Next Article in Journal
A Review of the Proteomic Profiling of African Viperidae and Elapidae Snake Venoms and Their Antivenom Neutralisation
Previous Article in Journal
Cyclosporin A as a Source for a Novel Insecticidal Product for Controlling Spodoptera frugiperda
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides

College of Animal Science, Jilin University, 5333 Xi’an Road, Changchun 130062, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Toxins 2022, 14(10), 722; https://doi.org/10.3390/toxins14100722
Submission received: 25 August 2022 / Revised: 7 October 2022 / Accepted: 19 October 2022 / Published: 21 October 2022

Abstract

:
The skin of amphibians is a tissue with biological functions, such as defense, respiration, and excretion. In recent years, researchers have discovered a large number of peptides in the skin secretions of amphibians, including antimicrobial peptides, antioxidant peptides, bradykinins, insulin-releasing peptides, and other peptides. This review focuses on the origin, primary structure, secondary structure, length, and functions of peptides secreted from amphibians’ skin. We hope that this review will provide further information and promote the further study of amphibian skin secretions, in order to provide reference for expanding the research and application of amphibian bioactive peptides.
Key Contributions: The antimicrobial peptides, antioxidant peptides, bradykinin peptides, insulin-releasing peptides, and other peptides isolated from the skin secretions of amphibians were reviewed.

1. Introduction

A myriad of peptides from animals and plants have been documented. These peptides hold potential physiological functions in humans, mainly including antimicrobial [1], antioxidative [2,3], antithrombotic [4,5], and antihypertensive [6,7], depending on their structural properties. To date, peptides are isolated and identified from legumes [8], cereal [9], fish-derived products [10,11], porcine skin [12,13], antler [14,15], and amphibians skin, among which, the most studied peptides are the ones found in the amphibians skin, due to the amphibians skin’s unique chemical properties [16].
Amphibians skin is directly exposed to a variety of environments, without scales and hair, and it not only protects amphibians from the effects of the external environment, but also performs various functions, such as respiration, osmoregulation, and thermoregulation [17]. The peptides, stored in amphibian skin granular glands, can be released in high concentrations into skin secretions when the amphibians are stressed or injured. Peptides, including antimicrobial peptides [18,19], antioxidant peptides [20,21], antiviral peptides [22,23], antitumor peptides [24,25], and other peptides [16], are extracted, as regulating body internal functions and fertility of traditional Chinese medicine, as well as the ancient Egyptian medicine to cure the pain and diarrhea [26,27,28,29].
In this paper, exploration of the structures and biological functions of peptides from the skin secretions of amphibians were described, which provides theoretical reference for expanding the research field of peptides.

2. Antimicrobial Peptides

Antimicrobial peptides (AMPs), an important part in innate immune defense of amphibians [30], have been reported to have an excellent broad-spectrum antibacterial function and low biological toxicity [31]. AMPs sterilize and inhibit bacteria by interacting with bacterial cell membrane [32]. AMPs can selectively combine with the outer membrane of bacteria to form cavities in the cell membrane, which leads to the outflow of nutrients, internal ions, other cellular contents, and bacterial death. As we all know, alpha helix (α-helix) is necessary for AMPs to resist bacteria [33]. There are three main membrane permeation mechanisms of α-helix AMPs: Barrel-stave mechanism [34], Carpet model [35], and Toroidal pore model [36] (Figure 1). They are used to explain the AMPs action on bacterial membrane, but the mechanism is not clear.
Esculentins, brevinins, ranatuerins, ranacyclins, temporins, bombinins, and dybowskins are the most famous and representative amphoteric cationic AMPs in amphibian skin secretions [37].
Figure 1. Mode of action for AMPs activity [36,38]; “⊥” indicates an inhibitory effect. Barrel-stave model: Under the action of electrostatic attraction, positively charged AMPs aggregate to negatively charged bacterial membrane surface. AMPs induce and participate in continuous bending of monolayer phospholipid membrane. AMPs are inserted into the water channel composed of phospholipid head groups through small holes [39]. Carpet model: When the AMPs are spread to the surface of the membrane until the concentration of the domain is reached, small holes will be formed on the membrane surface, and then the membrane will be destroyed, leading to cell death [40]. Toroidal pore model: AMPs are arranged perpendicular to the cell membrane in the plasma membrane, and their hydrophobic sides are outside. The polar surface forms holes, through which the contents of bacterial cytoplasm are lost, leading to cell death [36]. AMPs can inhibit DNA, RNA, and protein synthesis.
Figure 1. Mode of action for AMPs activity [36,38]; “⊥” indicates an inhibitory effect. Barrel-stave model: Under the action of electrostatic attraction, positively charged AMPs aggregate to negatively charged bacterial membrane surface. AMPs induce and participate in continuous bending of monolayer phospholipid membrane. AMPs are inserted into the water channel composed of phospholipid head groups through small holes [39]. Carpet model: When the AMPs are spread to the surface of the membrane until the concentration of the domain is reached, small holes will be formed on the membrane surface, and then the membrane will be destroyed, leading to cell death [40]. Toroidal pore model: AMPs are arranged perpendicular to the cell membrane in the plasma membrane, and their hydrophobic sides are outside. The polar surface forms holes, through which the contents of bacterial cytoplasm are lost, leading to cell death [36]. AMPs can inhibit DNA, RNA, and protein synthesis.
Toxins 14 00722 g001

2.1. Esculentins

Esculentins (Table 1) were isolated from the skin secretions of North American and Asian frogs, which contain esculentin-1 and esculentin-2. Both esculentin-1 and esculentin-2 are circular peptides, with two conserved Cys residues forming an intramolecular disulfide bond at the C-terminus of the molecule, resulting in a ring structure of seven peptides at the C-terminus.
Esculentin-1 consists of 46 amino acids. Esculentin-1 family has a well-conserved primary structure with only a handful of similar polar amino acid residue substitutions. The ring domain is highly conserved among the cationic and seven amino acids. Esculentin-1 has strong inhibitory activity against a variety of pathogenic bacteria (minimum inhibitory concentration (MIC) < 1 μM), such as E. coli, S. aureus, P. aeruginosa, and C. albicans [41,42].
Esculentin-2 is slightly shorter, typically containing 37 amino acids [41]. Members of the esculentin-2 family have more amino acid substitutions than esculentin-1, mostly in amino acids of similar properties. Esculentin-2 shows different antimicrobial activity against E. coli (MIC < 10 μM), S. aureus (MIC < 10 μM), and C. albicans (MIC, 30–50 μM) [42].
Table 1. The origin, primary structure, secondary structure, length, and antibacterial activity of esculentins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Table 1. The origin, primary structure, secondary structure, length, and antibacterial activity of esculentins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Peptides NameSpeciesPrimary StructureSecondary StructureLengthMIC (μM)Ref.
Esculentin-1Rana esculentaGIFSKLGRKKIKNLLISGLKNVGKEVGMDVVRTGIDIAGCKIKGECHh: 19.57%
Ee: 39.13%
Cc: 41.30%
460.2 (E. coli D21)
0.1 (B. megaterium BmII)
0.4 (S. aureus Cowan 1)
0.7 (P. aeruginosab ATCC15692)
0.5 (C. Albican)
0.9 (S. Cerevisiae)
[43]
Esculentin-1SEaRana sevosaGLFSKFNKKKIKSGLIKIIKTAGKEAGLEALRTGIDVIGCKIKGECHh: 36.96%
Ee: 26.09%
Cc: 36.96%
461.1 (E. coli)
1.21 (M. luteus)
[44]
Esculentin-2aRana ridibundaGILSLVKGVAKLAGKGLAKEGGKFGLELIACKIAKQCHh: 48.65%
Ee: 8.11%
Cc: 43.24%
370.4 (E. coli D21)
0.2 (B. megaterium BmII)
0.8 (S. aureus Cowan 1)
3.5 (P. aeruginosab ATCC15692)
[44]
 
Esculentin-2SE
Rana sevosa 
GFFSLIKGVAKIATKGLAKNLGKMGLDLVGCKISKEC
Hh: 43.24%
Ee: 32.43%
Cc: 24.32%
37 
0.3 (E. coli)
0.36 (M. luteus)
[44]
Esculentin-2-ALaAmolops loloensisGIFALIKTAAKFVGKNLLKQAGKAGLEHLACKANNQCHh: 62.16%
Ee: 13.51%
Cc: 24.32%
3712.5 (E. coli)
7.5 (B. dysenteriae)
25 (A. calcoaceticus)
50 (P. aeruginosa)
2.5 (S. aureus)
2.5 (B. pumilus)
7.5 (B. cereus)
[45]
Esculentin-2-ALbGIFSLIKTAAKFVGKNLLKQAGKAGVEHLACKANNQCHh: 56.76%
Ee: 5.41%
Cc: 37.84%
3712.5 (E. coli)
7.5 (B. dysenteriae)
12.5 (A. calcoaceticus)
50 (P. aeruginosa)
1.25 (S. aureus)
2.5 (B. pumilus)
7.5 (B. cereus)
Esculentin-2CHaLithobates. chiricahuensisGFSSIFRGVAKFASKGLGK DLAKLGVDLVA CKISKQCHh: 54.05%
Cc: 45.95%
37<6 (S. aureus)[46]
Esculentin 2EMGlandirana emeljanoviGILDTLKQFAKGVGKDLVKGAAQGVLSTVSCKLAKTCHh: 27.03%
Ee: 32.43%
Cc: 40.54%
37>75 (E. coli)
<6.25 (S. aureus)
[47]

2.2. Brevinins

Brevinins (Table 2) consist of two kinds of antibacterial peptides: Brevinin-1, which usually consists of 24 amino acids, and brevinin-2, which contains 33 amino acids. Morikawa et al. [48] isolated the first members of brevinins from the skin secretions of Rana brevipoda porsa in 1992 and named them brevinin-1 and brevinin-2, respectively.
The primary and secondary structures of brevinin-1 family peptides are relatively conserved, and the 14th position of the N-terminal peptide is mostly Pro residue. Structure- and function-related studies suggested that this residue generates a stable conjugation in the molecule and may play a significant role in transmembrane pore formation [49]. The C-terminal of brevinin-1 is composed of conserved seven amino acid sequences: Cys-3X-Lys/Arg-Lys-Cys, which forms an intramolecular disulfide bond between the two cysteines, allowing it to form a conserved ring structure of seven amino acids at the C-terminal, named “Rana-box”. Brevinin-1 has strong anti-bacterial and anti-fungal activities as well as a strong hemolytic activity (HC50). In addition, brevinin-1 from Rana japonicum has anti-herpes virus type I and type II activities [50,51,52]. The obtained brevinin-1E from Rana esculenta linneaus had a hemolytic activity with less than 1 μM [50], which would limit its prospects for therapeutic use. Kwon et al. [53] reported that the linear acetamide cysteine-methylated brevinin-1 analogue could decrease the hemolytic activity while it did not have an impact on antibacterial activity, and brevinin-1 still had antiviral activity after reduction and carboxyamine methylation. Kumari et al. [54] showed that transferring the C-terminal domain of the heptapeptide ring to the middle region of the peptide chain could also decrease the hemolytic activity without impairing its antimicrobial activity. In addition, these findings suggested that brevinin-1 can be used as a potential new drug target.
Brevinin-2 family peptides consist of 33 or 37 amino acid residues, the first amino acid in the N-terminal is Gly, the C-terminal has “Rana-box”, the isoelectric point is greater than 7, carries 1–5 positive charges, contains α-helical structure, and is a typical frog antimicrobial peptide. Brevinin-2 obtained from Rana esculenta [55,56] and Rana ornitiventrisprice [57] has a strong antibacterial activity against E. coli, S. aureus, and C. albicans. The hydrophilic and hydrophobic amino acids of this type of AMPs are alternately distributed, with typical amphiphilic properties, and the overall antibacterial activity is relatively high, which is suitable for modification.
Table 2. The origin, primary structure, secondary structure, length, and antibacterial activity of brevinins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Table 2. The origin, primary structure, secondary structure, length, and antibacterial activity of brevinins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Peptides Name SpeciesPrimary StructureSecondary StructureLengthMIC (μM)Ref.
Brevinin-1Rana brevipoda porsaFLPVLAGIAAKVVPALFCKITKKCHh: 33.33%
Ee: 16.67%
Cc: 50.00%
2434 (E. coli)
8 (S. aureus)
[48]
Brevinin-1GHdHylarana guentheriFLGALFKVASKLVPAAICSISKKCHh: 16.67%
Ee: 37.50%
Cc: 45.83%
248 (E. coli)
32 (P. aeruginosa)
2 (S. aureus)
4 (MRSA)
4 (C. albicans)
[58]
Brevinin-1AUaRana aurora auroraFLPILAGLAAKLVPKVFCSITKKCHh: 12.50%
Ee: 33.33%
Cc: 54.17%
2413 (E. coli)
25 (P. aeruginosa)
13 (E. cloacae)
50 (K. pneumoniae)
3 (S. aureus)
6 (S. epidermidis)
3 (C. albicans)
[59]
Brevinin-1AUbFLPILAGLAANILPKVFCSITKKCEe: 33.33%
Cc: 66.67%
2425 (E. coli)
25 (P. aeruginosa)
25 (E. cloacae)
>50 (K. pneumoniae)
3 (S. aureus)
6 (S. epidermidis)
3 (C. albicans)
Brevinin-1BYaRana boyliiFLPILASLAAKFGPKLFCLVTKKCHh: 16.67%
Ee: 33.33%
Cc: 50.00%
2417 (E. coli)
2 (S. aureus)
3 (C. albicans)
[50]
Brevinin-1BYbLPILASLAAKLGPKLFCLVTKKCHh: 13.04%
Ee: 30.43%
Cc: 56.52%
2316 (E. coli)
4 (S. aureus)
16 (C. albicans)
Brevinin-1BYcLPILASLAATLGPKLLCLITKKCEe: 39.13%
Cc: 60.87%
23NA (E. coli)
8 (S. aureus)
35 (C. albicans)
Brevinin-1SYRana sylvaticaFLPVVAGLAAKVLPSIICAVTKKCEe: 41.67%
Cc: 58.33%
2445 (E. coli)
7 (S. aureus)
[51]
Brevinin-1LTaHylarana latouchiiFFGTALKIAANVLPTAICKILKKCHh: 25.00%
Ee: 29.17%
Cc: 45.83%
2480 (P. fluorescens)
10 (S. aureus)
6 (B. subtilis)
50 (C. albicans)
[60]
Brevinin-1SaRana sphenocephalaFLPAIVGAAGQFLPKIFCAISKKCEe: 41.67%
Cc: 58.33%
2455 (E. coli)[61]
Brevinin-1SbFLPAIVGAAGKFLPKIFCAISKKCEe: 54.17%
Cc: 45.83%
2417 (E. coli)
Brevinin-1ScFFPIVAGVAGQVLKKIYCTISKKCEe: 62.50%
Cc: 37.50%
2414 (E. coli)
Brevinin-2Rana brevipoda porsaGLLDSLKGFAATAGKGVLQSLLSTASCKLAKTCHh: 39.39%
Ee: 6.06%
Cc: 54.55%
334 (E. coli)
8 (S. aureus)
[48]
Brevinin-2ERana esculentaGIMDTLKNLAKTAGKGALQSLLNKASCKLSGQCHh: 48.48%
Cc: 51.52%
330.5 (E. coli D21)
0.2 (B. megaterium BmII)
2 (S. aureus Cowan 1)
>30 (P. aeruginosab ATCC15692)
NA (C. albican)
NA (S. cerevisiae)
[43]
Brevinin-2OaRana ornativentrisGLFNVFKGALKTAGKHVAGSLLNQLKCKVSGGCHh: 42.42%
Ee: 27.27%
Cc: 30.30%
332 (E. coli)
10 (S. aureus)
40 (C. albicans)
[62]
Brevinin-2ObGIFNVFKGALKTAGKHVAGSLLNQLKCKVSGECHh: 45.45%
Ee: 33.33%
Cc: 21.21%
334 (E. coli)
9 (S. aureus)
40 (C. albicans)

2.3. Ranatuerins

In their study, Goraya et al. [63] isolated ranatuerins (Table 3) from the skin secretions of Rana catesbeiana. There are 25 amino acid residues in ranatuerin-1, and the C-terminus of the molecule contains a circular domain consisting of seven amino acids. Ranatuerins family has a well-conserved primary structure with only individual amino acid substitutions. Ranatuerin-1 has a strong antimicrobial activity and can inhibit S. aureus, E. coli, and C. albicans [63], and was considered as an ideal substitute for antibiotics. The structure of ranatuerin-1 consists of an α-helix, β-lamellar, and β-turn [64]. Substituting Lys residues for Gly residues at positions 10, 13, and 15 to destroy β-lamellar, which can significantly decrease the antibacterial activity of ranatuerin-1, suggest that the β-lamellar structure plays a key role in the antibacterial activity of ranatuerin-1.
The ranatuerin-2 family members have amino acid residues ranging from 28 to 31, and the primary structure of ranatuerin-2 family members varies greatly. Ranatuerin-2 shows high bacteriostatic activity against Gram-positive and Gram-negative microbes and has a low hemolytic activity against human erythrocytes [59]. The MIC of ranatuerin-2 against E. coli ranges from 2 to 30 μM and against S. aureus from 2 to >200 μM. Ranatuerin-2 has a low antimicrobial activity against C. albicans (MIC = 35 μM). The HC50 values of ranatuerin-2 against human erythrocytes are in the range of 35 to >200 μM [42].

2.4. Ranacyclins

Ranacyclins (Table 4) were isolated from the skin secretions of Rana temporaria and Rana esculenta, respectively [70]. In addition, there is a peptide leucine arginine (pLR) homologous loop region [70]. A hallmark of the ranacyclins is the nearly entirely conserved region of 13 amino acids that form a cyclic undecapeptide through a disulphide bridge connecting Cys5 and Cys15 [41]. Ranacyclins interact primarily with the hydrophobic core of the cell membrane, not with the negatively charged lipid head group. Therefore, ranacyclins can combine and intercalate into both zwitterionic and negatively charged membrane vesicles [16,71].
Ranacyclin E and ranacyclin T were found in the skin secretions of Rana temporaria and Rana esculenta [70]. Ranacyclin E has potent antibacterial activity against S. lentus and P. syringae pv tabaci [16,70]. The antibacterial activity of ranacyclin T is similar to ranacyclin E [70,71]. Ranacyclin-B-RN1 and ranacyclin-B-RN2 from H. nigrovittata show an inhibitory effect on the growth of S. aureus at concentrations of up to 6 and 12.7 μM [16].

2.5. Temporins

Temporins (Table 5) were initially identified from the skin secretions of Rana esculenta [73] and Rana temporaria Linnaeus from Europe [74]. Temporins were also isolated from Rana pipiens [52,75], Rana esculenta [55], Rana grylio [76], Rana tsushimensis [77], and Hylarana guentheri [78]. This is the smallest α-helical amphipathic AMP that occurs in nature. The peptide molecule consists of 10–14 amino acid residues and contains one basic amino acid residue (Lys or Arg). In hydrophobic environments, temporins fold into an amphipathic α-helix, and have cationic properties with pH from 2 to 3 [79]. The molecular diversity of temporins peptides determines their functional diversity. Some temporin peptides, such as temporin L have diverse biological activities against bacteria, viruses, fungi, and protozoa, with MICs ranging from 1 to over 100 μM; other temporin proteases exhibit immunomodulatory, transplant infection, anticonvulsant, killing tumor cells, and other physiological activities. Structural and activity studies of temporin A as well as the substitution of Ile residues with Leu can increase the antibacterial activity [80]. Temporin-1Ta and temporin-1Tb are widely used due to their low hemolytic activity [81]. Given that the outer lipopolysaccharide (LPS) can inactivate temporin-1Ta, temporin-1Tb, and other AMPs, a six-residue aromatic cationic peptide WKRKRF named β-boomerang motif folds into a compact “boomerang” structure after interacting with LPS and is incorporated into the temporal protein [82]. Therefore, the inclusion of this motif in AMPs may effectively eliminate outer LPS membrane-induced aggregation, producing broad-spectrum activity. Temporin-1Tl is active against Gram-positive and Gram-negative bacteria [83,84], but it has high hemolytic and cytotoxic activities and low therapeutic index [85]. In the presence of sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles, temporin-1Ta and temporin-1Tl were analyzed by spectroscopic techniques (CD and NMR) and molecular dynamics simulation, simulating the negatively charged membrane and zwitterionic membrane, respectively. Peptides are located at the micelle-water interface in SDS, and they tend to be perpendicular to the micellar surface, with the N-terminal embedded in the hydrophobic core in DPC. However, differences between the two peptides are present: Compared with temporin-1Ta, temporin-1Tl has higher trend in both membrane simulation systems to form an α- helical structure and penetrate lipid vesicles [86]. Studies of temporins interacting with liposomes composed of different phospholipids showed that its antibacterial mechanism is via transmembrane pores formation, which gives rise to bacterial death in the end [87]. To study the bactericidal action of temporins, we hypothesize that we can use a model named “barrel-stave model” (Figure 1), where AMPs are electrostatically attached to the surface of negatively charged cell membranes and then inserted directly into the membrane to form transmembrane voids.

2.6. Bombinins

The first identified amphibian skin AMP was bombinin, which originated from Bombina variegate [90]. The family peptides can be divided into bombinins, bombinin-like peptides (BLPs), and bombinins H (Table 6). The BLPs exhibit substantial homology with other AMPs. BLP-1, BLP-2, and BLP-3 were found in the skin secretions of Bombina orientalis, respectively [91]. Analyzing the nucleotide sequences of the bombinins precursors led to the discovery of bombinin H. In addition, bombinin H was isolated from the skin secretions of B. maxima and B. orientalis [92,93]. Bombinin H consisted of 17 or 20 amino acids. In addition to their equivalent L-isomers, bombinin H contains several peptides with a second-ranked D-amino acid [94].
Bombinins are effective against Gram-positive and Gram-negative bacteria, as well as fungi, but are almost ineffective in hemolysis tests [95]. Xiang et al. [96] revealed that BHL-bombinin is active against S. aureus (MIC = 1.6 μM) and E. coli (MIC = 6.6 μM). Peng et al. [97] reported that the MIC of bombinin-BO1 against S. aureus and E. coli are 26.3 and 26.3 μM, respectively. However, there is a low activity of bombinin H against bacteria, but it lyses erythrocytes. Peng et al. [97] revealed that bombinin H-BO1 is active against S. aureus (MIC > 161.1 μM) and E. coli (MIC > 161.1 μM). Xiang et al. [96] revealed that the MIC of bombinin HL against S. aureus is 156.8 μM, while it is not active against E. coli.
Table 6. The origin, primary structure, secondary structure, length, and antibacterial activity of bombinins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Table 6. The origin, primary structure, secondary structure, length, and antibacterial activity of bombinins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Peptides NameSpeciesPrimary StructureSecondary StructureLengthMIC (μM)Ref.
BHL-bombininBombina orientalisGIGGALLSFGKSALKGLAKGLAEHFHh: 44.00%
Ee: 24.00%
Cc: 32.00%
256.6 (E. coli)
26.2 (P. aeruginosa)
1.6 (S. aureus)
6.6 (MRSA)
[96]
Bombinin HLLLGPVLGLVSNVLGGLLEe: 58.82%
Cc: 41.18%
17NA (E. coli)
NA (P. aeruginosa)
156.8 (S. aureus)
NA (MRSA)
Bombinin-BO1Bombina orientalisGIGSAILSAGKSIIKGLAKGLAEHFHh: 28.00%
Ee: 20.00%
Cc: 52.00%
2526.3 (E. coli)
26.3 (S. aureus)
52.5 (C. albicans)
[97]
Bombinin H-BO1IIGPVLGLVGKALGGLLEe: 47.06%
Cc: 52.94%
1726.3 (E. coli)
26.3 (S. aureus)
52.5 (C. albicans)
Bombinin H1
Bombina variegataIIGPVLGMVGSALGGLLKKIGHh: 23.81%
Ee: 38.10%
Cc: 38.10%
213.8 (E. coli D 21)
2.1 (S. aureus Cowan 1)
[98]
Bombinin H3IIGPVLGMVGSALGGLLKKIGHh: 23.81%
Ee: 38.10%
Cc: 38.10%
213.7 (E. coli D 21)
2.4 (S. aureus Cowan 1)
Bombinin H4LIGPVLGLVGSALGGLLKKIGHh: 23.81%
Ee: 42.86%
Cc: 33.33%
214.8 (E. coli D 21)
3.3 (S. aureus Cowan 1)

2.7. Dybowskins

Dybowskins (Table 7) were identified in the skin secretions of Rana dybowskii. Kim et al. [99] found that dybowskin-1 and dybowskin-2 were both isomors, and the difference lies in the two amino acid residues at the 7th and 14th positions of the N-terminal. From dybowskin-3 to dybowskin-6, they both differed in size and sequence. All the dybowskins showed a strong antimicrobial activity against the Gram-positive and Gram-negative bacteria (MIC, from 12.5 to >100 μM), as well as the fungus (MIC, from 25 to >100 μM) [99]. Jin et al. [100] reported that dybowskin-1CDYa, dybowskin-2 CDYa, and dybowskin-2CDYb had different amino acid compositions and little similarity to the known AMPs sequence. The mature dybowskin-1CDYa and dybowskin-2CDYa had a strong antimicrobial activity and little effect on the hemolysis of human erythrocytes. The dybowskin-1CDYa consisted of 13 amino acids and the dybowskin-2CDYa consisted of 18 amino acids. Yang et al. [69] found that the amino sequences of dybowskin-YJa and dybowskin-YJb were less similar to other antimicrobial peptides isolated from the Rana species. Both dybowskin-YJa and dybowskin-YJb were ineffective against all strains.

3. Antioxidant Peptides

Antioxidant peptides (Table 8) are an important area of scientific interest, which have the important ability to clear free radicals in the body, maintain the normal function of organelles, and keep the body stable. The mechanism of action of antioxidant peptides is a new defense mechanism named “third antioxidant system” [101]. At present, antioxidant peptides have been extracted and isolated from the skin secretions of amphibians. Some researchers have extracted and isolated a variety of antioxidant peptides from the skin secretions of Rana. plyuraden and analyzed their primary structures. It was found that these antioxidant peptides share highly homologous preproregions, although there were significant differences in these mature peptide regions, suggesting that these antioxidant peptides may come from a common ancestor [101]. In addition, a variety of antioxidant peptides from different families have been found in the skin secretions of Odorrana livida, Odorrana schmackeri, and Odorrana andersonii. Liu et al. [102] reported that antioxidin-RL was identified from the skin secretions of Odorrana livida. It eliminates most of the 2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) free radical in 2 s, significantly faster than the commercial antioxidant factor butylated hydroxytoluene, suggesting a potentially significant impact on redox homeostasis in amphibians’ skin. Xie et al. [103] identified a new antioxidant peptide (named OS-LL11) from the skin secretions of Odorrana schmackeri. OS-LL11 directly scavenged by reducing levels of catalase, Keap-1, HO-1, GCLM, and NQO1, maintaining the viability of mouse keratinocytes in mice exposed to ultraviolet B (UVB) or hydrogen peroxide (H2O2). Yin et al. [104] reported that a short gene-coding peptide (OA-VI12) was identified from the skin secretions of Odorrana andersonii. OA-VI12 protected cell viability, promoted catalase release, and reduced the levels of lactic dehydrogenase and reactive oxygen species (ROS).

4. Bradykinin Peptides

Bradykinin is mainly a class of peptides in the kallikrein-bradykinin system, which eventually degrades to contain C-CO2H residue. Bradykinin plays its physiological roles through two different receptors β1 and β2. Among them, β2 is widely distributed in animals, and bradykinin mostly protects the heart through β2 [112]. At present, bradykinin has been found in the skin secretions of amphibians. For example, a novel bradykinin (bombinainin M) consisting of 19 amino acid residues has been found in the skin secretions of toad [113,114]. More than 10 bradykinins have been shown to be effective in expanding blood vessels, regulating blood pressure, and preventing cardiac insufficiency [42,75]. For example, Zhou et al. [115] reported that RR-18 displays an antagonism of bradykinin-induced rat ileum contraction and arterial smooth muscle relaxation. Arichi et al. [116] reported that bradykinin (BK) has negative contractile and variable properties to cardiac contractility, and BK regulates the excitability of intrinsic neurons in the heart by activating non-selective cationic channels and inhibiting M-type K channels through B+2 receptors. Compared with those in mammals, the biosynthetic pathway of bradykinin and its precursor biosynthase in amphibians need to be further explored.

5. Insulin-Releasing Peptides

Insulin-releasing peptides are types of active peptides, which can regulate insulin secretion in vivo and reduce blood glucose. In recent years, a variety of insulin-releasing peptides with different structures have been discovered and isolated from the skin secretions of amphibians (e.g., Rana palustris and Bombina variegate) [117]. For example, Manzo et al. [118] reported that pseudhymenochirin-1Pb and pseudhymenochirin-2Pa adopt a well-defined α-helical conformation. In the membrane-mimetic solvent, 50% (v/v) of trifluoroethanol-H2O extends over almost all the sequence and incorporates a flexible bend. Srinivasan et al. [119] reported that tigerinin-1R (RVCSAIPLPICH) enhances insulin release and improves glucose tolerance, suggesting that tigerinin-1R shows potential for development into novel therapeutic agents for treatment of type 2 diabetes mellitus. Abdel-Wahab et al. [120] reported that pseudin-2 is a cationic α-helical peptide. Pseudin-2 stimulates insulin secretion from BRIN-BD11 cells through a mechanism involving the Ca2+-independent pathway and identifies [Lys18]-pseudin-2 as a peptide with potential to develop valuable insulin drugs as a treatment for type 2 diabetes. In addition, some AMPs are not only antibacterial, but also have the activity of promoting insulin-releasing peptides, for example, the antimicrobial peptide plasticin-L1 obtained from the skin secretions of Leptodactylus laticeps not only has an antibacterial activity, but also has the activity of promoting insulin-releasing peptides [121].

6. Other Peptides

The skin secretions of amphibians (Litoria and Uperoleia) were found to be the main source of anticarcinogenic peptides. The anticancer peptides are mainly composed of α-helical aurein family and C-terminal aminated citropin family consisting of 16 amino acid residues. Both dermaseptin-PS1 isolated from Phyllomedusa sauvagei [122] and aurein isolated from Litoria aureus [123] are active peptides with strong anticancer activity.
A class of peptide compounds named bombesin were obtained from the skin secretions of Bombina. Since then, other peptides (Ranatensin, Litorin, and Phyllolitorin) similar in structure and function to bombesin have been extracted from other frog species. Bombesin acts on smooth muscle, constricts blood vessels, inhibits urine production, and has been shown to be effective in the treatment of neurological diseases [124,125].
In addition to the above species of peptides secreted by amphibians skin, other researchers have extracted bioactive substances, such as trypsin inhibitors [126], antihypotensive peptides [127], and neuropeptides [128,129,130,131]. The peptides from the skin secretions of amphibians are varied in structures and functions, which have played a very important role in promoting the evolution of natural organisms and the development of medical treatment.

7. Conclusions

Amphibians can live in different habitats and ecological environments due to the complex morphological characteristics of their skin, which has different functional bioactive substances. Many studies around the world indicated that amphibians may be the natural source of several drug candidates with antibacterial, antioxidant, antiviral, and anticancer properties. The growing problem of traditional antibiotic resistance and the urgent need for new antibiotics have aroused people’s interest in developing AMPs. First, different from traditional antibiotics, AMPs do not act on specific receptors on the bacterial cell membrane, but primarily through the interaction with the bacterial cell membrane, to achieve the purpose of bacteriostasis and sterilization. Therefore, the adverse consequences of bacterial resistance to AMPs through mutation does not easily appear. Second, based on the antibacterial mechanism of the interaction between AMPs and bacterial cell membranes, the positively charged AMPs have high affinity with LPS on the outer membrane of Gram-negative bacteria, replacing the divalent cations that bind with LPS to stabilize the membrane structure [132]. At the same time, LPS-binding ability of AMPs can prevent the occurrence of endotoxemia [133]. However, during the process of antibiotic-induced bacterial death, the production of proinflammatory cytokines caused by uncontrolled systemic LPS release will eventually lead to fatal septic shock. Although a variety of active peptides have been identified from the skin secretions of amphibians, and some of their biological activities have been known, their biological functions and mechanisms in amphibians need to be further explored. In addition, due to UV and the ecological environment destruction and other human factors, the influence of the amount and type of today’s global amphibians is falling. Therefore, we should try to study the molecular level of peptides in the synthesis of amphibians in the immune defense system and its regulatory mechanism, in order to provide a theoretical basis for its resource protection.

Author Contributions

Writing the manuscript, X.C. and S.L.; conceiving the idea, X.C., S.L., J.F. and S.Z.; conceptualization, project administration, supervision, and writing—review and editing, L.H.; writing—review and editing, Z.W., Y.J., P.X., H.W. and Z.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Natural Science Foundation of Jilin Province (20210204010YY).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Przybylski, R.; Firdaous, L.; Châtaigné, G.; Dhulster, P.; Nedjar, N. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem. 2016, 211, 306–313. [Google Scholar] [CrossRef]
  2. Agrawal, H.; Joshi, R.; Gupta, M. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 2016, 204, 365–372. [Google Scholar] [CrossRef]
  3. Shanmugam, V.P.; Kapila, S.; Sonfack, T.K.; Kapila, R. Antioxidative peptide derived from enzymatic digestion of buffalo casein. Int. Dairy J. 2015, 42, 1–5. [Google Scholar] [CrossRef]
  4. Tu, M.L.; Feng, L.T.; Wang, Z.Y.; Qiao, M.L.; Shahidi, F.; Lu, W.H.; Du, M. Sequence analysis and molecular docking of antithrombotic peptides from casein hydrolysate by trypsin digestion. J. Funct. Foods 2017, 32, 313–323. [Google Scholar] [CrossRef]
  5. Zhang, S.B. In vitro antithrombotic activities of peanut protein hydrolysates. Food Chem. 2016, 202, 1–8. [Google Scholar] [CrossRef]
  6. Chen, Y.; Li, C.; Xue, J.; Kwok, L.Y.; Yang, J.; Zhang, H.; Menghe, B. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus. J. Dairy Sci. 2015, 98, 5113–5124. [Google Scholar] [CrossRef] [Green Version]
  7. Wang, J.; Li, C.; Xue, J.; Yang, J.; Zhang, Q.; Zhang, H.; Chen, Y. Fermentation characteristics and angiotensin I-converting enzyme-inhibitory activity of Lactobacillus helveticus isolate H9 in cow milk, soy milk, and mare milk. J. Dairy Sci. 2015, 98, 3655–3664. [Google Scholar] [CrossRef] [Green Version]
  8. Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef]
  9. Gong, X.; An, Q.; Le, L.; Geng, F.; Jiang, L.; Yan, J.; Xiang, D.; Peng, L.; Zou, L.; Zhao, G.; et al. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit. Rev. Food Sci. Nutr. 2022, 62, 2855–2871. [Google Scholar] [CrossRef]
  10. Rakers, S.; Niklasson, L.; Steinhagen, D.; Kruse, C.; Schauber, J.; Sundell, K.; Paus, R. Antimicrobial peptides (AMPs) from fish epidermis: Perspectives for investigative dermatology. J. Invest. Dermatol. 2013, 133, 1140–1149. [Google Scholar] [CrossRef]
  11. Yang, H.; Wang, H.; Zhao, Y.; Wang, H.; Zhang, H. Effect of heat treatment on the enzymatic stability of grass carp skin collagen and its ability to form fibrils in vitro. J. Sci. Food Agric. 2015, 95, 329–336. [Google Scholar] [CrossRef]
  12. Cao, H.; Zhao, Y.; Zhu, Y.B.; Xu, F.; Yu, J.S.; Yuan, M. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin. Food Chem. 2016, 194, 1245–1253. [Google Scholar] [CrossRef]
  13. Hong, H.; Fan, H.; Roy, B.C.; Wu, J. Amylase enhances production of low molecular weight collagen peptides from the skin of spent hen, bovine, porcine, and tilapia. Food Chem. 2021, 352, 129355. [Google Scholar] [CrossRef]
  14. Wang, W.; Zhang, J.; Yang, X.; Huang, F. Hypoglycemic activity of CPU2206: A novel peptide from sika (Cervus nippon Temminck) antler. J. Food Biochem. 2019, 43, e13063. [Google Scholar] [CrossRef]
  15. Zhao, L.; Wang, X.; Zhang, X.L.; Xie, Q.F. Purification and identification of anti-inflammatory peptides derived from simulated gastrointestinal digests of velvet antler protein (Cervus elaphus Linnaeus). J. Food Drug. Anal. 2016, 24, 376–384. [Google Scholar] [CrossRef] [Green Version]
  16. Xu, X.; Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev. 2015, 115, 1760–1846. [Google Scholar] [CrossRef]
  17. Demori, I.; Rashed, Z.E.; Corradino, V.; Catalano, A.; Rovegno, L.; Queirolo, L.; Salvidio, S.; Biggi, E.; Zanotti-Russo, M.; Canesi, L.; et al. Peptides for Skin Protection and Healing in Amphibians. Molecules 2019, 24, 347. [Google Scholar] [CrossRef] [Green Version]
  18. He, X.; Yang, S.; Wei, L.; Liu, R.; Lai, R.; Rong, M. Antimicrobial peptide diversity in the skin of the torrent frog, Amolops jingdongensis. Amino Acids 2013, 44, 481–487. [Google Scholar] [CrossRef]
  19. Wang, H.; Yu, Z.; Hu, Y.; Li, F.; Liu, L.; Zheng, H.; Meng, H.; Yang, S.; Yang, X.; Liu, J. Novel antimicrobial peptides isolated from the skin secretions of Hainan odorous frog, Odorrana hainanensis. Peptides 2012, 35, 285–290. [Google Scholar] [CrossRef]
  20. Feng, G.; Wu, J.; Yang, H.L.; Mu, L. Discovery of Antioxidant Peptides from Amphibians: A Review. Protein Pept. Lett. 2021, 28, 1220–1229. [Google Scholar] [CrossRef]
  21. Guo, C.; Hu, Y.; Li, J.; Liu, Y.; Li, S.; Yan, K.; Wang, X.; Liu, J.; Wang, H. Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. Biochimie 2014, 105, 192–201. [Google Scholar] [CrossRef]
  22. Bergaoui, I.; Zairi, A.; Tangy, F.; Aouni, M.; Selmi, B.; Hani, K. In vitro antiviral activity of dermaseptin S(4) and derivatives from amphibian skin against herpes simplex virus type 2. J. Med. Virol. 2013, 85, 272–281. [Google Scholar] [CrossRef]
  23. Chianese, A.; Zannella, C.; Monti, A.; De Filippis, A.; Doti, N.; Franci, G.; Galdiero, M. The Broad-Spectrum Antiviral Potential of the Amphibian Peptide AR-23. Int. J. Mol. Sci. 2022, 23, 883. [Google Scholar] [CrossRef]
  24. van Zoggel, H.; Hamma-Kourbali, Y.; Galanth, C.; Ladram, A.; Nicolas, P.; Courty, J.; Amiche, M.; Delbe, J. Antitumor and angiostatic peptides from frog skin secretions. Amino Acids 2012, 42, 385–395. [Google Scholar] [CrossRef]
  25. Jiang, X.; Zhang, X.; Fu, C.; Zhao, R.; Jin, T.; Liu, M.; Pan, C.; Li, L.A.; Ma, J.; Yu, E.; et al. Antineoplastic Effects and Mechanisms of a New RGD Chimeric Peptide from Bullfrog Skin on the Proliferation and Apoptosis of B16F10 Cells. Protein J. 2021, 40, 709–720. [Google Scholar] [CrossRef]
  26. Bevins, C.L.; Zasloff, M. Peptides from frog skin. Annu. Rev. Biochem. 1990, 59, 395–414. [Google Scholar] [CrossRef]
  27. You, D.; Hong, J.; Rong, M.; Yu, H.; Liang, S.; Ma, Y.; Yang, H.; Wu, J.; Lin, D.; Lai, R. The first gene-encoded amphibian neurotoxin. J. Biol. Chem. 2009, 284, 22079–22086. [Google Scholar] [CrossRef] [Green Version]
  28. Xiao, J.; Jiang, D. On origin of Oviductus Ranae in Chinese Pharmacopoeia. Zhongguo Zhong Yao Za Zhi 2010, 35, 2931–2933. [Google Scholar]
  29. Laux-Biehlmann, A.; Mouheiche, J.; Veriepe, J.; Goumon, Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience 2013, 233, 95–117. [Google Scholar] [CrossRef]
  30. Bastos, P.; Trindade, F.; da Costa, J.; Ferreira, R.; Vitorino, R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med. Res. Rev. 2018, 38, 101–146. [Google Scholar] [CrossRef] [Green Version]
  31. Cao, X.; Zhang, Y.; Mao, R.; Teng, D.; Wang, X.; Wang, J. Design and recombination expression of a novel plectasin-derived peptide MP1106 and its properties against Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2015, 99, 2649–2662. [Google Scholar] [CrossRef] [PubMed]
  32. Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Front. Chem. 2018, 6, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Castro, M.S.; Cilli, E.M.; Fontes, W. Combinatorial synthesis and directed evolution applied to the production of alpha-helix forming antimicrobial peptides analogues. Curr Protein Pept. Sci. 2006, 7, 473–478. [Google Scholar] [CrossRef]
  34. Shabir, U.; Ali, S.; Magray, A.R.; Ganai, B.A.; Firdous, P.; Hassan, T.; Nazir, R. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microb. Pathog. 2018, 114, 50–56. [Google Scholar] [CrossRef]
  35. Han, J.; Zhao, S.; Ma, Z.; Gao, L.; Liu, H.; Muhammad, U.; Lu, Z.; Lv, F.; Bie, X. The antibacterial activity and modes of LI-F type antimicrobial peptides against Bacillus cereus in vitro. J. Appl. Microbiol. 2017, 123, 602–614. [Google Scholar] [CrossRef]
  36. Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
  37. Haney, E.F.; Hunter, H.N.; Matsuzaki, K.; Vogel, H.J. Solution NMR studies of amphibian antimicrobial peptides: Linking structure to function? Biochim. Biophys. Acta 2009, 1788, 1639–1655. [Google Scholar] [CrossRef] [Green Version]
  38. Boparai, J.K.; Sharma, P.K. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept. Lett. 2020, 27, 4–16. [Google Scholar] [CrossRef]
  39. Mihajlovic, M.; Lazaridis, T. Antimicrobial peptides bind more strongly to membrane pores. Biochim. Biophys. Acta 2010, 1798, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
  40. Jean-François, F.; Elezgaray, J.; Berson, P.; Vacher, P.; Dufourc, E.J. Pore formation induced by an antimicrobial peptide: Electrostatic effects. Biophys. J. 2008, 95, 5748–5756. [Google Scholar] [CrossRef] [Green Version]
  41. Konig, E.; Bininda-Emonds, O.R.; Shaw, C. The diversity and evolution of anuran skin peptides. Peptides 2015, 63, 96–117. [Google Scholar] [CrossRef]
  42. Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from ranid frogs: Taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta 2004, 1696, 1–14. [Google Scholar] [CrossRef]
  43. Simmaco, M.; Mignogna, G.; Barra, D.; Bossa, F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J. Biol. Chem. 1994, 269, 11956–11961. [Google Scholar] [CrossRef]
  44. Graham, C.; Richter, S.C.; McClean, S.; O’Kane, E.; Flatt, P.R.; Shaw, C. Histamine-releasing and antimicrobial peptides from the skin secretions of the dusky gopher frog, Rana sevosa. Peptides 2006, 27, 1313–1319. [Google Scholar] [CrossRef]
  45. Wang, M.; Wang, Y.; Wang, A.; Song, Y.; Ma, D.; Yang, H.; Ma, Y.; Lai, R. Five novel antimicrobial peptides from skin secretions of the frog, Amolops loloensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 155, 72–76. [Google Scholar] [CrossRef]
  46. Attoub, S.; Mechkarska, M.; Sonnevend, A.; Radosavljevic, G.; Jovanovic, I.; Lukic, M.L.; Conlon, J.M. Esculentin-2CHa: A host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides 2013, 39, 95–102. [Google Scholar] [CrossRef]
  47. Malik, E.; Phoenix, D.A.; Snape, T.J.; Harris, F.; Singh, J.; Morton, L.H.G.; Dennison, S.R. Linearized esculentin-2EM shows pH dependent antibacterial activity with an alkaline optimum. Mol. Cell. Biochem. 2021, 476, 3729–3744. [Google Scholar] [CrossRef]
  48. Morikawa, N.; Hagiwara, K.; Nakajima, T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem. Biophys. Res. Commun. 1992, 189, 184–190. [Google Scholar] [CrossRef]
  49. Suh, J.Y.; Lee, K.H.; Chi, S.W.; Hong, S.Y.; Choi, B.W.; Moon, H.M.; Choi, B.S. Unusually stable helical kink in the antimicrobial peptide--a derivative of gaegurin. FEBS Lett. 1996, 392, 309–312. [Google Scholar] [CrossRef] [Green Version]
  50. Conlon, J.M.; Sonnevend, A.; Patel, M.; Davidson, C.; Nielsen, P.F.; Pal, T.; Rollins-Smith, L.A. Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J. Pept. Res. 2003, 62, 207–213. [Google Scholar] [CrossRef] [Green Version]
  51. Matutte, B.; Storey, K.B.; Knoop, F.C.; Conlon, J.M. Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli. FEBS Lett. 2000, 483, 135–138. [Google Scholar] [CrossRef]
  52. Goraya, J.; Wang, Y.; Li, Z.; O’Flaherty, M.; Knoop, F.C.; Platz, J.E.; Conlon, J.M. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur. J. Biochem. 2000, 267, 894–900. [Google Scholar] [CrossRef]
  53. Kwon, M.Y.; Hong, S.Y.; Lee, K.H. Structure-activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta. Biochim. Biophys. Acta 1998, 1387, 239–248. [Google Scholar] [CrossRef]
  54. Kumari, V.K.; Nagaraj, R. Structure-function studies on the amphibian peptide brevinin 1E: Translocating the cationic segment from the C-terminal end to a central position favors selective antibacterial activity. J. Pept. Res. 2001, 58, 433–441. [Google Scholar] [CrossRef]
  55. Ali, M.F.; Knoop, F.C.; Vaudry, H.; Conlon, J.M. Characterization of novel antimicrobial peptides from the skins of frogs of the Rana esculenta complex. Peptides 2003, 24, 955–961. [Google Scholar] [CrossRef]
  56. Wang, Y.; Knoop, F.C.; Remy-Jouet, I.; Delarue, C.; Vaudry, H.; Conlon, J.M. Antimicrobial peptides of the brevinin-2 family isolated from gastric tissue of the frog, Rana esculenta. Biochem. Biophys. Res. Commun. 1998, 253, 600–603. [Google Scholar] [CrossRef]
  57. Park, J.M.; Jung, J.E.; Lee, B.J. Antimicrobial peptides from the skin of a Korean frog, Rana rugosa. Biochem. Biophys. Res. Commun. 1994, 205, 948–954. [Google Scholar] [CrossRef]
  58. Jiang, Y.; Wu, Y.; Wang, T.; Chen, X.; Zhou, M.; Ma, C.; Xi, X.; Zhang, Y.; Chen, T.; Shaw, C.; et al. Brevinin-1GHd: A novel Hylarana guentheri skin secretion-derived Brevinin-1 type peptide with antimicrobial and anticancer therapeutic potential. Biosci. Rep. 2020, 40, BSR20200019. [Google Scholar] [CrossRef]
  59. Conlon, J.M.; Sonnevend, A.; Davidson, C.; Demandt, A.; Jouenne, T. Host-defense peptides isolated from the skin secretions of the Northern red-legged frog Rana aurora aurora. Dev. Comp. Immunol. 2005, 29, 83–90. [Google Scholar] [CrossRef]
  60. Kang, S.J.; Son, W.S.; Han, K.D.; Mishig-Ochir, T.; Kim, D.W.; Kim, J.I.; Lee, B.J. Solution structure of antimicrobial peptide esculentin-1c from skin secretion of Rana esculenta. Mol. Cells 2010, 30, 435–441. [Google Scholar] [CrossRef]
  61. Conlon, J.M.; Halverson, T.; Dulka, J.; Platz, J.E.; Knoop, F.C. Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the southern leopard frog, Rana sphenocephala. J. Pept. Res. 1999, 54, 522–527. [Google Scholar] [CrossRef]
  62. Kim, J.B.; Iwamuro, S.; Knoop, F.C.; Conlon, J.M. Antimicrobial peptides from the skin of the Japanese mountain brown frog, Rana ornativentris. J. Pept. Res. 2001, 58, 349–356. [Google Scholar] [CrossRef]
  63. Goraya, J.; Knoop, F.C.; Conlon, J.M. Ranatuerins: Antimicrobial peptides isolated from the skin of the American bullfrog, Rana catesbeiana. Biochem. Biophys. Res. Commun. 1998, 250, 589–592. [Google Scholar] [CrossRef]
  64. Sonnevend, A.; Knoop, F.C.; Patel, M.; Pal, T.; Soto, A.M.; Conlon, J.M. Antimicrobial properties of the frog skin peptide, ranatuerin-1 and its [Lys-8]-substituted analog. Peptides 2004, 25, 29–36. [Google Scholar] [CrossRef]
  65. Halverson, T.; Basir, Y.J.; Knoop, F.C.; Conlon, J.M. Purification and characterization of antimicrobial peptides from the skin of the North American green frog Rana clamitans. Peptides 2000, 21, 469–476. [Google Scholar] [CrossRef]
  66. Goraya, J.; Knoop, F.C.; Conlon, J.M. Ranatuerin 1T: An antimicrobial peptide isolated from the skin of the frog, Rana temporaria. Peptides 1999, 20, 159–163. [Google Scholar] [CrossRef]
  67. Subasinghage, A.P.; Conlon, J.M.; Hewage, C.M. Conformational analysis of the broad-spectrum antibacterial peptide, ranatuerin-2CSa: Identification of a full length helix-turn-helix motif. Biochim. Biophys. Acta 2008, 1784, 924–929. [Google Scholar] [CrossRef]
  68. Zhou, X.; Shi, D.; Zhong, R.; Ye, Z.; Ma, C.; Zhou, M.; Xi, X.; Wang, L.; Chen, T.; Kwok, H.F. Bioevaluation of Ranatuerin-2Pb from the Frog Skin Secretion of Rana pipiens and its Truncated Analogues. Biomolecules 2019, 9, 249. [Google Scholar] [CrossRef] [Green Version]
  69. Yang, S.J.; Xiao, X.H.; Xu, Y.G.; Li, D.D.; Chai, L.H.; Zhang, J.Y. Induction of antimicrobial peptides from Rana dybowskii under Rana grylio virus stress, and bioactivity analysis. Can. J. Microbiol. 2012, 58, 848–855. [Google Scholar] [CrossRef]
  70. Mangoni, M.L.; Papo, N.; Mignogna, G.; Andreu, D.; Shai, Y.; Barra, D.; Simmaco, M. Ranacyclins, a new family of short cyclic antimicrobial peptides: Biological function, mode of action, and parameters involved in target specificity. Biochemistry 2003, 42, 14023–14035. [Google Scholar] [CrossRef]
  71. Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from the skins of North American frogs. Biochim. Biophys. Acta 2009, 1788, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
  72. Wang, T.; Jiang, Y.; Chen, X.; Wang, L.; Ma, C.; Xi, X.; Zhang, Y.; Chen, T.; Shaw, C.; Zhou, M. Ranacyclin-NF, a Novel Bowman-Birk Type Protease Inhibitor from the Skin Secretion of the East Asian Frog, Pelophylax nigromaculatus. Biology 2020, 9, 149. [Google Scholar] [CrossRef] [PubMed]
  73. Simmaco, M.; De Biase, D.; Severini, C.; Aita, M.; Erspamer, G.F.; Barra, D.; Bossa, F. Purification and characterization of bioactive peptides from skin extracts of Rana esculenta. Biochim. Biophys. Acta 1990, 1033, 318–323. [Google Scholar] [CrossRef]
  74. Simmaco, M.; Mignogna, G.; Canofeni, S.; Miele, R.; Mangoni, M.L.; Barra, D. Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur. J. Biochem. 1996, 242, 788–792. [Google Scholar] [CrossRef]
  75. Basir, Y.J.; Knoop, F.C.; Dulka, J.; Conlon, J.M. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim. Biophys. Acta 2000, 1543, 95–105. [Google Scholar] [CrossRef]
  76. Kim, J.B.; Halverson, T.; Basir, Y.J.; Dulka, J.; Knoop, F.C.; Abel, P.W.; Conlon, J.M. Purification and characterization of antimicrobial and vasorelaxant peptides from skin extracts and skin secretions of the North American pig frog Rana grylio. Regul. Pept. 2000, 90, 53–60. [Google Scholar] [CrossRef]
  77. Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Jiansheng, H.; Cosette, P.; Leprince, J.; Jouenne, T.; Vaudry, H. Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptides 2006, 27, 2111–2117. [Google Scholar] [CrossRef]
  78. Zhou, M.; Liu, Y.; Chen, T.; Fang, X.; Walker, B.; Shaw, C. Components of the peptidome and transcriptome persist in lin wa pi: The dried skin of the Heilongjiang brown frog (Rana amurensis) as used in traditional Chinese medicine. Peptides 2006, 27, 2688–2694. [Google Scholar] [CrossRef]
  79. Bellavita, R.; Casciaro, B.; Di Maro, S.; Brancaccio, D.; Carotenuto, A.; Falanga, A.; Cappiello, F.; Buommino, E.; Galdiero, S.; Novellino, E.; et al. First-in-Class Cyclic Temporin L Analogue: Design, Synthesis, and Antimicrobial Assessment. J. Med. Chem. 2021, 64, 11675–11694. [Google Scholar] [CrossRef]
  80. Wade, D.; Silberring, J.; Soliymani, R.; Heikkinen, S.; Kilpelainen, I.; Lankinen, H.; Kuusela, P. Antibacterial activities of temporin A analogs. FEBS Lett. 2000, 479, 6–9. [Google Scholar] [CrossRef]
  81. Bhattacharjya, S.; Straus, S.K. Design, Engineering and Discovery of Novel alpha-Helical and beta-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. Int. J. Mol. Sci. 2020, 21, 5773. [Google Scholar] [CrossRef] [PubMed]
  82. Bhunia, A.; Mohanram, H.; Domadia, P.N.; Torres, J.; Bhattacharjya, S. Designed beta-boomerang antiendotoxic and antimicrobial peptides: Structures and activities in lipopolysaccharide. J. Biol. Chem. 2009, 284, 21991–22004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  83. Grieco, P.; Carotenuto, A.; Auriemma, L.; Saviello, M.R.; Campiglia, P.; Gomez-Monterrey, I.M.; Marcellini, L.; Luca, V.; Barra, D.; Novellino, E.; et al. The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide. Biochim. Biophys. Acta 2013, 1828, 652–660. [Google Scholar] [CrossRef] [PubMed]
  84. Diao, Y.; Han, W.; Zhao, H.; Zhu, S.; Liu, X.; Feng, X.; Gu, J.; Yao, C.; Liu, S.; Sun, C.; et al. Designed synthetic analogs of the α-helical peptide temporin-La with improved antitumor efficacies via charge modification and incorporation of the integrin αvβ3 homing domain. J. Pept. Sci. 2012, 18, 476–486. [Google Scholar] [CrossRef]
  85. Rinaldi, A.C.; Mangoni, M.L.; Rufo, A.; Luzi, C.; Barra, D.; Zhao, H.; Kinnunen, P.K.; Bozzi, A.; Di Giulio, A.; Simmaco, M. Temporin, L: Antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem. J. 2002, 368 Pt 1, 91–100. [Google Scholar] [CrossRef] [Green Version]
  86. Mangoni, M.L.; Shai, Y. Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. Biochim. Biophys. Acta 2009, 1788, 1610–1619. [Google Scholar] [CrossRef] [Green Version]
  87. Mangoni, M.L.; Rinaldi, A.C.; Di Giulio, A.; Mignogna, G.; Bozzi, A.; Barra, D.; Simmaco, M. Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur. J. Biochem. 2000, 267, 1447–1454. [Google Scholar] [CrossRef] [Green Version]
  88. Wang, H.; Yan, X.; Yu, H.; Hu, Y.; Yu, Z.; Zheng, H.; Chen, Z.; Zhang, Z.; Liu, J. Isolation, characterization and molecular cloning of new antimicrobial peptides belonging to the brevinin-1 and temporin families from the skin of Hylarana latouchii (Anura: Ranidae). Biochimie 2009, 91, 540–547. [Google Scholar] [CrossRef]
  89. Wei, H.; Xie, Z.; Tan, X.; Guo, R.; Song, Y.; Xie, X.; Wang, R.; Li, L.; Wang, M.; Zhang, Y. Temporin-Like Peptides Show Antimicrobial and Anti-Biofilm Activities against Streptococcus mutans with Reduced Hemolysis. Molecules 2020, 25, 5724. [Google Scholar] [CrossRef]
  90. Bai, B.; Hou, X.; Wang, L.; Ge, L.; Luo, Y.; Ma, C.; Zhou, M.; Duan, J.; Chen, T.; Shaw, C. Feleucins: Novel bombinin precursor-encoded nonapeptide amides from the skin secretion of Bombina variegata. Biomed. Res. Int. 2014, 2014, 671362. [Google Scholar] [CrossRef] [Green Version]
  91. Gibson, B.W.; Tang, D.Z.; Mandrell, R.; Kelly, M.; Spindel, E.R. Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J. Biol. Chem. 1991, 266, 23103–23111. [Google Scholar] [CrossRef]
  92. Miele, R.; Ponti, D.; Boman, H.G.; Barra, D.; Simmaco, M. Molecular cloning of a bombinin gene from Bombina orientalis: Detection of NF-kappaB and NF-IL6 binding sites in its promoter. FEBS Lett. 1998, 431, 23–28. [Google Scholar] [CrossRef] [Green Version]
  93. Lai, R.; Liu, H.; Hui Lee, W.; Zhang, Y. An anionic antimicrobial peptide from toad Bombina maxima. Biochem. Biophys. Res. Commun. 2002, 295, 796–799. [Google Scholar] [CrossRef]
  94. Mangoni, M.L.; Grovale, N.; Giorgi, A.; Mignogna, G.; Simmaco, M.; Barra, D. Structure-function relationships in bombinins H, antimicrobial peptides from Bombina skin secretions. Peptides 2000, 21, 1673–1679. [Google Scholar] [CrossRef]
  95. Simmaco, M.; Kreil, G.; Barra, D. Bombinins, antimicrobial peptides from Bombina species. Biochim. Biophys. Acta 2009, 1788, 1551–1555. [Google Scholar] [PubMed] [Green Version]
  96. Xiang, J.; Zhou, M.; Wu, Y.; Chen, T.; Shaw, C.; Wang, L. The synergistic antimicrobial effects of novel bombinin and bombinin H peptides from the skin secretion of Bombina orientalis. Biosci. Rep. 2017, 37, BSR20170967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Peng, X.; Zhou, C.; Hou, X.; Liu, Y.; Wang, Z.; Peng, X.; Zhang, Z.; Wang, R.; Kong, D. Molecular characterization and bioactivity evaluation of two novel bombinin peptides from the skin secretion of Oriental fire-bellied toad, Bombina orientalis. Amino Acids 2018, 50, 241–253. [Google Scholar] [CrossRef]
  98. Mignogna, G.; Simmaco, M.; Kreil, G.; Barra, D. Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. EMBO J. 1993, 12, 4829–4832. [Google Scholar] [CrossRef]
  99. Kim, S.S.; Shim, M.S.; Chung, J.; Lim, D.Y.; Lee, B.J. Purification and characterization of antimicrobial peptides from the skin secretion of Rana dybowskii. Peptides 2007, 28, 1532–1539. [Google Scholar] [CrossRef]
  100. Jin, L.L.; Li, Q.; Song, S.S.; Feng, K.; Zhang, D.B.; Wang, Q.Y.; Chen, Y.H. Characterization of antimicrobial peptides isolated from the skin of the Chinese frog, Rana dybowskii. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 154, 174–178. [Google Scholar] [CrossRef]
  101. Yang, H.; Wang, X.; Liu, X.; Wu, J.; Liu, C.; Gong, W.; Zhao, Z.; Hong, J.; Lin, D.; Wang, Y.; et al. Antioxidant peptidomics reveals novel skin antioxidant system. Mol. Cell. Proteom. 2009, 8, 571–583. [Google Scholar] [CrossRef] [PubMed]
  102. Liu, C.; Hong, J.; Yang, H.; Wu, J.; Ma, D.; Li, D.; Lin, D.; Lai, R. Frog skins keep redox homeostasis by antioxidant peptides with rapid radical scavenging ability. Free. Radic. Biol. Med. 2010, 48, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
  103. Xie, C.; Fan, Y.; Yin, S.; Li, Y.; Liu, N.; Liu, Y.; Shu, L.; Fu, Z.; Wang, Y.; Zhang, Y.; et al. Novel amphibian-derived antioxidant peptide protects skin against ultraviolet irradiation damage. J. Photochem. Photobiol. B 2021, 224, 112327. [Google Scholar] [CrossRef] [PubMed]
  104. Yin, S.; Wang, Y.; Liu, N.; Yang, M.; Hu, Y.; Li, X.; Fu, Y.; Luo, M.; Sun, J.; Yang, X. Potential skin protective effects after UVB irradiation afforded by an antioxidant peptide from Odorrana andersonii. Biomed. Pharm. 2019, 120, 109535. [Google Scholar] [CrossRef]
  105. Smith, H.K.; Pasmans, F.; Dhaenens, M.; Deforce, D.; Bonte, D.; Verheyen, K.; Lens, L.; Martel, A. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS ONE 2018, 13, e0199295. [Google Scholar] [CrossRef]
  106. Cao, X.; Wang, Y.; Wu, C.; Li, X.; Fu, Z.; Yang, M.; Bian, W.; Wang, S.; Song, Y.; Tang, J.; et al. Cathelicidin-OA1, a novel antioxidant peptide identified from an amphibian, accelerates skin wound healing. Sci. Rep. 2018, 8, 943. [Google Scholar] [CrossRef] [Green Version]
  107. Wang, X.; Ren, S.; Guo, C.; Zhang, W.; Zhang, X.; Zhang, B.; Li, S.; Ren, J.; Hu, Y.; Wang, H. Identification and functional analyses of novel antioxidant peptides and antimicrobial peptides from skin secretions of four East Asian frog species. Acta Biochim. Biophys. Sin. 2017, 49, 550–559. [Google Scholar] [CrossRef] [Green Version]
  108. Bian, W.; Meng, B.; Li, X.; Wang, S.; Cao, X.; Liu, N.; Yang, M.; Tang, J.; Wang, Y.; Yang, X. OA-GL21, a novel bioactive peptide from Odorrana andersonii, accelerated the healing of skin wounds. Biosci. Rep. 2018, 38, BSR20180215. [Google Scholar] [CrossRef] [Green Version]
  109. Li, X.; Wang, Y.; Zou, Z.; Yang, M.; Wu, C.; Su, Y.; Tang, J.; Yang, X. OM-LV20, a novel peptide from odorous frog skin, accelerates wound healing in vitro and in vivo. Chem. Biol. Drug. Des. 2018, 91, 126–136. [Google Scholar] [CrossRef]
  110. Wang, Y.; Cao, X.; Fu, Z.; Wang, S.; Li, X.; Liu, N.; Feng, Z.; Yang, M.; Tang, J.; Yang, X. Identification and characterization of a novel gene-encoded antioxidant peptide obtained from amphibian skin secretions. Nat. Prod. Res. 2020, 34, 754–758. [Google Scholar] [CrossRef]
  111. Placido, A.; Bueno, J.; Barbosa, E.A.; Moreira, D.C.; Dias, J.D.N.; Cabral, W.F.; Albuquerque, P.; Bessa, L.J.; Freitas, J.; Kuckelhaus, S.A.S.; et al. The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra salamandra). Biomolecules 2020, 10, 512. [Google Scholar] [CrossRef] [PubMed]
  112. Gabra, B.H.; Sirois, P. Role of bradykinin B(1) receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice. Eur. J. Pharmacol. 2002, 457, 115–124. [Google Scholar] [CrossRef]
  113. Lai, R.; Liu, H.; Hui Lee, W.; Zhang, Y. A novel bradykinin-related peptide from skin secretions of toad Bombina maxima and its precursor containing six identical copies of the final product. Biochem. Biophys. Res. Commun. 2001, 286, 259–263. [Google Scholar] [CrossRef] [PubMed]
  114. Lee, W.H.; Liu, S.B.; Shen, J.H.; Jin, Y.; Zhang, Y. Cloning of bradykinin precursor cDNAs from skin of Bombina maxima reveals novel bombinakinin M antagonists and a bradykinin potential peptide. Regul. Pept. 2005, 127, 207–215. [Google Scholar] [CrossRef]
  115. Zhou, X.; Xu, J.; Zhong, R.; Ma, C.; Zhou, M.; Cao, Z.; Xi, X.; Shaw, C.; Chen, T.; Wang, L.; et al. Pharmacological Effects of a Novel Bradykinin-Related Peptide (RR-18) from the Skin Secretion of the Hejiang Frog (Ordorrana hejiangensis) on Smooth Muscle. Biomedicines 2020, 8, 225. [Google Scholar] [CrossRef]
  116. Arichi, S.; Sasaki-Hamada, S.; Kadoya, Y.; Ogata, M.; Ishibashi, H. Excitatory effect of bradykinin on intrinsic neurons of the rat heart. Neuropeptides 2019, 75, 65–74. [Google Scholar] [CrossRef]
  117. Marenah, L.; Flatt, P.R.; Orr, D.F.; McClean, S.; Shaw, C.; Abdel-Wahab, Y.H. Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris. J. Endocrinol. 2004, 181, 347–354. [Google Scholar] [CrossRef]
  118. Manzo, G.; Scorciapino, M.A.; Srinivasan, D.; Attoub, S.; Mangoni, M.L.; Rinaldi, A.C.; Casu, M.; Flatt, P.R.; Conlon, J.M. Conformational Analysis of the Host-Defense Peptides Pseudhymenochirin-1Pb and -2Pa and Design of Analogues with Insulin-Releasing Activities and Reduced Toxicities. J. Nat. Prod. 2015, 78, 3041–3048. [Google Scholar] [CrossRef]
  119. Srinivasan, D.; Ojo, O.O.; Abdel-Wahab, Y.H.; Flatt, P.R.; Guilhaudis, L.; Conlon, J.M. Insulin-releasing and cytotoxic properties of the frog skin peptide, tigerinin-1R: A structure-activity study. Peptides 2014, 55, 23–31. [Google Scholar] [CrossRef]
  120. Abdel-Wahab, Y.H.; Power, G.J.; Ng, M.T.; Flatt, P.R.; Conlon, J.M. Insulin-releasing properties of the frog skin peptide pseudin-2 and its [Lys18]-substituted analogue. Biol. Chem. 2008, 389, 143–148. [Google Scholar] [CrossRef]
  121. Conlon, J.M.; Abdel-Wahab, Y.H.; Flatt, P.R.; Leprince, J.; Vaudry, H.; Jouenne, T.; Condamine, E. A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae). Peptides 2009, 30, 888–892. [Google Scholar] [CrossRef] [PubMed]
  122. Long, Q.; Li, L.; Wang, H.; Li, M.; Wang, L.; Zhou, M.; Su, Q.; Chen, T.; Wu, Y. Novel peptide dermaseptin-PS1 exhibits anticancer activity via induction of intrinsic apoptosis signalling. J. Cell. Mol. Med. 2019, 23, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
  123. Rozek, T.; Bowie, J.H.; Wallace, J.C.; Tyler, M.J. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. Part 2. Sequence determination using electrospray mass spectrometry. Rapid. Commun. Mass. Spectrom. 2000, 14, 2002–2011. [Google Scholar] [CrossRef]
  124. Wiedermann, C.J. Bombesin-like peptides as growth factors. Wien Klin Wochenschr 1989, 101, 435–440. [Google Scholar] [PubMed]
  125. Wiedermann, C.J.; Ruff, M.R.; Pert, C.B. Bombesin-like peptides: Neuropeptides with mitogenic activity. Brain. Behav. Immun. 1988, 2, 301–310. [Google Scholar] [CrossRef]
  126. Wang, M.; Wang, L.; Chen, T.; Walker, B.; Zhou, M.; Sui, D.; Conlon, J.M.; Shaw, C. Identification and molecular cloning of a novel amphibian Bowman Birk-type trypsin inhibitor from the skin of the Hejiang Odorous Frog; Odorrana hejiangensis. Peptides 2012, 33, 245–250. [Google Scholar] [CrossRef]
  127. Zhou, Y.; Jiang, Y.; Wang, R.; Bai, B.; Zhou, M.; Chen, T.; Cai, J.; Wang, L.; Shaw, C. PD-sauvagine: A novel sauvagine/corticotropin releasing factor analogue from the skin secretion of the Mexican giant leaf frog, Pachymedusa dacnicolor. Amino Acids 2012, 43, 1147–1156. [Google Scholar] [CrossRef]
  128. Baroni, A.; Perfetto, B.; Canozo, N.; Braca, A.; Farina, E.; Melito, A.; De Maria, S.; Cartenì, M. Bombesin: A possible role in wound repair. Peptides 2008, 29, 1157–1166. [Google Scholar] [CrossRef]
  129. Wang, L.; Zhou, M.; Lynch, L.; Chen, T.; Walker, B.; Shaw, C. Kassina senegalensis skin tachykinins: Molecular cloning of kassinin and (Thr2, Ile9)-kassinin biosynthetic precursor cDNAs and comparative bioactivity of mature tachykinins on the smooth muscle of rat urinary bladder. Biochimie 2009, 91, 613–619. [Google Scholar] [CrossRef]
  130. Li, J.; Liu, T.; Xu, X.; Wang, X.; Wu, M.; Yang, H.; Lai, R. Amphibian tachykinin precursor. Biochem. Biophys. Res. Commun. 2006, 350, 983–986. [Google Scholar] [CrossRef]
  131. Jackway, R.J.; Pukala, T.L.; Maselli, V.M.; Musgrave, I.F.; Bowie, J.H.; Liu, Y.; Surinya-Johnson, K.H.; Donnellan, S.C.; Doyle, J.R.; Llewellyn, L.E.; et al. Disulfide-containing peptides from the glandular skin secretions of froglets of the genus Crinia: Structure, activity and evolutionary trends. Regul. Pept. 2008, 151, 80–87. [Google Scholar] [CrossRef] [PubMed]
  132. Hancock, R.E.; Chapple, D.S. Peptide antibiotics. Antimicrob Agents Chemother 1999, 43, 1317–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. Gough, M.; Hancock, R.E.; Kelly, N.M. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect. Immun. 1996, 64, 4922–4927. [Google Scholar] [CrossRef] [PubMed]
Table 3. The origin, primary structure, secondary structure, length, and antibacterial activity of ranatuerins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Table 3. The origin, primary structure, secondary structure, length, and antibacterial activity of ranatuerins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Peptides Name SpeciesPrimary StructureSecondary StructureLengthMIC (μM)Ref.
Ranatuerin-1Rana catesbeianaSMLSVLKNLGKVGLGFVACKINKQCEe: 40.00%
Cc: 30.30%
2520 (E. coli)
20 (P. aeruginosa)
40 (K. pneumoniae)
20 (E. cloacae)
>100 (P. mirabilis)
20 (S. aureus)
20 (S. epidermidis)
5 (Streptococcus Group B)
20 (E. faecalis)
[64]
Ranatuerin-1CRana clamitansSMLSVLKNLGKVGLGLVACKINKQCEe: 28.00%
Cc: 72.00%
251.5 (E. coli)
55 (S. aureus)
58 (C. albicans)
4 (E. coli)
17 (S. aureus)
14 (C. albicans)
[65]
Ranalexin-1CaFLGGLMKAFPALICAVTKKCEe: 50.00%
Cc: 50.00%
20
Ranatuerin-1TRana temporariaGLLSGLKKVGKHVAKNVAVSLMDSLKCKISGDCHh: 36.36%
Ee: 12.12%
Cc: 51.52%
3340 (E. coli)[66]
120 (S. aureus)
150 (C. albicans)
Ranatuerin-2AUaRana aurora auroraGILSSFKGVAKGVAKNLAGKLLDELKCKITGCHh: 53.12%
Ee: 9.38%
Cc: 37.50%
325 (E. coli)[59]
5 (P. aeruginosa)
10 (K. pneumoniae)
5 (E. cloacae)
>40 (P. mirabilis)
20 (S. aureus)
20 (S. epidermidis)
5 (Streptococcus Group B)
>40 (E. faecalis)
Ranatuerin-2BYaRana boyliiILSTFKGLAKGVAKDLAGNLLDKFKCKITGC Hh: 48.39%
Ee: 19.35%
Cc: 32.26%
317 (E. coli)
27 (S. aureus)
NA (C. albicans)
[50]
Ranatuerin-2BYbIMDSVKGLAKNLAGKLLDSLKCKITGCHh: 44.44%
Ee: 11.11%
Cc: 44.44%
2717 (E. coli)
NA (S. aureus)
NA (C. albicans)
Ranatuerin-2CbRana clamitansGLFLDTLKGLAGKLLQGLKCIKAGCKPHh: 44.44%
Ee: 7.41%
Cc: 48.15%
272 (E. coli)
40 (S. aureus)
46 (C. albicans)
[65]
Ranatuerin-2CSaRana cascadaeGILSSFKGVAKGVAKDLAG KLLETLKCKITGCHh: 46.88%
Ee: 18.75%
Cc: 34.38%
325 (E. coli)
10 (S. aureus)
[67]
Ranatuerin-2PbRana pipiensSFLTTVKKLVTNLAALAGTVIDTIKCKVTGGCRTHh: 35.29%
Ee: 32.35%
Cc: 32.35%
348 (E. coli)
>256 (P. aeruginosa)
8 (S. aureus)
16 (MRSA)
>512 (E. faecalis)
8 (C. albicans)
[68]
Ranatuerin-2YJRana
dybowskii
GLMDIFKVAVNKLLAAGMNKPRCKAAHCHh: 39.29%
Ee: 17.86%
Cc: 42.86%
2822.5 (E. coli)
22.5 (S. aureus)
[69]
Table 4. The origin, primary structure, secondary structure, length, and antibacterial activity of ranacyclins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Table 4. The origin, primary structure, secondary structure, length, and antibacterial activity of ranacyclins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Peptides NameSpeciesPrimary StructureSecondary StructureLengthMIC (μM)Ref.
Ranacyclin-B-RN1Hylarana
nigrovittata
SALVGCWTKSYPPKPCFGREe: 10.53%
Cc: 89.47%
196 (S. aureus)[16]
Ranacyclin-B-RN2 SALVGCGTKSYPPKPCFGREe: 10.53%
Cc: 89.47%
1912.7 (S. aureus)
Ranacyclin ERana temporariaSAPRGCWTKSYPPKPCKEe: 35.29%
Cc: 64.71%
17NA (E. coli D21)
9 (Y. pseudotuberculosis YP III)
80 (P. syringae pv tabaci)
3 (B. megaterium Bm11)
7 (S. lentus)
5 (M. luteus)
NA (C. albicans ATCC 10231)
7.4 (C. tropicalis)
3.4 (C. guiller-mondii)
32 (P. nicotianae spores)
[70]
Ranacyclin TRana esculentaGALRGCWTKSYPPKPCKEe: 29.41%
Cc: 70.59%
1730 (E. coli D21)
5 (Y. pseudotuberculosis YP III)
16 (P. syringae pv tabaci)
3 (B. megaterium Bm11)
10 (S. lentus)
8 (M. luteus)
22 (C. albicans ATCC 10231)
14 (C. tropicalis)
1 (C. guiller-mondii)
16 (P. nicotianae spores)
Ranacyclin-NFPelophylax nigromaculatusGAPRGCWTKSYPPQPCFEe: 23.53%
Cc: 76.47%
17>512 (E. coli)
>512 (P. aeruginosa)
>512 (K. pneumoniae)
>512 (S. aureus)
>512 (MRSA)
>512 (E. faecalis)
[72]
Ranacyclin-NF1GAPRGCWTKSYPPQPCFEe: 23.53%
Cc: 76.47%
17>512 (E. coli)
>512 (P. aeruginosa)
>512 (K. pneumoniae)
>512 (S. aureus)
>512 (MRSA)
>512 (E. faecalis)
Ranacyclin-NF3LGALRGCWTKSYPPQPCFEe: 23.53%
Cc: 76.47%
17>512 (E. coli)
>512 (P. aeruginosa)
>512 (K. pneumoniae)
>512 (S. aureus)
>512 (MRSA)
>512 (E. faecalis)
Table 5. The origin, primary structure, secondary structure, length, and antibacterial activity of temporins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Table 5. The origin, primary structure, secondary structure, length, and antibacterial activity of temporins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Peptides NameSpeciesPrimary StructureSecondary StructureLengthMIC (μM)Ref.
Temporin-1BYaRana boyliiFLPIIAKVLSGLLEe: 61.54%
Cc: 38.46%
13NA (E. coli)
15 (S. aureus)
NA (C. albicans)
[50]
Temporin-1GbRana grylioSILPTIVSFLSKFLEe: 42.86%
Cc: 57.14%
14NA (E. coli)
24 (S. aureus)
NA (C. albicans)
[76]
Temporin-1GcSILPTIVSFLTKFLEe: 57.14%
Cc: 42.86%
14NA (E. coli)
25 (S. aureus)
NA (C. albicans)
Temporin-1GdFILPLIASFLSKFLEe: 14.29%
Cc: 85.71%
14NA (E. coli)
12 (S. aureus)
NA (C. albicans)
Temporin-LT1Hylarana
latouchii
FLPGLIAGIAKMLEe: 38.46%
Cc: 61.54%
13NA (P. fluorescens)
12.5 (S. aureus)
25 (B. subtilis)
NA (C. albicans)
[88]
Temporin-LT2FLPIALKALGSIFPKILEe: 29.41%
Cc: 70.59%
17NA (P. fluorescens)
12.5 (S. aureus)
50 (B. subtilis)
NA (C. albicans)
Temporin-GHaRHylarana guentheriFLQRIIGALGRLFEe: 61.54%
Cc: 38.46%
136.2 (E. coli)
12.5 (E. coli D31)
6.2 (P. aeruginosa)
25 (P. aeruginosa PAO1)
1.6 (S. aureus)
12.5 (B. subtilis)
3.1 (S. mutans)
3.1 (MRSA)
12.5 (C. albicans)
[89]
Temporin-GHaR6RFLQRIRGALGRLFEe: 53.85%
Cc: 46.15%
1312.5 (E. coli)
25 (E. coli D31)
>50 (P. aeruginosa)
3.1 (P. aeruginosa PAO1)
3.1 (S. aureus)
25 (B. subtilis)
12.5 (S. mutans)
6.2 (MRSA)
50 (C. albicans)
Temporin-GHaR7RFLQRIIRALGRLFEe: 53.85%
Cc: 46.15%
133.1 (E. coli)
12.5 (E. coli D31)
>50 (P. aeruginosa)
>50 (P. aeruginosa PAO1)
3.1 (S. aureus)
>50 (B. subtilis)
6.2 (S. mutans)
3.1 (MRSA)
25 (C. albicans)
Temporin-GHaR8RFLQRIIGRLGRLFEe: 61.54%
Cc: 38.46%
133.1 (E. coli)
12.5 (E. coli D31)
50 (P. aeruginosa)
6.2 (P. aeruginosa PAO1)
1.6–3.1 (S. aureus)
12.5 (B. subtilis)
6.2 (S. mutans)
3.1 (MRSA)
12.5 (C. albicans)
Temporin-GHaR9RFLQRIIGARGRLFEe: 53.85%
Cc: 46.15%
13>50 (E. coli)
>50 (E. coli D31)
>50 (P. aeruginosa)
>50 (P. aeruginosa PAO1)
6.2 (S. aureus)
>50 (B. subtilis)
>50 (S. mutans)
>50 (MRSA)
>50 (C. albicans)
Temporin-GHaR9WFLQRIIGAWGRLFEe: 53.85%
Cc: 46.15%
1312.5 (E. coli)
12.5 (E. coli D31)
>50 (P. aeruginosa)
25 (P. aeruginosa PAO1)
3.1 (S. aureus)
12.5 (B. subtilis)
6.2 (S. mutans)
6.2 (MRSA)
25 (C. albicans)
Table 7. The origin, primary structure, secondary structure, length, and antibacterial activity of dybowskins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Table 7. The origin, primary structure, secondary structure, length, and antibacterial activity of dybowskins. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil; MIC: Minimum inhibitory concentrations (μM); NA: not active.
Peptides NameSpeciesPrimary StructureSecondary StructureLengthMIC (μM)Ref.
Dybowskin-1Rana dybowskiiFLIGMTHGLICLISRKCEe: 47.06%
Cc: 52.94%
17>52.5 (E. coli)
>52.5 (K. pneumoniae)
>52.5 (P. mirabilis)
>52.5 (P. aeruginosa)
13.1 (S. aureus)
26.3 (B. subtilis)
31.5 (S. epidermidis)
>52.5 (S. dysenteriae)
6.6 (M. luteus)
>52.5 (C. albicans)
[99]
Dybowskin-2FLIGMTQGLICLITRKCEe: 47.06%
Cc: 52.94%
1731.4 (E. coli)
31.4 (K. pneumoniae)
>52.4 (P. mirabilis)
>52.4 (P. aeruginosa)
7.9 (S. aureus)
13.1 (B. subtilis)
13.1 (S. epidermidis)
26.2 (S. dysenteriae)
3.3 (M. luteus)
52.4 (C. albicans)
Dybowskin-3GLFDVVKGVLKGVGKNVAGSLLEQLKCKLSGGCHh: 27.27%
Ee: 39.39%
Cc: 33.33%
334.5 (E. coli)
4.5 (K. pneumoniae)
>30.2 (P. mirabilis)
>30.2 (P. aeruginosa)
9 (S. aureus)
15.1 (B. subtilis)
18.1 (S. epidermidis)
18.1 (S. dysenteriae)
1.9 (M. luteus)
30.2 (C. albicans)
Dybowskin-4VWPLGLVICKALKICEe: 33.33%
Cc: 66.67%
159.1 (E. coli)
9.1 (K. pneumoniae)
>60.4 (P. mirabilis)
>60.4 (P. aeruginosa)
1.9 (S. aureus)
3.8 (B. subtilis)
3.8 (S. epidermidis)
18.1 (S. dysenteriae)
0.9 (M. luteus)
15.1 (C. albicans)
Dybowskin-5GLFSVVTGVLKAVGKNVAKNVGGSLLEQLKCKISGGCHh: 24.32%
Ee: 35.14%
Cc: 40.54%
3716.8 (E. coli)
13.6 (K. pneumoniae)
>27.2 (P. mirabilis)
>27.2 (P. aeruginosa)
6.8 (S. aureus)
13.6 (B. subtilis)
13.6 (S. epidermidis)
13.6 (S. dysenteriae)
1.8 (M. luteus)
13.6 (C. albicans)
Dybowskin-6FLPLLLAGLPLKLCFLFKKCEe: 60.00%
Cc: 40.00%
20>44 (E. coli)
>44 (K. pneumoniae)
>44 (P. mirabilis)
>44 (P. aeruginosa)
5.5 (S. aureus)
22 (B. subtilis)
22 (S. epidermidis)
>44 (S. dysenteriae)
2.7 (M. luteus)
22 (C. albicans)
Dybowskin-1CDYaRana dybowskiiIIPLPLGYFAKKTEe: 15.38%
Cc: 84.62%
133 (E. coli)
6 (S. aureus)
[100]
Dybowskin-2CDYaSAVGRHGRRFGLRKHRKHEe: 27.78%
Cc: 72.22%
183 (E. coli)
6 (S. aureus)
Table 8. The origin, primary structure, secondary structure, and length of antioxidant peptides. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil.
Table 8. The origin, primary structure, secondary structure, and length of antioxidant peptides. Secondary structure prediction was performed by GOR IV algorithm (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html accessed on 27 September 2022); Hh: Alpha helix; Ee: Extended strand; Cc: Random coil.
Peptides NameSpeciesPrimary
Structure
Secondary StructureLengthRef.
Andersonin-C1Odorrana margarataeTSRCIFYRRKKCSEe: 53.85%
Cc: 46.15%
13[105]
Andersonin-G1Odorrana andersoniiKEKLKLKAKAP
KCYNDKLACT
Ee: 23.81%
Cc: 76.19%
21
Andersonin-H3Odorrana margarataeVAIYGRDDRSDVCR
QVQHNWLVCDTY
Ee: 42.31%
Cc: 57.69%
26
Antioxidin-RP1Rana pleuradenAMRLTYNKPCLYGTEe: 28.57%
Cc: 71.43%
14[101,105]
Cathelicidin-OA1Odorrana andersoniiIGRDPTWSHLAASCLKCIFDDLPKTHNHh: 29.63%
Ee: 7.41%
Cc: 62.96%
27[106]
Nigroain-B-MS1Hylarana maosuoensisCVVSSGWKWNY
KIRCKLTGNC
Ee: 47.62%
Cc: 52.38%
21[107]
OA-VI12Odorrana andersoniiVIPFLACRPLGLEe: 50.00%
Cc: 50.00%
12[104]
OA-GL21Odorrana andersoniiGLLSGHYGRVVSTQSGHYGRGEe: 52.38%
Cc: 47.62%
21[108]
OM-LV20Odorrana margaretaeLVGKLLKGAVGDVCGLLPICEe: 45.00%
Cc: 55.00%
20[109]
OM-GF17Odorrana margaretaeGFFKWHPRCGEEHSMWTEe: 35.29%
Cc: 64.71%
17[110]
OS-LL11Odorrana schmackeriLLPPWLCPRNKCc: 100.00%11[103]
Pleurain-A1Rana pleuradenSIITMTKEAKLPQLW
KQIACRLYNTC
Hh: 19.23%
Ee: 30.77%
Cc: 50.00%
26[101]
Pleurain-D1Rana pleuradenFLSGILKLAFKIP
SVLCAVLKNC
Ee: 47.83%
Cc: 52.17%
23
Pleurain-E1Rana pleuradenAKAWGIPPHVIPQI
VPVRIRPLCGNV
Ee: 30.77%
Cc: 69.23%
26
Salamandrin-ISalamandra salamandraFAVWGCADYRGYEe: 58.33%
Cc: 41.67%
12[111]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Chen, X.; Liu, S.; Fang, J.; Zheng, S.; Wang, Z.; Jiao, Y.; Xia, P.; Wu, H.; Ma, Z.; Hao, L. Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides. Toxins 2022, 14, 722. https://doi.org/10.3390/toxins14100722

AMA Style

Chen X, Liu S, Fang J, Zheng S, Wang Z, Jiao Y, Xia P, Wu H, Ma Z, Hao L. Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides. Toxins. 2022; 14(10):722. https://doi.org/10.3390/toxins14100722

Chicago/Turabian Style

Chen, Xi, Songcai Liu, Jiayuan Fang, Shuo Zheng, Zhaoguo Wang, Yingying Jiao, Peijun Xia, Hongyan Wu, Ze Ma, and Linlin Hao. 2022. "Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides" Toxins 14, no. 10: 722. https://doi.org/10.3390/toxins14100722

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop