Are We Missing Something About the Maximum Dosing of Botulinum Toxin Type A1 in Adult and Pediatric Patients with Spasticity?
Abstract
:1. Introduction
2. Botulinum Toxin Type A1 in Spasticity Clinics
3. Botulinum Toxin Type A1 for Treating Spasticity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Pirazzini, M.; Montecucco, C.; Rossetto, O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: An update. Arch. Toxicol. 2022, 96, 1521–1539. [Google Scholar] [CrossRef] [PubMed]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Wheeler, A.; Smith, H.S. Botulinum toxins: Mechanisms of action, antinociception and clinical applications. Toxicology 2013, 306, 124–146. [Google Scholar] [CrossRef]
- Dong, J.; Helveston, E.M.; Hanke, C.W. The 200-year timeline on botulinum toxin: From biologic poison to wonder drug. J. Drugs Dermatol. 2024, 23, 1357–1359. [Google Scholar] [CrossRef]
- Jabbari, B. History of botulinum toxin treatment in movement disorders. Tremor. Other Hyperkinet. Mov. 2016, 6, 394. [Google Scholar] [CrossRef]
- Suputtitada, A.; Chatromyen, S.; Chen, C.P.C.; Simpson, D.M. Best practice guidelines for the management of patients with post-stroke spasticity: A modified scoping review. Toxins 2024, 16, 98. [Google Scholar] [CrossRef]
- Simpson, D.M.; Hallett, M.; Ashman, E.J.; Comella, C.L.; Green, M.W.; Gronseth, G.S.; Armstrong, M.J.; Gloss, D.; Potrebic, S.; Jankovic, J.; et al. Practice guideline update summary: Botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: Report of the guideline development subcommittee of the American academy of neurology. Neurology 2016, 86, 1818–1826. [Google Scholar] [CrossRef]
- Albanese, A. Terminology for preparations of botulinum neurotoxins: What a difference a name makes. JAMA 2011, 305, 89–90. [Google Scholar] [CrossRef]
- Brin, M.F.; Nelson, M.; Ashourian, N.; Brideau-Andersen, A.; Maltman, J. Update on non-interchangeability of botulinum neurotoxin products. Toxins 2024, 16, 266. [Google Scholar] [CrossRef]
- Li, S.; Francisco, G.E. The use of botulinum toxin for treatment of spasticity. Handb. Exp. Pharmacol. 2021, 263, 127–146. [Google Scholar] [PubMed]
- Wissel, J.; Ward, A.B.; Erztgaard, P.; Bensmail, D.; Hecht, M.J.; Lejeune, T.M.; Schnider, P.; Altavista, M.C.; Cavazza, S.; Deltombe, T.; et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J. Rehabil. Med. 2009, 41, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Francisco, G.E.; Rymer, W.Z. A new definition of poststroke spasticity and the interference of spasticity with motor recovery from acute to chronic stages. Neurorehabil Neural Repair. 2021, 35, 601–610. [Google Scholar] [CrossRef] [PubMed]
- FDA-Approved Drugs. Available online: www.fda.gov/drugsatfda (accessed on 11 September 2024).
- Agenzia Italiana del Farmaco. Available online: www.aifa.gov.it (accessed on 11 September 2024).
- Bensmail, D.; Hanschmann, A.; Wissel, J. Satisfaction with botulinum toxin treatment in post-stroke spasticity: Results from two cross-sectional surveys (patients and physicians). J. Med. Econ. 2014, 17, 618–625. [Google Scholar] [CrossRef]
- Brodsky, M.A.; Swope, D.M.; Grimes, D. Diffusion of botulinum toxins. Tremor. Other Hyperkinet. Mov. 2012, 2, 85. [Google Scholar] [CrossRef]
- Tang-Liu, D.D.; Aoki, K.R.; Dolly, J.O.; de Paiva, A.; Houchen, T.L.; Chasseaud, L.F.; Webber, C. Intramuscular injection of 125I-botulinum neurotoxin-complex versus 125I-botulinum-free neurotoxin: Time course of tissue distribution. Toxicon 2003, 42, 461–469. [Google Scholar] [CrossRef]
- Field, M.; Splevins, A.; Picaut, P.; van der Schans, M.; Langenberg, J.; Noort, D.; Snyder, D.; Foster, K. AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) neurotoxin content and potential implications for duration of response in patients. Toxins 2018, 10, 535. [Google Scholar] [CrossRef]
- Rossetto, O.; Montecucco, C. Tables of toxicity of botulinum and tetanus neurotoxins. Toxins 2019, 11, 686. [Google Scholar] [CrossRef]
- Fryar, C.D.; Carroll, M.D.; Gu, Q.; Afful, J.; Ogden, C.L. Anthropometric reference data for children and adults: United States, 2015–2018. National Center for Health Statistics. Vital Health Stat. 2021, 46, 3. [Google Scholar]
- Intiso, D.; Simone, V.; Bartolo, M.; Santamato, A.; Ranieri, M.; Gatta, M.T.; Di Rienzo, F. High dosage of botulinum toxin type A in adult subjects with spasticity following acquired central nervous system damage: Where are we at? Toxins 2020, 12, 315. [Google Scholar] [CrossRef]
- Santamato, A. High doses of botulinum toxin type A for the treatment of post-stroke spasticity: Rationale for a real benefit for the patients. Toxins 2022, 14, 332. [Google Scholar] [CrossRef] [PubMed]
- Intiso, D.; Centra, A.M.; Gravina, M.; Chiaramonte, A.; Bartolo, M.; Di Rienzo, F. Botulinum toxin-A high-dosage effect on functional outcome and spasticity-related pain in subjects with stroke. Toxins 2023, 15, 509. [Google Scholar] [CrossRef] [PubMed]
- Kirshblum, S.; Solinsky, R.; Jasey, N.; Hampton, S.; Didesch, M.; Seidel, B.; Botticello, A. Adverse event profiles of high dose botulinum toxin injections for spasticity. PM&R 2020, 12, 349–355. [Google Scholar]
- Fryar, C.D.; Kruszon-Moran, D.; Gu, Q.; Carroll, M.; Ogden, C.L. Mean body weight, height, waist circumference, and body mass index among children and adolescents: United States, 1999–2018. Natl. Health Stat. Rep. 2021, 160, 1–24. [Google Scholar]
- Jankovic, J.; Brin, M.F. Botulinum toxin: Historical perspective and potential new indications. In Spasticity: Etiology, Evaluation, Management and the Role of Botulinum Toxin; Mayer, N.Y., Simpson, D.M., Eds.; WE MOVE: New York, NY, USA, 2005. [Google Scholar]
- Vova, J.A.; Green, M.M.; Brandenburg, J.E.; Davidson, L.; Paulson, A.; Deshpande, S.; Oleszek, J.L.; Inanoglu, D.; McLaughlin, M.J. A consensus statement on the use of botulinum toxin in pediatric patients. PM&R 2022, 14, 1116–1142. [Google Scholar]
- Marciniak, C.; Munin, M.C.; Brashear, A.; Rubin, B.S.; Patel, A.T.; Slawek, J.; Hanschmann, A.; Hiersemenzel, R.; Elovic, E.P. IncobotulinumtoxinA efficacy and safety in adults with upper-limb spasticity following stroke: Results from the open-label extension period of a phase 3 study. Adv. Ther. 2019, 36, 187–199. [Google Scholar] [CrossRef]
- Paget, S.P.; Swinney, C.M.; Burton, K.L.O.; Bau, K.; O’Flaherty, S.J. Systemic adverse events after botulinum neurotoxin A injections in children with cerebral palsy. Dev. Med. Child. Neurol. 2018, 60, 1172–1177. [Google Scholar] [CrossRef]
- Dressler, D.; Kopp, B.; Adib Saberi, F. Botulinum toxin dosing in arm muscles: Contextual factors. J. Neural Transm. 2021, 128, 315–319. [Google Scholar] [CrossRef]
abobotulinumtoxinA | incobotulinumtoxinA | onabotulinumtoxinA | |
---|---|---|---|
Brand name | Dysport | Xeomin | Botox |
Units per vial | 300; 500 | 50; 100; 200 | 100; 200 |
Complex size | ~500 kDa | 150 kDa | 900 kDa |
Preparation | Lyophilized | Lyophilized | Vacuum-dried |
Storage | 2–8 °C | <25 °C | 2–8 °C |
Constituents and excipients | Hemagglutinin, human albumin, lactose | Human albumin, saccharose | Hemagglutinin, human albumin, saccharose, NaCl |
USA (Food and Drug Administration) | Italy (Agenzia Italiana del Farmaco) | |
---|---|---|
Upper-limb spasticity in adults | Biceps brachii 200–400 units Brachialis 200–400 units Brachioradialis 100–200 units Pronator teres 100–200 units Flexor carpi radialis 100–200 units Flexor carpi ulnaris 100–200 units Flexor digitorum superficialis 100–200 units Flexor digitorum profundus 100–200 units | Latissimus dorsi 150–300 units Subscapolaris 150–300 units Pectoralis major 150–300 units Triceps brachii 150–300 units Biceps brachii 200–400 units Brachialis 200–400 units Brachioradialis 100–200 units Pronator teres 100–200 units Flexor carpi radialis 100–200 units Flexor carpi ulnaris 100–200 units Flexor digitorum superficialis 100–200 units Flexor digitorum profundus 100–200 units Flexor pollicis longus 100–200 units Adductor pollicis 25–50 units |
Lower-limb spasticity in adults | Gastrocnemius medialis 100–150 units Gastrocnemius lateralis 100–150 units Soleus 330–500 units Tibialis posterior 200–300 units Flexor digitorum longus 130–200 units Flexor hallucis longus 70–200 units | Gluteus maximum 100–400 units Gracilis 100–200 units Adductor magnus 100–300 units Rectus femoris 100–400 units Hamstrings 100–400 units Gastrocnemius medialis 100–450 units Gastrocnemius lateralis 100–450 units Soleus 300–550 units Tibialis posterior 100–250 units Flexor digitorum longus 50–200 units Flexor digitorum brevis 50–200 units Flexor hallucis longus 50–200 units Flexor hallucis brevis 50–100 units |
Upper-limb spasticity in children | Biceps brachii 3–6 units/kg Brachialis 3–6 units/kg Brachioradialis 1.5–3 units/kg Pronator teres 1–2 units/kg Pronator quadratus 0.5–1 units/kg Flexor carpi radialis 2–4 units/kg Flexor carpi ulnaris 1.5–3 units/kg Flexor digitorum superficialis 1.5–3 units/kg Flexor digitorum profundus 1–2 units/kg | Not approved |
Lower-limb spasticity in children | Gastrocnemius 6–9 units/kg Soleus 4–6 units/kg | Hip adductors 3–10 units/kg Hamstrings 5–6 units/kg Gastrocnemius 5–15 units/kg Soleus 4–6 units/kg Tibialis posterior 3–5 units/kg |
USA (Food and Drug Administration) | Italy (Agenzia Italiana del Farmaco) | |
---|---|---|
Upper-limb spasticity in adults | Biceps brachii 50–200 units Brachialis 25–100 units Brachioradialis 25–100 units Pronator teres 25–75 units Pronator quadratus 10–50 units Flexor carpi radialis 25–100 units Flexor carpi ulnaris 20–100 units Flexor digitorum superficialis 25–100 units Flexor digitorum profundus 25–100 units Flexor pollicis longus 10–50 units Adductor pollicis 5–30 units Flexor pollicis brevis 5–30 units Opponens pollicis 5–30 units | Latissimus dorsi 25–150 units Deltoid 20–150 units Subscapolaris 15–100 units Pectoralis major 20–200 units Teres major 20–100 units Biceps brachii 50–200 units Brachialis 25–100 units Brachioradialis 25–100 units Pronator teres 25–75 units Pronator quadratus 10–50 units Flexor carpi radialis 25–100 units Flexor carpi ulnaris 25–100 units Flexor digitorum superficialis 25–100 units Flexor digitorum profundus 25–100 units Flexor pollicis longus 10–50 units Adductor pollicis 5–30 units Flexor pollicis brevis 5–30 units Opponens pollicis 5–30 units |
Upper-limb spasticity in children | Biceps brachii 2–3 units/kg Brachialis 1–2 units/kg Brachioradialis 1–2 units/kg Pronator teres 1–2 units/kg Pronator quadratus 0.5 units/kg Flexor carpi radialis 1 units/kg Flexor carpi ulnaris 1 units/kg Flexor digitorum superficialis 1 units/kg Flexor digitorum profundus 1 units/kg Flexor pollicis longus 1 units/kg Adductor pollicis 0.5 units/kg Flexor pollicis brevis 0.5 units/kg Opponens pollicis 0.5 units/kg | Not approved |
USA (Food and Drug Administration) | Italy (Agenzia Italiana del Farmaco) | |
---|---|---|
Upper-limb spasticity in adults | Biceps brachii 60–200 units Brachialis 30–50 units Brachioradialis 45–75 units Pronator teres 15–25 units Pronator quadratus 10–50 units Flexor carpi radialis 12.5–50 units Flexor carpi ulnaris 12.5–50 units Flexor digitorum superficialis 30–50 units Flexor digitorum profundus 30–50 units Flexor pollicis longus 20 units Adductor pollicis 20 units Flexor pollicis brevis 5–25 units Opponens pollicis 5–25 units Lumbricals 5–10 units Interossei 5–10 units | Pronator teres 10–50 units Flexor carpi radialis 15–60 units Flexor carpi ulnaris 10–50 units Flexor digitorum superficialis 10–50 units Flexor digitorum profundus 10–50 units Flexor pollicis longus 20 units Adductor pollicis 20 units Flexor pollicis brevis 5–25 units Opponens pollicis 5–25 units Lumbricals 5–10 units Interossei 5–10 units |
Lower-limb spasticity in adults | Gastrocnemius medialis 75 units Gastrocnemius lateralis 75 units Soleus 75 units Tibialis posterior 75 units Flexor digitorum longus 50 units Flexor hallucis longus 50 units | Gastrocnemius medialis 75 units Gastrocnemius lateralis 75 units Soleus 75 units Tibialis posterior 75 units |
Upper-limb spasticity in children | Biceps brachii 1.5–3 units/kg Brachialis 1–2 units/kg Brachioradialis 0.5–1 units/kg Flexor carpi radialis 1–2 units/kg Flexor carpi ulnaris 1–2 units/kg Flexor digitorum superficialis 0.5–1 units/kg Flexor digitorum profundus 0.5–1 units/kg | Not approved |
Lower-limb spasticity in children | Gastrocnemius medialis 1–2 units/kg Gastrocnemius lateralis 1–2 units/kg Soleus 1–2 units/kg Tibialis posterior 1–2 units/kg | Gastrocnemius 4–6 units/kg |
abobotulinumtoxinA | incobotulinumtoxinA | onabotulinumtoxinA | |
---|---|---|---|
Adults | USA 1500 units Italy 1500 units | USA 400 units Italy 500 units | USA 400 units Italy 300 units |
Children | USA 1000 units (30 units/kg) Italy 1000 units (30 units/kg) | USA 400 units (16 units/kg) Italy not approved | USA 340 units (10 units/kg) Italy 200 units (6 units/kg) |
abobotulinumtoxinA | incobotulinumtoxinA | onabotulinumtoxinA | |
---|---|---|---|
Adults | USA 8.07 ng Italy 8.07 ng | USA 1.6 ng Italy 2.0 ng | USA 3.6 ng Italy 2.7 ng |
Children | USA 5.38 ng Italy 5.38 ng | USA 1.6 ng Italy not approved | USA 3.06 ng Italy 1.8 ng |
abobotulinumtoxinA | incobotulinumtoxinA | onabotulinumtoxinA | |
---|---|---|---|
Adult males | 0.09 ng/kg | 0.02 ng/kg | 0.04 ng/kg |
Adult females | 0.10 ng/kg | 0.03 ng/kg | 0.05 ng/kg |
Children | 0.16 ng/kg | 0.06 ng/kg | 0.09 ng/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picelli, A.; Di Censo, R.; Tamburin, S.; Smania, N.; Filippetti, M. Are We Missing Something About the Maximum Dosing of Botulinum Toxin Type A1 in Adult and Pediatric Patients with Spasticity? Toxins 2024, 16, 513. https://doi.org/10.3390/toxins16120513
Picelli A, Di Censo R, Tamburin S, Smania N, Filippetti M. Are We Missing Something About the Maximum Dosing of Botulinum Toxin Type A1 in Adult and Pediatric Patients with Spasticity? Toxins. 2024; 16(12):513. https://doi.org/10.3390/toxins16120513
Chicago/Turabian StylePicelli, Alessandro, Rita Di Censo, Stefano Tamburin, Nicola Smania, and Mirko Filippetti. 2024. "Are We Missing Something About the Maximum Dosing of Botulinum Toxin Type A1 in Adult and Pediatric Patients with Spasticity?" Toxins 16, no. 12: 513. https://doi.org/10.3390/toxins16120513
APA StylePicelli, A., Di Censo, R., Tamburin, S., Smania, N., & Filippetti, M. (2024). Are We Missing Something About the Maximum Dosing of Botulinum Toxin Type A1 in Adult and Pediatric Patients with Spasticity? Toxins, 16(12), 513. https://doi.org/10.3390/toxins16120513