High Plasma Levels of Fibroblast Growth Factor 23 Are Associated with Increased Risk of COVID-19 in End-Stage Renal Disease Patients on Hemodialysis: Results of a Prospective Cohort
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. COVID-19-Related Events and Predictors of SARS-CoV-2 Infection
2.3. Relation between Plasma FGF23 Levels and COVID-19-Related Events
3. Discussion
3.1. Association between Plasma Levels of FGF23 and COVID-19-Related Outcomes
3.2. Association between High Baseline FGF23 Levels and Development of Severe Infections in Humans
3.3. High FGF23 Levels and Severe Infections: Correlation or Causality?
3.4. Limitations and Strengths of the Study
4. Conclusions
5. Materials and Methods
5.1. Study Design
5.2. Inclusion and Exclusion Criteria
5.3. Evaluation of Patients
5.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- John Hopkins University & Medicine Coronavirus Resource Center. COVID-19 Map. 2022. Available online: https://coronavirus.jhu.edu/map.html (accessed on 21 October 2022).
- Yi, Y.; Lagniton, P.N.P.; Ye, S.; Li, E.; Xu, R.H. COVID-19: What has been learned and to be learned about the novel coronavirus disease. Int. J. Biol. Sci. 2020, 16, 1753–1766. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Diao, B.; Lv, X.; Zhu, J.; Chen, C.; Liu, L.; Zhang, S.; Shen, B.; Wang, H. Epidemiological, Clinical, and Immunological Features of a Cluster of COVID-19-Contracted Hemodialysis Patients. Kidney Int. Rep. 2020, 5, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Hirsch, J.S.; Wanchoo, R.; Sachdeva, M.; Sakhiya, V.; Hong, S.; Jhaveri, K.D.; Fishbane, S.; Abate, M.; Andrade, H.P.; et al. Outcomes of patients with end-stage kidney disease hospitalized with COVID-19. Kidney Int. 2020, 98, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.M.; Weiner, D.E.; Aweh, G.; Miskulin, D.C.; Manley, H.J.; Stewart, C.; Ladik, V.; Hosford, J.; Lacson, E.C.; Johnson, D.S.; et al. COVID-19 Among US Dialysis Patients: Risk Factors and Outcomes From a National Dialysis Provider. Am. J. Kidney Dis. 2021, 77, 748–756. [Google Scholar] [CrossRef]
- Kato, S.; Chmielewski, M.; Honda, H.; Pecoits-Filho, R.; Matsuo, S.; Yuzawa, Y.; Tranaeus, A.; Stenvinkel, P.; Lindholm, B. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1526–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarnak, M.J.; Jaber, B.L. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int. 2000, 58, 1758–1764. [Google Scholar] [CrossRef]
- Clavero, R.; Parra-Lucares, A.; Méndez-Valdés, G.; Villa, E.; Bravo, K.; Mondaca, E.; Aranda, J.; Brignardello, R.; Gajardo, C.; Ordenes, A.; et al. Humoral Immune Response of BNT162b2 and CoronaVac Vaccinations in Hemodialysis Patients: A Multicenter Prospective Cohort. Vaccines 2022, 10, 1542. [Google Scholar] [CrossRef]
- Simon, B.; Rubey, H.; Treipl, A.; Gromann, M.; Hemedi, B.; Zehetmayer, S.; Kirsch, B. Haemodialysis patients show a highly diminished antibody response after COVID-19 mRNA vaccination compared with healthy controls. Nephrol. Dial. Transplant. 2021, 36, 1709–1716. [Google Scholar] [CrossRef]
- Alcázar-Arroyo, R.; Portolés, J.; López-Sánchez, P.; Zalamea, F.; Furaz, K.; Méndez, Á.; Nieto, L.; Sánchez-Hernández, R.; Pizarro, S.; García, A.; et al. Rapid decline of anti-SARS-CoV-2 antibodies in patients on haemodialysis: The COVID-FRIAT study. Clin. Kidney J. 2021, 14, 1835–1844. [Google Scholar] [CrossRef]
- Yen, C.-C.; Lin, S.-Y.; Chen, S.-C.; Chiu, Y.-W.; Chang, J.-M.; Hwang, S.-J. COVID-19 Vaccines in Patients with Maintenance Hemodialysis. J. Pers. Med. 2021, 11, 789. [Google Scholar] [CrossRef]
- Jahn, M.; Korth, J.; Dorsch, O.; Anastasiou, O.E.; Krawczyk, A.; Brochhagen, L.; van de Sand, L.; Sorge-Hädicke, B.; Tyczynski, B.; Witzke, O.; et al. Decline of Humoral Responses 6 Months after Vaccination with BNT162b2 (Pfizer-BioNTech) in Patients on Hemodialysis. Vaccines 2022, 10, 327. [Google Scholar] [CrossRef] [PubMed]
- Kurpas, A.; Supeł, K.; Idzikowska, K.; Zielińska, M. FGF23: A Review of Its Role in Mineral Metabolism and Renal and Cardiovascular Disease. Dis. Markers 2021, 2021, 8821292. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, J.M.; Isakova, T.; Cai, X.; Bayes, L.Y.; Faul, C.; Scialla, J.J.; Lash, J.P.; Chen, J.; He, J.; Navaneethan, S.; et al. Inflammation and elevated levels of fibroblast growth factor 23 are independent risk factors for death in chronic kidney disease. Kidney Int. 2017, 91, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Rossaint, J.; Oehmichen, J.; Van Aken, H.; Reuter, S.; Pavenstädt, H.J.; Meersch, M.; Unruh, M.; Zarbock, A. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J. Clin. Investig. 2016, 126, 962–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chonchol, M.; Greene, T.; Zhang, Y.; Hoofnagle, A.N.; Cheung, A.K. Low Vitamin D and High Fibroblast Growth Factor 23 Serum Levels Associate with Infectious and Cardiac Deaths in the HEMO Study. J. Am. Soc. Nephrol. 2016, 27, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Ishigami, J.; Taliercio, J.T.; Feldman, H.I.; Srivastava, A.; Townsend, R.R.; Cohen, D.L.; Horwitz, E.J.; Rao, P.; Charleston, J.; Fink, J.C.; et al. Fibroblast Growth Factor 23 and Risk of Hospitalization with Infection in Chronic Kidney Disease: The Chronic Renal Insufficiency Cohort (CRIC) Study. J. Am. Soc. Nephrol. 2020, 31, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Soares-Schanoski, A.; Sauerwald, N.; Goforth, C.W.; Periasamy, S.; Weir, D.L.; Lizewski, S.; Lizewski, R.; Ge, Y.; Kuzmina, N.A.; Nair, V.D.; et al. Asymptomatic SARS-CoV-2 Infection Is Associated with Higher Levels of Serum IL-17C, Matrix Metalloproteinase 10 and Fibroblast Growth Factors than Mild Symptomatic COVID-19. Front. Immunol. 2022, 13, 821730. [Google Scholar] [CrossRef]
- Nowak, K.L.; Bartz, T.M.; Dalrymple, L.; de Boer, I.H.; Kestenbaum, B.; Shlipak, M.G.; Garimella, P.S.; Ix, J.H.; Chonchol, M. Fibroblast Growth Factor 23 and the Risk of Infection-Related Hospitalization in Older Adults. J. Am. Soc. Nephrol. 2017, 28, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- Scialla, J.J. Epidemiologic insights on the role of fibroblast growth factor 23 in cardiovascular disease. Curr. Opin. Nephrol. Hypertens. 2015, 24, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Nakano, C.; Hamano, T.; Fujii, N.; Obi, Y.; Matsui, I.; Tomida, K.; Mikami, S.; Inoue, K.; Shimomura, A.; Nagasawa, Y.; et al. Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis. Bone 2012, 50, 1266–1274. [Google Scholar] [CrossRef]
- Lutsey, P.L.; Alonso, A.; Selvin, E.; Pankow, J.S.; Michos, E.D.; Agarwal, S.K.; Loehr, L.R.; Eckfeldt, J.H.; Coresh, J. Fibroblast growth factor-23 and incident coronary heart disease, heart failure, and cardiovascular mortality: The Atherosclerosis Risk in Communities study. J. Am. Heart Assoc. 2014, 3, e000936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Marco, G.S.; Reuter, S.; Kentrup, D.; Grabner, A.; Amaral, A.P.; Fobker, M.; Stypmann, J.; Pavenstädt, H.; Wolf, M.; Faul, C.; et al. Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blockade in an animal model of CKD. Nephrol. Dial. Transplant. 2014, 29, 2028–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figurek, A.; Rroji, M.; Spasovski, G. The Complexity of FGF23 Effects on Cardiomyocytes in Normal and Uremic Milieu. Cells 2021, 10, 1266. [Google Scholar] [CrossRef] [PubMed]
- Kuczera, P.; Adamczak, M.; Wiecek, A. Fibroblast Growth Factor-23—A Potential Uremic Toxin. Toxins 2016, 8, 369. [Google Scholar] [CrossRef] [Green Version]
- Six, I.; Okazaki, H.; Gross, P.; Cagnard, J.; Boudot, C.; Maizel, J.; Drueke, T.B.; Massy, Z.A. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS ONE 2014, 9, e93423. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shiizaki, K.; Kuro-o, M.; Moe, O.W. Fibroblast growth factor 23 and Klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 2013, 75, 503–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattineni, J.; Twombley, K.; Goetz, R.; Mohammadi, M.; Baum, M. Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am. J. Physiol. Ren. Physiol. 2011, 301, F371–F377. [Google Scholar] [CrossRef] [Green Version]
- Bacchetta, J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Wesseling-Perry, K.; Gales, B.; Adams, J.S.; Salusky, I.B.; Hewison, M. Fibroblast growth factor 23 inhibits extrarenal synthesis of 1,25-dihydroxyvitamin D in human monocytes. J. Bone Miner. Res. 2013, 28, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, E.A.; Han, X.; Xiao, Z.; Quarles, L.D. Role of Fibroblast Growth Factor-23 in Innate Immune Responses. Front. Endocrinol. 2018, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Mace, M.L.; Olgaard, K.; Lewin, E. New Aspects of the Kidney in the Regulation of Fibroblast Growth Factor 23 (FGF23) and Mineral Homeostasis. Int. J. Mol. Sci. 2020, 21, 8810. [Google Scholar] [CrossRef]
- Xiao, Z.; Riccardi, D.; Velazquez, H.A.; Chin, A.L.; Yates, C.R.; Carrick, J.D.; Smith, J.C.; Baudry, J.; Quarles, L.D. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia. Sci. Signal. 2016, 9, ra113. [Google Scholar] [CrossRef] [PubMed]
- Kakkanattu, T.J.; Sankarasubbaiyan, S.; Yadav, A.K.; Kundu, M.; Bg, M.G.; Kumar, V.; Shah, K.; Jha, V. Outcome and Determinants of Outcome of COVID-19 Infection among Hemodialysis Patients: Findings from a National Dialysis Network Program in India. Kidney Int. Rep. 2021, 6, 1429–1432. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-T.; Zheng, C.-M.; Lin, Y.-C.; Wu, M.-Y.; Lin, Y.-F.; Hsu, Y.-H.; Hsu, C.-C.; Wu, M.-S. Aberrant Serum Parathyroid Hormone, Calcium, and Phosphorus as Risk Factors for Peritonitis in Peritoneal Dialysis Patients. Sci. Rep. 2021, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.A.; Kim, J.H.; Kim, Y.K.; Chang, Y.K.; Park, C.W.; Kim, S.Y.; Kim, Y.S.; Kang, S.-W.; Kim, N.-H.; Kim, Y.-L.; et al. Low Parathyroid Hormone Level Predicts Infection-Related Mortality in Incident Dialysis Patients: A Prospective Cohort Study. Korean J. Intern. Med. 2020, 35, 160–170. [Google Scholar] [CrossRef]
- Chilean Ministry of Health. Epidemiological Surveillance System EPIVIGILA. 2021. Available online: http://epi.minsal.cl/sistema-de-vigilancia-epidemiologica-epivigila-antecedentes/ (accessed on 21 October 2022).
- World Health Organization. COVID-19 Coding in ICD-10. Available online: https://www.who.int/classifications/icd/COVID-19-coding-icd10.pdf (accessed on 31 October 2021).
Characteristics | Total Cohort | Patients without SARS-CoV-2 Infection | Patients with SARS-CoV-2 Infection | p Value | ||||
---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | |||
Total | 243 | 100% | 198 | 81.48% | 45 | 18.52% | - | |
Sex | Female (%) | 120 | 49.38% | 102 | 51.52% | 18 | 40.00% | 0.163 |
Male (%) | 123 | 50.62% | 96 | 48.48% | 27 | 60.00% | ||
Age group | 18–39 years (%) | 8 | 3.29% | 8 | 4.04% | 0 | 0.00% | 0.024 |
40–49 years (%) | 37 | 15.23% | 35 | 17.68% | 2 | 4.44% | ||
50–59 years (%) | 66 | 27.16% | 56 | 28.28% | 10 | 22.22% | ||
60–69 years (%) | 95 | 39.09% | 73 | 36.87% | 22 | 48.89% | ||
70–79 years (%) | 31 | 12.76% | 23 | 11.62% | 8 | 17.78% | ||
≥80 years (%) | 6 | 2.47% | 3 | 1.52% | 3 | 6.67% | ||
Comorbidities | Diabetes (%) | 110 | 45.27% | 83 | 41.92% | 27 | 60.00% | 0.028 |
Hypertension (%) | 218 | 89.71% | 177 | 89.39% | 41 | 91.11% | 0.732 | |
Heart failure (%) | 40 | 16.46% | 31 | 15.66% | 9 | 20.00% | 0.478 | |
Vascular access | Arteriovenous fistula (%) | 140 | 57.61% | 111 | 56.06% | 29 | 64.44% | 0.304 |
Hemodialysis catheter (%) | 103 | 42.39% | 87 | 43.94% | 16 | 35.56% | ||
Hemodialysis parameters | Residual diuresis (%) | 80 | 32.92% | 67 | 33.84% | 13 | 28.89% | 0.524 |
Hemodialysis vintage (months) | 25 [15–40] | 25 [15–39] | 26 [18–45] | 0.481 | ||||
Dry weight (kg) | 70.20 ± 7.66 | 70.54 ± 7.45 | 68.71 ± 8.44 | 0.148 | ||||
Single pool Kt/V (spKt/V) | 1.31 ± 0.20 | 1.31 ± 0.21 | 1.34 ± 0.22 | 0.413 | ||||
Medications | Angiotensin receptor blockers (%) | 175 | 72.02% | 142 | 71.72% | 33 | 73.33% | 0.827 |
Calcium channel blockers (%) | 178 | 73.25% | 147 | 74.24% | 31 | 68.89% | 0.464 | |
Loop diuretics (%) | 46 | 18.93% | 35 | 17.68% | 11 | 24.44% | 0.296 | |
Vitamin D analogs (%) | 56 | 23.05% | 46 | 23.23% | 10 | 22.22% | 0.885 | |
Phosphate binders (%) | 209 | 86.01% | 170 | 85.86% | 39 | 86.67% | 0.888 | |
Calcimimetics (%) | 48 | 19.75% | 40 | 20.20% | 8 | 17.78% | 0.712 | |
Erythropoietic stimulating agents (%) | 203 | 83.54% | 166 | 83.84% | 37 | 82.22% | 0.792 | |
Laboratory parameters | Blood ureic nitrogen (mg/dL) | 64.06 ± 12.70 | 64.56 ± 12.31 | 61.86 ± 14.25 | 0.199 | |||
Intact parathormone (pg/mL) | 565 [284–884] | 572 [275–888] | 511 [293–795] | 0.433 | ||||
25-OH vitamin D (ng/mL) | 19.05 ± 8.53 | 19.31 ± 8.57 | 17.93 ± 8.36 | 0.328 | ||||
Serum phosphate (mg/dL) | 5.15 ± 1.08 | 5.16 ± 1.12 | 5.08 ± 8.78 | 0.664 | ||||
Total serum calcium (mg/dL) | 8.22 ± 0.98 | 8.21 ± 0.98 | 8.26 ± 1.01 | 0.785 | ||||
Ferritin (ng/mL) | 467.72 ± 168.45 | 464.82 ± 170.17 | 480.51 ± 161.89 | 0.573 | ||||
Hemoglobin (g/dL) | 9.45 ± 1.33 | 9.42 ± 1.36 | 9.61 ± 1.20 | 0.379 | ||||
Intact fibroblast growth factor 23 (pg/mL) | 319 [204–600] | 288 [195–580] | 436 [269–669] | 0.026 |
Characteristics | Total Cohort | Patients with Low FGF23 Levels (<p50) | Patients with High FGF23 Levels (≥p50) | p-Value | ||||
---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | |||
Total | 243 | 100% | 121 | 49.79% | 122 | 50.21% | - | |
Sex | Female (%) | 120 | 49.38% | 57 | 47.11% | 63 | 51.64% | 0.480 |
Male (%) | 123 | 50.62% | 64 | 52.89% | 59 | 48.36% | ||
Age group | 18–39 years (%) | 8 | 3.29% | 6 | 4.96% | 2 | 1.64% | 0.236 |
40–49 years (%) | 37 | 15.23% | 22 | 18.18% | 15 | 12.30% | ||
50–59 years (%) | 66 | 27.16% | 29 | 23.97% | 37 | 30.33% | ||
60–69 years (%) | 95 | 39.09% | 50 | 41.32% | 45 | 36.89% | ||
70–79 years (%) | 31 | 12.76% | 12 | 9.92% | 19 | 15.57% | ||
≥80 years (%) | 6 | 2.47% | 2 | 1.65% | 4 | 3.28% | ||
Comorbidities | Diabetes (%) | 110 | 45.27% | 49 | 40.50% | 61 | 50.00% | 0.137 |
Hypertension (%) | 218 | 89.71% | 109 | 90.08% | 109 | 89.34% | 0.850 | |
Heart failure (%) | 40 | 16.46% | 19 | 15.70% | 21 | 17.21% | 0.751 | |
Vascular access | Arteriovenous fistula (%) | 140 | 57.61% | 74 | 61.16% | 66 | 54.10% | 0.266 |
Hemodialysis catheter (%) | 103 | 42.39% | 47 | 38.84% | 56 | 45.90% | ||
Hemodialysis parameters | Residual diuresis (%) | 80 | 32.92% | 42 | 34.71% | 38 | 31.15% | 0.555 |
Hemodialysis vintage (months) | 25 [15–40] | 27 [16–42] | 23 [14–39] | 0.128 | ||||
Dry weight (kg) | 70.20 ± 7.66 | 70.47 ± 7.74 | 69.92 ± 7.60 | 0.574 | ||||
Single pool Kt/V (spKt/V) | 1.31 ± 0.20 | 1.35 ± 0.21 | 1.27 ± 0.20 | 0.003 | ||||
Medications | Angiotensin receptor blockers (%) | 175 | 72.02% | 92 | 76.03% | 83 | 68.03% | 0.165 |
Calcium channel blockers (%) | 178 | 73.25% | 91 | 75.21% | 87 | 71.31% | 0.493 | |
Loop diuretics (%) | 46 | 18.93% | 23 | 19.01% | 23 | 18.85% | 0.975 | |
Vitamin D analogs (%) | 56 | 23.05% | 29 | 23.97% | 27 | 22.13% | 0.734 | |
Phosphate binders (%) | 209 | 86.01% | 107 | 88.43% | 102 | 83.61% | 0.279 | |
Calcimimetics (%) | 48 | 19.75% | 23 | 19.01% | 25 | 20.49% | 0.771 | |
Erythropoietic stimulating agents (%) | 203 | 83.54% | 95 | 78.51% | 108 | 88.52% | 0.035 | |
Laboratory parameters | Blood ureic nitrogen (mg/dL) | 64.06 ± 12.70 | 62.86 ± 13.56 | 65.24 ± 11.73 | 0.145 | |||
Intact parathormone (pg/mL) | 565 [284–884] | 379 [233–710] | 697 [479–918] | 0.001 | ||||
25-OH vitamin D (ng/mL) | 19.05 ± 8.53 | 19.14 ± 8.12 | 18.96 ± 8.96 | 0.868 | ||||
Serum phosphate (mg/dL) | 5.15 ± 1.08 | 5.17 ± 1.13 | 5.12 ± 1.03 | 0.725 | ||||
Total serum calcium (mg/dL) | 8.22 ± 0.98 | 8.24 ± 1.05 | 8.19 ± 0.92 | 0.668 | ||||
Ferritin (ng/mL) | 467.72 ± 168.45 | 472.89 ± 167.94 | 462.60 ± 169.49 | 0.635 | ||||
Hemoglobin (g/dL) | 9.45 ± 1.33 | 9.36 ± 1.35 | 9.55 ± 1.31 | 0.263 | ||||
Intact fibroblast growth factor 23 (pg/mL) | 319 [204–600] | 204 [160–267] | 598 [465–703] | <0.001 | ||||
Clinical outcomes | SARS-CoV-2 infection (%) | 45 | 18.52% | 16 | 13.22% | 29 | 23.77% | 0.034 |
COVID-19-related hospitalization (%) | 35 | 14.40% | 12 | 9.92% | 23 | 18.85% | 0.047 | |
COVID-19-related death (%) | 12 | 4.94% | 4 | 3.31% | 8 | 6.56% | 0.242 | |
COVID-19-non-related death (%) | 20 | 8.23% | 8 | 6.61% | 12 | 9.84% | 0.360 | |
COVID-19-related hospitalization or death (%) | 36 | 14.81% | 12 | 9.92% | 24 | 19.67% | 0.032 |
Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Hazard Ratio | 95% CI | p-Value | Hazard Ratio | 95% CI | p-Value | ||
Male | 1.551 | 0.854 | 2.816 | 0.149 | 1.597 | 0.875 | 2.915 | 0.127 |
Age > 60 years | 2.634 | 1.360 | 5.101 | 0.004 | 2.630 | 1.352 | 5.118 | 0.004 |
Diabetes | 1.909 | 1.051 | 3.465 | 0.034 | 1.916 | 1.053 | 3.485 | 0.033 |
Hypertension | 1.192 | 0.427 | 3.328 | 0.737 | ||||
Heart failure | 1.315 | 0.634 | 2.731 | 0.462 | ||||
Vascular access (fistula) | 1.415 | 0.768 | 2.604 | 0.265 | ||||
Residual diuresis | 0.819 | 0.430 | 1.561 | 0.545 | ||||
Hemodialysis vintage | 1.004 | 0.991 | 1.017 | 0.568 | ||||
Dry weight | 0.973 | 0.938 | 1.008 | 0.128 | 0.981 | 0.946 | 1.017 | 0.301 |
spKt/V | 1.904 | 0.469 | 7.738 | 0.368 | ||||
Use of ARBs | 1.076 | 0.556 | 2.083 | 0.829 | ||||
Use of CCBs | 0.798 | 0.424 | 1.500 | 0.483 | ||||
Use of loop diuretics | 1.387 | 0.702 | 2.737 | 0.346 | ||||
Use of vitamin D analogs | 0.959 | 0.475 | 1.938 | 0.908 | ||||
Use of phosphate binders | 1.073 | 0.454 | 2.534 | 0.873 | ||||
Use of calcimimetics | 0.899 | 0.419 | 1.931 | 0.786 | ||||
Use of ESAs | 0.840 | 0.391 | 1.803 | 0.654 | ||||
Blood ureic nitrogen | 0.987 | 0.963 | 1.010 | 0.261 | ||||
Intact PTH | 1.000 | 0.999 | 1.000 | 0.420 | ||||
25-OH vitamin D | 0.982 | 0.948 | 1.016 | 0.295 | ||||
Serum phosphate | 0.941 | 0.722 | 1.226 | 0.654 | ||||
Total serum calcium | 1.060 | 0.789 | 1.425 | 0.697 | ||||
Ferritin | 1.000 | 0.999 | 1.002 | 0.580 | ||||
Hemoglobin | 1.091 | 0.884 | 1.347 | 0.418 | ||||
Intact FGF23 (>p50) | 1.917 | 1.041 | 3.530 | 0.037 | 1.920 | 1.035 | 3.562 | 0.039 |
Univariate Analysis | Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Hazard Ratio | 95% CI | p-Value | Hazard Ratio | 95% CI | p-Value | ||
Male | 1.823 | 0.923 | 3.600 | 0.084 | 1.913 | 0.963 | 3.800 | 0.064 |
Age > 60 years | 2.841 | 1.336 | 6.043 | 0.007 | 2.655 | 1.221 | 5.776 | 0.014 |
Diabetes | 2.546 | 1.273 | 5.091 | 0.008 | 2.526 | 1.259 | 5.066 | 0.009 |
Hypertension | 0.913 | 0.323 | 2.583 | 0.865 | ||||
Heart failure | 1.749 | 0.822 | 3.719 | 0.147 | 1.433 | 0.660 | 3.110 | 0.363 |
Vascular access (fistula) | 1.223 | 0.626 | 2.390 | 0.556 | ||||
Residual diuresis | 0.668 | 0.314 | 1.420 | 0.294 | ||||
Hemodialysis vintage | 1.005 | 0.991 | 1.019 | 0.496 | ||||
Dry weight | 0.970 | 0.932 | 1.010 | 0.139 | 0.979 | 0.940 | 1.020 | 0.319 |
spKt/V | 2.258 | 0.472 | 10.809 | 0.308 | ||||
Use of ARBs | 0.879 | 0.432 | 1.786 | 0.721 | ||||
Use of CCBs | 0.718 | 0.359 | 1.435 | 0.348 | ||||
Use of loop diuretics | 1.242 | 0.566 | 2.725 | 0.589 | ||||
Use of vitamin D analogs | 1.111 | 0.523 | 2.363 | 0.784 | ||||
Use of phosphate binders | 1.017 | 0.395 | 2.615 | 0.972 | ||||
Use of calcimimetics | 1.021 | 0.447 | 2.330 | 0.961 | ||||
Use of ESAs | 0.755 | 0.331 | 1.724 | 0.505 | ||||
Blood ureic nitrogen | 0.984 | 0.959 | 1.011 | 0.239 | ||||
Intact PTH | 1.000 | 0.999 | 1.001 | 0.866 | ||||
25-OH vitamin D | 0.982 | 0.945 | 1.021 | 0.363 | ||||
Serum phosphate | 0.869 | 0.645 | 1.171 | 0.356 | ||||
Total serum calcium | 1.125 | 0.807 | 1.568 | 0.487 | ||||
Ferritin | 1.001 | 0.999 | 1.003 | 0.558 | ||||
Hemoglobin | 1.034 | 0.813 | 1.315 | 0.783 | ||||
Intact FGF23 (>p50) | 2.116 | 1.058 | 4.232 | 0.034 | 2.121 | 1.049 | 4.287 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro, L.; Michea, L.; Parra-Lucares, A.; Mendez-Valdes, G.; Villa, E.; Bravo, I.; Pumarino, C.; Ayala, P.; Sanhueza, M.E.; Torres, R.; et al. High Plasma Levels of Fibroblast Growth Factor 23 Are Associated with Increased Risk of COVID-19 in End-Stage Renal Disease Patients on Hemodialysis: Results of a Prospective Cohort. Toxins 2023, 15, 97. https://doi.org/10.3390/toxins15020097
Toro L, Michea L, Parra-Lucares A, Mendez-Valdes G, Villa E, Bravo I, Pumarino C, Ayala P, Sanhueza ME, Torres R, et al. High Plasma Levels of Fibroblast Growth Factor 23 Are Associated with Increased Risk of COVID-19 in End-Stage Renal Disease Patients on Hemodialysis: Results of a Prospective Cohort. Toxins. 2023; 15(2):97. https://doi.org/10.3390/toxins15020097
Chicago/Turabian StyleToro, Luis, Luis Michea, Alfredo Parra-Lucares, Gabriel Mendez-Valdes, Eduardo Villa, Ignacio Bravo, Catalina Pumarino, Patricia Ayala, María Eugenia Sanhueza, Ruben Torres, and et al. 2023. "High Plasma Levels of Fibroblast Growth Factor 23 Are Associated with Increased Risk of COVID-19 in End-Stage Renal Disease Patients on Hemodialysis: Results of a Prospective Cohort" Toxins 15, no. 2: 97. https://doi.org/10.3390/toxins15020097
APA StyleToro, L., Michea, L., Parra-Lucares, A., Mendez-Valdes, G., Villa, E., Bravo, I., Pumarino, C., Ayala, P., Sanhueza, M. E., Torres, R., Elgueta, L., Chavez, S., Rojas, V., & Alvo, M. (2023). High Plasma Levels of Fibroblast Growth Factor 23 Are Associated with Increased Risk of COVID-19 in End-Stage Renal Disease Patients on Hemodialysis: Results of a Prospective Cohort. Toxins, 15(2), 97. https://doi.org/10.3390/toxins15020097