dysfunction: A Case Series. Toxins 2022, 14, 286. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, F.; Joussain, C.; Denys, P. Long Term Effectiveness and Safety of Intracavernosal Botulinum Toxin A as an Add-on Therapy to Phosphosdiesterase Type 5 Inhibitors or Prostaglandin E1 Injections for Erectile Dysfunction. J. Sex. Med. 2022, 19, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, F.; Joussain, C.; Denys, P.; Laurin, M.; Behr-Roussel, D.; Assaly, R. Intracavernosal OnabotulinumtoxinA Exerts a Synergistic Pro-Erectile Effect When Combined With Sildenafil in Spontaneously Hypertensive Rats. J. Sex. Med. 2022, 19, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Jones, M.; Mishra, G. The prevalence and risk factors of dysmenorrhea. Epidemiol. Rev. 2014, 36, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, M.; Togashi, K.; Kido, A.; Nakai, A.; Fujiwara, T.; Koyama, T.; Fujii, S. Dysmenorrhea: Evaluation with cine-mode-display MR imaging--initial experience. Radiology 2005, 235, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Bautrant, E.; Franke, O.; Amiel, C.; Bensousan, T.; Thiers-Bautrant, D.; Leveque, C. Treatment of acute dysmenorrhoea and pelvic pain syndrome of uterine origin with myometrial botulinum toxin injections under hysteroscopy: A pilot study. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 101972. [Google Scholar] [CrossRef]
- Levesque, A.; Ploteau, S.; Michel, F.; Siproudhis, L.; Bautrant, E.; Eggermont, J.; Fujii, S. Botulinum toxin infiltrations versus local anaesthetic infiltrations in pelvic floor myofascial pain: Multicentre, randomized, double-blind study. Ann. Phys. Rehabil. Med. 2021, 64, 101354. [Google Scholar] [CrossRef] [PubMed]
- Martial Kouame, J.; Leveque, C.; Siani, C.; Santos, M.; Delorme, J.; Franke, O.; Amiel, C.; Bensousan, T.; Thiers-Bautrant, D.; Bautrant, E. Uterine botulinum toxin injections in severe dysmenorrhea, dyspareunia and chronic pelvic pain: Results on quality of life, pain level and medical consumption. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 285, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Humeau, Y.; Doussau, F.; Grant, N.J.; Poulain, B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000, 82, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Ranoux, D.; Attal, N.; Morain, F.; Bouhassira, D. Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain. Ann. Neurol. 2008, 64, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Ranoux, D.; Levine, R.A. Botulinum Toxin Can Abolish and/or Quiet Tinnitus Associated with Chronic Migraine: Serendipidous Observations. Int. Tinnitus J. 2022, 25, 133–136. [Google Scholar] [CrossRef]
- Zhang, H.; Lian, Y.; Ma, Y.; Chen, Y.; He, C.; Xie, N.; Wu, C. Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: Observation of therapeutic effect from a randomized, double-blind, placebo-controlled trial. J. Headache Pain 2014, 15, 65. [Google Scholar] [CrossRef]
- Rubis, A.; Juodzbalys, G. The Use of Botulinum Toxin A in the Management of Trigeminal Neuralgia: A Systematic Literature Review. J. Oral Maxillofac. Res. 2020, 11, e2. [Google Scholar] [PubMed]
- Kayani, A.M.A.; Silva, M.S.; Jayasinghe, M.; Singhal, M.; Karnakoti, S.; Jain, S.; Jena, R. Therapeutic Efficacy of Botulinum Toxin in Trigeminal Neuralgia. Cureus 2022, 14, e26856. [Google Scholar] [CrossRef] [PubMed]
- Dupeyron, A.; Viollet, E.; Coroian, F.; Gagnard, C.; Renard, D.; Castelnovo, G. Botulinum Toxin-A for treatment of Pisa syndrome: A new target muscle. Park. Relat. Disord. 2015, 21, 669–670. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Lora, V.R.M.; Dugonjic Okrosa, A.; Matak, I.; Del Bel Cury, A.A.; Kalinichev, M.; Lackovic, Z. Antinociceptive Actions of Botulinum Toxin A1 on Immunogenic Hypersensitivity in Temporomandibular Joint of Rats. Toxins 2022, 14, 161. [Google Scholar] [CrossRef] [PubMed]
- Luvisetto, S. Botulinum Neurotoxins beyond Neurons: Interplay with Glial Cells. Toxins 2022, 14, 704. [Google Scholar] [CrossRef] [PubMed]
- Luvisetto, S. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy. Toxins 2021, 13, 751. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Krug, H.; Dorman, C.; McGarraugh, P.; Frizelle, S.; Mahowald, M. Analgesic effects of intra-articular botulinum toxin Type B in a murine model of chronic degenerative knee arthritis pain. J. Pain Res. 2010, 3, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Rannou, F. The safety of intra-articular injections for the treatment of knee osteoarthritis: A critical narrative review. Expert Opin. Drug Saf. 2017, 16, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Gil, C.; Abdoul, H.; Campagna, R.; Guerini, H.; Ieong, E.; Chagny, F.; Bedin, C.; Roren, A.; Lefèvre-Colau, M.M.; Poiraudeau, S.; et al. Intra-articular botulinum toxin A for base-of-thumb osteoarthritis: Protocol for a randomised trial (RHIBOT). BMJ Open 2018, 8, e022337. [Google Scholar] [CrossRef]
- Van Daele, D.J.; Finnegan, E.M.; Rodnitzky, R.L.; Zhen, W.; McCulloch, T.M.; Hoffman, H.T. Head and neck muscle spasm after radiotherapy: Management with botulinum toxin A injection. Arch. Otolaryngol. Head Neck Surg. 2002, 128, 956–959. [Google Scholar] [CrossRef]
- Mailly, M.; Benzakin, S.; Chauvin, A.; Brasnu, D.; Ayache, D. Radiation-induced head and neck pain: Management with botulinum toxin a injections. Cancer Radiother. 2019, 23, 312–315. [Google Scholar] [CrossRef]
- Shaw, L.; Bazzell, A.F.; Dains, J.E. Botulinum Toxin for Side-Effect Management and Prevention of Surgical Complications in Patients Treated for Head and Neck Cancers and Esophageal Cancer. J. Adv. Pract. Oncol. 2019, 10, 40–52. [Google Scholar] [PubMed]
- Lovato, A.; Restivo, D.A.; Ottaviano, G.; Marioni, G.; Marchese-Ragona, R. Botulinum toxin therapy: Functional silencing of salivary disorders. Acta Otorhinolaryngol. Ital. 2017, 37, 168–171. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, J.; Li, H.; Cheng, C.; Herrler, T.; Li, Q. Classification of masseter hypertrophy for tailored botulinum toxin type A treatment. Plast. Reconstr. Surg. 2014, 134, 209e–218e. [Google Scholar] [CrossRef]
- Melville, J.C.; Stackowicz, D.J.; Jundt, J.S.; Shum, J.W. Use of Botox (OnabotulinumtoxinA) for the Treatment of Parotid Sialocele and Fistula After Extirpation of Buccal Squamous Cell Carcinoma With Immediate Reconstruction Using Microvascular Free Flap: A Report of 3 Cases. J. Oral. Maxillofac. Surg. 2016, 74, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Boukovalas, S.; Mays, A.C.; Selber, J.C. Botulinum Toxin Injection for Lower Face and Oral Cavity Raynaud Phenomenon After Mandibulectomy, Free Fibula Reconstruction, and Radiation Therapy. Ann. Plast. Surg. 2019, 82, 53–54. [Google Scholar] [CrossRef]
- Ulloa, F.; Gonzalez-Junca, A.; Meffre, D.; Barrecheguren, P.J.; Martinez-Marmol, R.; Pazos, I.; Olivé, N.; Cotrufo, T.; Seoane, J.; Soriano, E. Blockade of the SNARE protein syntaxin 1 inhibits glioblastoma tumor growth. PLoS ONE 2015, 10, e0119707. [Google Scholar] [CrossRef]
- He, D.; Manzoni, A.; Florentin, D.; Fisher, W.; Ding, Y.; Lee, M.; Ayala, G. Biologic effect of neurogenesis in pancreatic cancer. Hum. Pathol. 2016, 52, 182–189. [Google Scholar] [CrossRef]
- Matak, I.; Lackovic, Z. Botulinum neurotoxin type A: Actions beyond SNAP-25? Toxicology 2015, 335, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Bandala, C.; Perez-Santos, J.L.; Lara-Padilla, E.; Delgado Lopez, G.; Anaya-Ruiz, M. Effect of botulinum toxin A on proliferation and apoptosis in the T47D breast cancer cell line. Asian Pac. J. Cancer Prev. 2013, 14, 891–894. [Google Scholar] [CrossRef]
- Jain, N.; Lansiaux, E.; Yucel, U.; Huenermund, S.; Goeschl, S.; Schlagenhauf, P. Outbreaks of iatrogenic botulism in Europe: Combating off-label medical use of Botulinum Neurotoxin (BoNT) in bariatric procedures. New Microbes New Infect. 2023, 53, 101152. [Google Scholar] [CrossRef] [PubMed]
- Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998, 5, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, D.; Eswaramoorthy, S.; Furey, W.; Navaza, J.; Sax, M.; Swaminathan, S. Domain organization in Clostridium botulinum neurotoxin type E is unique: Its implication in faster translocation. J. Mol. Biol. 2009, 386, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, J.A.; Marks, P.M. Clostridial neurotoxins: Structure-function led design of new therapeutics. Cell. Mol. Life Sci. 2006, 63, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Fonfria, E.; Elliott, M.; Beard, M.; Chaddock, J.A.; Krupp, J. Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins 2018, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.; Favre-Guilmard, C.; Liu, S.M.; Maignel, J.; Masuyer, G.; Beard, M.; Boone, C.; Carré, D.; Kalinichev, M.; Lezmi, S.; et al. Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models. Sci. Adv. 2019, 5, eaau7196. [Google Scholar] [CrossRef] [PubMed]
- Foran, P.G.; Mohammed, N.; Lisk, G.O.; Nagwaney, S.; Lawrence, G.W.; Johnson, E.; Smith, L.; Aoki, K.R.; Dolly, J.O. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J. Biol. Chem. 2003, 278, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Kotiya, A.; Kiris, E.; Yang, M.; Bavari, S.; Tessarollo, L.; Oyler, G.A.; Weissman, A.M. Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type A intoxication. Proc. Natl. Acad. Sci. USA 2017, 114, E5158–E5166. [Google Scholar] [CrossRef]
- Kohda, T.; Nakamura, K.; Hosomi, K.; Torii, Y.; Kozaki, S.; Mukamoto, M. Response to “Standardized methods must be used to compare the properties of botulinum toxin serotypes”. Microbiol. Immunol. 2017, 61, 560. [Google Scholar] [CrossRef]
- Eleopra, R.; Rinaldo, S.; Montecucco, C.; Rossetto, O.; Devigili, G. Clinical duration of action of different botulinum toxin types in humans. Toxicon 2020, 179, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kutschenko, A.; Reinert, M.C.; Krez, N.; Liebetanz, D.; Rummel, A. BoNT/AB hybrid maintains similar duration of paresis as BoNT/A wild-type in murine running wheel assay. Neurotoxicology 2017, 59, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Boissy, R.E.; Brideau-Andersen, A.; Sondergaard, B. Sondergaard editor Botulinum Neurotoxin Type DC (BoNT/DC) Blocks Melanocyte Melanogenesis. Toxins 2024, 237, 107444. [Google Scholar]
- Whitemarsh, R.C.; Tepp, W.H.; Johnson, E.A.; Pellett, S. Persistence of botulinum neurotoxin a subtypes 1–5 in primary rat spinal cord cells. PLoS ONE 2014, 9, e90252. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.S.; Tepp, W.H.; Inzalaco, H.N.; Johnson, E.A.; Pellett, S. Comparative functional analysis of mice after local injection with botulinum neurotoxin A1, A2, A6, and B1 by catwalk analysis. Toxicon 2019, 167, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Pier, C.L.; Chen, C.; Tepp, W.H.; Lin, G.; Janda, K.D.; Barbieri, J.T.; Pellett, S.; Johnson, E.A. Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett. 2011, 585, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Rasetti-Escargueil, C.; Avril, A.; Chahboun, S.; Tierney, R.; Bak, N.; Miethe, S.; Mazuet, C.; Popoff, M.R.; Thullier, P.; Hust, M.; et al. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B. MAbs 2015, 7, 1161–1177. [Google Scholar]
- Tepp, W.H.; Lin, G.; Johnson, E.A. Purification and characterization of a novel subtype a3 botulinum neurotoxin. Appl. Environ. Microbiol. 2012, 78, 3108–3113. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.R.; Rees, J.; Liu, S.M.; Acharya, K.R. High resolution crystal structures of Clostridium botulinum neurotoxin A3 and A4 binding domains. J. Struct. Biol. 2018, 202, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Widel, M.; Imanian, B. The Light Chain Domain and Especially the C-Terminus of Receptor-Binding Domain of the Botulinum Neurotoxin (BoNT) Are the Hotspots for Amino Acid Variability and Toxin Type Diversity. Genes 2022, 13, 1915. [Google Scholar] [CrossRef]
- Henkel, J.S.; Jacobson, M.; Tepp, W.; Pier, C.; Johnson, E.A.; Barbieri, J.T. Catalytic properties of botulinum neurotoxin subtypes A3 and A4. Biochemistry 2009, 48, 2522–2528. [Google Scholar] [CrossRef]
- Tepp, W.H.; Bradshaw, M.; Gardner, A.P.; Kaufman, R.L.; Barbieri, J.T.; Pellett, S. Botulinum Neurotoxin A4 Has a 1000-Fold Reduced Potency Due to Three Single Amino Acid Alterations in the Protein Receptor Binding Domain. Int. J. Mol. Sci. 2023, 24, 5690. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Masuyer, G.; Zhang, S.; Zhang, J.; Miyashita, S.I.; Burgin, D.; Lovelock, L.; Coker, S.F.; Fu, T.M.; Stenmark, P.; et al. Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy. PLoS Biol. 2020, 18, e3000618. [Google Scholar] [CrossRef]
- Steward, L.; Brin, M.F.; Brideau-Andersen, A. Novel Native and Engineered Botulinum Neurotoxins. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Dolly, J.O.; Wang, J.; Zurawski, T.H.; Meng, J. Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators. FEBS J. 2011, 278, 4454–4466. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meng, J.; Lawrence, G.W.; Zurawski, T.H.; Sasse, A.; Bodeker, M.O.; Gilmore, M.A.; Fernández-Salas, E.; Francis, J.; Steward, L.E.; et al. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J. Biol. Chem. 2008, 283, 16993–17002. [Google Scholar] [CrossRef]
- Dolly, J.O.; O’Connell, M.A. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain. Curr. Opin. Pharmacol. 2012, 12, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Casals-Diaz, L.; Zurawski, T.; Meng, J.; Moriarty, O.; Nealon, J.; Edupuganti, O.P.; Dolly, O. A novel therapeutic with two SNAP-25 inactivating proteases shows long-lasting anti-hyperalgesic activity in a rat model of neuropathic pain. Neuropharmacology 2017, 118, 223–232. [Google Scholar] [CrossRef]
- Elliott, M.; Maignel, J.; Liu, S.M.; Favre-Guilmard, C.; Mir, I.; Farrow, P.; Hornby, F.; Marlin, S.; Palan, S.; Beard, M.; et al. Augmentation of VAMP-catalytic activity of botulinum neurotoxin serotype B does not result in increased potency in physiological systems. PLoS ONE 2017, 12, e0185628. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; Dong, M.; Sun, S.; Chapman, E.R.; Jackson, M.B. Syntaxin requirement for Ca2+-triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. Biochemistry 2011, 50, 2711–2713. [Google Scholar] [CrossRef]
- Zanetti, G.; Sikorra, S.; Rummel, A.; Krez, N.; Duregotti, E.; Negro, S.; Henke, T.; Rossetto, O.; Binz, T.; Pirazzini, M. Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathog. 2017, 13, e1006567. [Google Scholar] [CrossRef]
- Pirazzini, M.; Rossetto, O.; Bertasio, C.; Bordin, F.; Shone, C.C.; Binz, T.; Montecucco, C. Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons. Biochem. Biophys. Res. Commun. 2013, 430, 38–42. [Google Scholar] [CrossRef]
- Shone, C.C.; Hambleton, P.; Melling, J. A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. Eur. J. Biochem. 1987, 167, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Shone, C.C.; Hambleton, P.; Melling, J. Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments. Proteolytic action near the COOH-terminus of the heavy subunit destroys toxin-binding activity. Eur. J. Biochem. 1985, 151, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, J.A.; Purkiss, J.R.; Friis, L.M.; Broadbridge, J.D.; Duggan, M.J.; Fooks, S.J.; Shone, C.C.; Quinn, C.P.; Foster, K.A. Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endopeptidase derivative of Clostridium botulinum neurotoxin type A. Infect. Immun. 2000, 68, 2587–2593. [Google Scholar] [CrossRef] [PubMed]
- Chaddock, J.A.; Herbert, M.H.; Ling, R.J.; Alexander, F.C.; Fooks, S.J.; Revell, D.F.; Quinn, C.P.; Shone, C.C.; Foster, K.A. Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr. Purif. 2002, 25, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.A.; Adams, E.J.; Durose, L.; Cruttwell, C.J.; Marks, E.; Shone, C.C.; Chaddock, J.A.; Cox, C.L.; Heaton, C.; Sutton, J.M.; et al. Re-engineering the target specificity of Clostridial neurotoxins—A route to novel therapeutics. Neurotox. Res. 2006, 9, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Darios, F.; Niranjan, D.; Ferrari, E.; Zhang, F.; Soloviev, M.; Rummel, A.; Bigalke, H.; Suckling, J.; Ushkaryov, Y.; Naumenko, N.; et al. SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proc. Natl. Acad. Sci. USA 2010, 107, 18197–18201. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Maywood, E.S.; Restani, L.; Caleo, M.; Pirazzini, M.; Rossetto, O.; Hastings, M.H.; Niranjan, D.; Schiavo, G.; Davletov, D.; et al. Re-assembled botulinum neurotoxin inhibits CNS functions without systemic toxicity. Toxins 2011, 3, 345–355. [Google Scholar] [CrossRef]
- Nugent, M.; Yusef, Y.R.; Meng, J.; Wang, J.; Dolly, J.O. A SNAP-25 cleaving chimera of botulinum neurotoxin/A and /E prevents TNFalpha-induced elevation of the activities of native TRP channels on early postnatal rat dorsal root ganglion neurons. Neuropharmacology 2018, 138, 257–266. [Google Scholar] [CrossRef]
- Chen, S.; Barbieri, J.T. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc. Natl. Acad. Sci. USA 2009, 106, 9180–9184. [Google Scholar] [CrossRef]
- Pavlik, B.J.; Hruska, E.J.; Van Cott, K.E.; Blum, P.H. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol. Sci. Rep. 2016, 6, 23707. [Google Scholar] [CrossRef]
- Vazquez-Cintron, E.J.; Beske, P.H.; Tenezaca, L.; Tran, B.Q.; Oyler, J.M.; Glotfelty, E.J.; Angeles, C.A.; Syngkon, A.; Mukherjee, J.; Kalb, S.R.; et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci. Rep. 2017, 7, 42923. [Google Scholar] [CrossRef]
- Tang, M.; Meng, J.; Wang, J. New Engineered-Botulinum Toxins Inhibit the Release of Pain-Related Mediators. Int. J. Mol. Sci. 2019, 21, 262. [Google Scholar] [CrossRef]
- Miyashita, S.I.; Karatsu, S.; Fujiishi, M.; Huang, I.H.; Nagashima, Y.; Morobishi, T.; Hosoya, K.; Hata, T.; Dong, M.; Sagane, Y.; et al. Characterization of Serotype CD Mosaic Botulinum Neurotoxin in Comparison with Serotype C and A. Toxins 2023, 15, 170. [Google Scholar] [CrossRef]
- Leese, C.; Bresnahan, R.; Doran, C.; Simsek, D.; Fellows, A.D.; Restani, L.; Caleo, M.; Schiavo, G.; Mavlyutov, T.; Henke, T.; et al. Duplication of clostridial binding domains for enhanced macromolecular delivery into neurons. Toxicon X 2020, 5, 100019. [Google Scholar] [CrossRef]
- Leese, C.; Christmas, C.; Meszaros, J.; Ward, S.; Maiaru, M.; Hunt, S.P.; Davletov, B. New botulinum neurotoxin constructs for treatment of chronic pain. Life Sci. Alliance 2023, 6, e202201631. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lee, P.G.; Krez, N.; Lam, K.H.; Liu, H.; Przykopanski, A.; Chen, P.; Yao, G.; Zhang, Z.; Tremblay, J.M.; et al. Structural basis for botulinum neurotoxin E recognition of synaptic vesicle protein 2. Nat. Commun. 2023, 14, 2338. [Google Scholar] [CrossRef]
- Pons, L.; Vilain, C.; Volteau, M.; Picaut, P. Safety and pharmacodynamics of a novel recombinant botulinum toxin E (rBoNT-E): Results of a phase 1 study in healthy male subjects compared with abobotulinumtoxinA (Dysport®). J. Neurol. Sci. 2019, 407, 116516. [Google Scholar] [CrossRef]
- Canty, D.; Nicholson, G.S.; Brideau-Andersen, A.D.; Broide, R.S. Evaluation of Botulinum Neurotoxin type E preparation (TrenibotulinumtoxinE) in the mouse digit abduction score (DAS) assay. Toxicon 2024, 237 (Suppl. S1), 107377. [Google Scholar] [CrossRef]
- Machicoane, M.; Tonellato, M.; Zainotto, M.; Onillon, P.; Stazi, M.; Dal Corso, M.; Megighian, A.; Rossetto, O.; Le Doussal, J.M.; Pirazzini, M. Excitation-Contraction Coupling Inhibitors Potentiate the Activity of Botulinum Neurotoxin Type A at the Neuromuscular Junction. Toxicon 2024, 237 (Suppl. S1), 107441. [Google Scholar] [CrossRef]
- Masuyer, G.; Stenmark, P. Structure-Based Design of a Botulinum Neurotoxin With Triple Receptor Recognition. Toxicon 2024, 237 (Suppl. S1), 107452. [Google Scholar] [CrossRef]
- Krhut, J.; Navratilova, M.; Sykora, R.; Jurakova, M.; Gartner, M.; Mika, D.; Pavliska, L.; Zvara, P. Intravesical instillation of onabotulinum toxin A embedded in inert hydrogel in the treatment of idiopathic overactive bladder: A double-blind randomized pilot study. Scand. J. Urol. 2016, 50, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Malek-Khatabi, A.; Rad-Malekshahi, M.; Shafiei, M.; Sharifi, F.; Motasadizadeh, H.; Ebrahiminejad, V.; Rad-Malekshahi, M.; Akbarijavar, H.; Rad, Z.F. Botulinum toxin A dissolving microneedles for hyperhidrosis treatment: Design, formulation and in vivo evaluation. Biomater. Sci. 2023, 11, 7784–7804. [Google Scholar] [CrossRef] [PubMed]
- Kaji, R. A look at the future-new BoNTs and delivery systems in development: What it could mean in the clinic. Toxicon 2023, 234, 107264. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.; Hanumantharao, S.N.; McDonell, R.; Irvine, K.A.; Sahbaie, P.; Clark, D.; Blum, P. Preclinical characterization of the efficacy and safety of biologic N-001 as a novel pain analgesic for post-operative acute pain treatment. Sci Rep. 2023, 13, 11778. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, L. Optogenetics: Therapeutic spark in neuropathic pain. Bosn. J. Basic Med. Sci. 2019, 19, 321–327. [Google Scholar]
- Joussain, C.; Le Coz, O.; Pichugin, A.; Marconi, P.; Lim, F.; Sicurella, M.; Salonia, A.; Montorsi, F.; Wandosell, F.; Foster, K.; et al. Botulinum Neurotoxin Light Chains Expressed by Defective Herpes Simplex Virus Type-1 Vectors Cleave SNARE Proteins and Inhibit CGRP Release in Rat Sensory Neurons. Toxins 2019, 11, 123. [Google Scholar] [CrossRef]
- Zeleny, R.; Busschots, K.; Kampa, B.; Worbs, S.; Skiba, M.; Dorner, B.; Van Nieuwenhuysen, T.; Puustinen, A.; Rasetti-Escargueil, C.; Nahori, M.; et al. P20-01: First certified reference materials (CRMs) to improve the reliability of biological toxins detection, identification and quantification. Toxicol. Lett. 2023, 384, S232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasetti-Escargueil, C.; Palea, S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins 2024, 16, 261. https://doi.org/10.3390/toxins16060261
Rasetti-Escargueil C, Palea S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins. 2024; 16(6):261. https://doi.org/10.3390/toxins16060261
Chicago/Turabian StyleRasetti-Escargueil, Christine, and Stefano Palea. 2024. "Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications" Toxins 16, no. 6: 261. https://doi.org/10.3390/toxins16060261
APA StyleRasetti-Escargueil, C., & Palea, S. (2024). Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins, 16(6), 261. https://doi.org/10.3390/toxins16060261