Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS
Abstract
:1. Introduction
2. Results
2.1. Mycotoxin Extraction
2.2. Mycotoxin Analysis
3. Discussion
3.1. Aflatoxin (AFB1)
3.2. Deoxynivalenol (DON) and Nivalenol (NIV)
3.3. Fumonisins (FB1, FB2, FB3)
3.4. Ochratoxin (OTA)
3.5. Zearalenone (ZEN)
3.6. Multiple Mycotoxin Contamination
4. Conclusions
5. Materials and Methods
5.1. Standards and Reagents
5.2. Sample Collection and Preparation
5.3. Mycotoxin Extraction
5.4. Equipment Calibration
5.5. Liquid Chromatography Tandem Mass Spectrometry
5.6. Data Acquisition and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, B.; Hodgkins, C.; Shepherd, R.; Timotijevic, L.; Raats, M. An overview of consumer attitudes and beliefs about plant food supplements. Food Funct. 2011, 2, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Ahmad, I. Herbal medicine: Current trends and future prospects. In New Look to Phytomedicine; Khan, M.S.A., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press: London, UK, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef]
- Sitole, P.; Ndhlala, A.R.; Kritzinger, Q.; Truter, M. Mycoflora contamination of South African medicinal plants. S. Afr. J. Bot. 2017, 100, 369–370. [Google Scholar] [CrossRef]
- Yu, J.; Yang, M.; Han, J.; Pang, X. Fungal and mycotoxin occurrence, affecting factors, and prevention in herbal medicines: A review. Toxin Rev. 2021, 41, 976–994. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.V.B.D.; Oliveira, C.A.F.D.; Ramalho, L.N.Z. An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. Food Sci. Technol. 2021, 42, 1–9. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Gibb, H.; Devleesschauwer, B.; Bolger, P.M.; Wu, F.; Ezendam, J.; Zeilmaker, M.; Verger, P.; Pitt, J.; Baines, J.; Adegoke, G. World Health Organization estimates of the global and regional disease burden of four foodborne chemical toxins, 2010: A data synthesis. F1000Research 2015, 4, 1393. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, L.; Liu, M.; Su, Y.T.; Xie, W.M.; Zhang, N.Y.; Dai, J.F.; Wang, Y.; Rajput, S.A.; Qi, D.S.; et al. Individual and combined occurrence of mycotoxins in feed ingredients and complete feeds in China. Toxins 2018, 10, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egbuta, M.A.; Mwanza, M.; Babalola, O.O. Health risks associated with exposure to filamentous fungi. Int. J. Environ. Health Res. 2017 14, 719. [CrossRef] [Green Version]
- Zhao, L.; Zhang, L.; Xu, Z.; Liu, X.; Chen, L.; Dai, J.; Karrow, N.A.; Sun, L. Occurrence of Aflatoxin B1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021, 12, 74. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M.; Sun, L. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Sewram, V.; Shephard, G.S.; van der Merwe, L.; Jacobs, T.V. Mycotoxin contamination of dietary and medicinal wild plants in the Eastern Cape Province of South Africa. J. Agric. Food Chem. 2006, 54, 5688–5693. [Google Scholar] [CrossRef] [PubMed]
- Katerere, D.R.; Stockenström, S.; Thembo, K.M.; Rheeder, J.P.; Shephard, G.S.; Vismer, H.F. A preliminary survey of mycological and fumonisin and aflatoxin contamination of African traditional herbal medicines sold in South Africa. Hum. Exp. Toxicol. 2008, 27, 793–798. [Google Scholar] [CrossRef]
- Ezekiel, C.; Ortega-Beltran, A.; Bandyopadhyay, R. The need for integrated approaches to address food safety risk: The case of mycotoxins in Africa. In Proceedings of the First FAO/WHO/AU International Food Safety Conference, Addis Ababa, Ethiopia, 12–13 February 2019; Available online: https://www.fao.org/3/CA3313EN/ca3313en.pdf (accessed on 20 July 2022).
- Mukundi, J.W. Bacteria, Aflatoxins and Fluoride Levels in Locally Processed Herbal Medicines from Nairobi County, Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2015. [Google Scholar]
- Keter, L.; Too, R.; Mwikwabe, N.; Mutai, C.; Orwa, J.; Mwamburi, L.; Ndwigah, S.; Bii, C.; Korir, R. Risk of fungi associated with aflatoxin and fumonisin in medicinal herbal products in the Kenyan market. Sci. World J. 2017, 2017, 1892972. [Google Scholar] [CrossRef] [Green Version]
- Korir, R.K. Microbial and Heavy Metal Contaminations in Selected Herbal Medicinal Products Sold in Nairobi, Kenya. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2017. [Google Scholar]
- Efuntoye, M.O. Mycotoxins of fungal strains from stored herbal plants and mycotoxin contents of Nigerian crude herbal drugs. Mycopathologia 1999, 147, 43–48. [Google Scholar] [CrossRef]
- Oyero, O.G.; Oyefolu, A.O. Fungal contamination of crude herbal remedies as a possible source of mycotoxin exposure in man. Asian Pac. J. Trop. Med. 2009, 2, 38–43. [Google Scholar]
- Ezekwesili-Ofili, J.O.; Onyemelukwe, N.F.; Agwaga, P.; Orji, I. The bioload and aflatoxin content of herbal medicines from selected states in Nigeria. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 143–147. [Google Scholar] [CrossRef]
- Ikeagwulonu, R.C.; Onyenekwe, C.C.; Ukibe, N.R.; Ikimi, C.G.; Ehiaghe, F.A.; Emeje, I.P.; Ukibe, S.N. Mycotoxin contamination of herbal medications on sale in Ebonyi State, Nigeria. Int. J. Biol. Chem. Sci. 2020, 14, 613–625. [Google Scholar] [CrossRef]
- Aziz, N.H.; Youssef, Y.A.; El-Fouly, M.Z.; Moussa, L.A. Contamination of some common medicinal plant samples and spices by fungi and their mycotoxins. Bot. Bull. Acad. Sin. 1998, 39, 279–285. [Google Scholar]
- Abou-Arab, A.A.; Kawther, M.S.; El Tantawy, M.E.; Badeaa, R.I.; Khayria, N. Quantity estimation of some contaminants in commonly used medicinal plants in the Egyptian market. Food Chem. 1999, 67, 357–363. [Google Scholar] [CrossRef]
- Allam, N.G.; El-Shanshoury, A.E.; Emara, H.A.; Zaky, A.Z. Decontamination of ochratoxin-A producing Aspergillus niger and ochratoxin A in medicinal plants by gamma irradiation and essential oils. J. Int. Environ. Appl. Sci. 2012, 7, 161–169. [Google Scholar]
- Abol-Ela, M.F.; AbdeL-Ghany, Z.M.; Atwa, M.A.; El-Melegy, K.M. Fungal Load and Mycotoxinogenesis of some Egyptian Medicinal Plants. J. Agric. Chem. Biotechnol. 2011, 2, 217–228. [Google Scholar] [CrossRef]
- Rudrabhatla, M.; George, J.E.; Faye, T. Multicomponent mycotoxin analysis by LC/MS/MS. In Israel Analytical Chemistry Society editor. In Proceedings of the 10th Annual Meeting of the Israel Analytical Chemistry Society Conference and Exhibition, Tel-Aviv, Israel, 23–24 January 2007. [Google Scholar]
- Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. LC–MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam. 2008, 25, 472–489. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Britzi, M.; Zakin, V.; Kostyukovsky, M.; Trostanetsky, A.; Quinn, E.; Sionov, E. Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain. Toxins 2017, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Pickova, D.; Ostry, V.; Toman, J.; Malir, F. Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins 2021, 13, 399. [Google Scholar] [CrossRef]
- Aiko, V.; Mehta, A. Prevalence of toxigenic fungi in common medicinal herbs and spices in India. 3 Biotech 2016, 6, 159. [Google Scholar] [CrossRef] [Green Version]
- Ledzion, E.; Rybińska, K.; Postupolski, J.; Kurpińska-Jaworska, J.; Szczesna, M. Studies and safety evaluation of aflatoxins in herbal plants. Rocz. Panstw. Zakl. Hig. 2011, 62, 377–381. [Google Scholar]
- Mannani, N.; Tabarani, A.; Zinedine, A. Assessment of aflatoxin levels in herbal green tea available on the Moroccan market. Food Control 2020, 108, 106882. [Google Scholar] [CrossRef]
- Tassaneeyakul, W.; Razzazi-Fazeli, E.; Porasuphatana, S.; Bohm, J. Contamination of aflatoxins in herbal medicinal products in Thailand. Mycopathologia 2004, 158, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Chen, J.M.; Zhang, X.H. Immunoaffinity column clean-up and liquid chromatography with post-column derivatization for analysis of aflatoxins in traditional Chinese medicine. Chromatographia 2005, 62, 499–504. [Google Scholar] [CrossRef]
- Weaver, C.M.; Trucksess, M.W. Determination of aflatoxins in botanical roots by a modification of AOAC official method SM 991.31: Single-laboratory validation. J. AOAC Int. 2010, 93, 184–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Dou, X.; Zhang, L.; Xie, Y.; Yang, S.; Yang, M. Rapid detection of aflatoxin B1 in medicinal materials of radix and rhizome by gold immunochromatographic assay. Toxicon 2018, 150, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Lahouar, A.; Marin, S.; Crespo-Sempere, A.; Saïd, S.; Sanchis, V. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds. Rev. Argent. Microbiol. 2016, 48, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Gizachew, D.; Chang, C.H.; Szonyi, B.; De La Torre, S.; Ting, W.T. Aflatoxin B1 (AFB1) production by Aspergillus flavus and Aspergillus parasiticus on ground Nyjer seeds: The effect of water activity and temperature. Int. J. Food Microbiol. 2019, 296, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Government Gazette. Foodstuffs, S.A. Cosmetics and Disinfectant Act 1972 (ACT No 54 of 1972) Regulations Governing Tolerance for Fungusproduced Toxins in Foodstuffs Amendment No. 26849. R1145. 2004. Available online: https://www.gov.za/sites/default/files/gcis_document/201409/26849b0.pdf (accessed on 20 July 2022).
- Artiges, A. The European directorate for the quality of medicines. Ann. Pharm. Fr. 2001, 59, 63–68. [Google Scholar] [PubMed]
- Liu, L.; Jin, H.; Sun, L.; Ma, S.; Lin, R. Determination of Aflatoxins in Medicinal Herbs by High-performance Liquid Chromatography–Tandem Mass Spectrometry. Phytochem. Anal. 2012, 23, 469–476. [Google Scholar] [CrossRef]
- Santos, L.; Marín, S.; Sanchis, V.; Ramos, A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- Yue, Y.T.; Zhang, X.F.; Pan, J.; Ou-Yang, Z.; Wu, J.; Yang, M.H. Determination of deoxynivalenol in medicinal herbs and related products by GC–ECD and confirmation by GC–MS. Chromatographia 2010, 71, 533–538. [Google Scholar] [CrossRef]
- El Darra, N.; Gambacorta, L.; Solfrizzo, M. Multimycotoxins occurrence in spices and herbs commercialized in Lebanon. Food Control 2019, 95, 63–70. [Google Scholar] [CrossRef]
- Reinholds, I.; Bogdanova, E.; Pugajeva, I.; Bartkevics, V. Mycotoxins in herbal teas marketed in Latvia and dietary exposure assessment. Food Addit. Contam. Part B 2019, 12, 199–208. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Omurtag, G.Z.; Yazicioğilu, D. Determination of fumonisins B1 and B2 in herbal tea and medicinal plants in Turkey by high-performance liquid chromatography. J. Food Prot. 2004, 67, 1782–1786. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.L.; Martins, H.M.; Bernardo, F. Fumonisins B1 and B2 in black tea and medicinal plants. J. Food Prot. 2001, 64, 1268–1270. [Google Scholar] [CrossRef]
- Han, Z.; Ren, Y.; Liu, X.; Luan, L.; Wu, Y. A reliable isotope dilution method for simultaneous determination of fumonisins B1, B2 and B3 in traditional Chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2010, 33, 2723–2733. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, W.; Dou, X.; Qin, J.; Zhao, M.; Yang, M. Occurrence of multi-class mycotoxins in Menthae haplocalycis analyzed by ultra-fast liquid chromatography coupled with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 3974–3984. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Beszterda, M.; Bocianowski, J.; Goliński, P. Natural occurrence of fumonisins and ochratoxin A in some herbs and spices commercialized in Poland analyzed by UPLC–MS/MS method. Food Microbiol. 2013, 36, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.K.; Kumar, S. Occurrence of ochratoxin A in herbal drugs of Indian origin—A report. Mycotoxin Res. 1993, 9, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Bresch, H.; Urbanek, M.; Nusser, M. Ochratoxin A in food containing liquorice. Nahrung 2000, 44, 276–278. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef]
- Shim, W.B.; Ha, K.S.; Kim, M.G.; Kim, J.S.; Chung, D.H. Evaluation of the transfer rate of ochratoxin a to decoctions of herbal medicines. Food Sci. Biotechnol. 2014, 23, 2103–2108. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Logrieco, A.F.; Yang, M.; Ou-yang, Z.; Wang, X.; Guo, Q. Determination of zearalenone in traditional Chinese medicinal plants and related products by HPLC–FLD. Food Addit. Contam. Part A 2011, 28, 885–893. [Google Scholar] [CrossRef]
- Kong, W.J.; Shen, H.H.; Zhang, X.F.; Yang, X.L.; Qiu, F.; Ou-yang, Z.; Yang, M.H. Analysis of zearalenone and α-zearalenol in 100 foods and medicinal plants determined by HPLC-FLD and positive confirmation by LC-MS-MS. J. Sci. Food Agric. 2013, 93, 1584–1590. [Google Scholar] [CrossRef]
- Shephard, G.S. Impact of mycotoxins on human health in developing countries. Food Addit. Contam. 2008, 25, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Milićević, D.R.; Škrinjar, M.; Baltić, T. Real and perceived risks for mycotoxin contamination in foods and feeds: Challenges for food safety control. Toxins 2010, 2, 572–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gautam, A.K.; Bhadauria, R. Mycoflora and mycotoxins in some important stored crude and powdered herbal drugs. Biol-An Int. J. 2009, 1, 1–7. [Google Scholar]
- Trucksess, M.; Weaver, C.; Oles, C.; D’Ovidio, K.; Rader, J. Determination of aflatoxins and ochratoxin A in ginseng and other botanical roots by immunoaffinity column cleanup and liquid chromatography with fluorescence detection. J. AOAC Int. 2006, 89, 624–630. [Google Scholar] [CrossRef] [Green Version]
- Koul, A.; Sumbali, G. Detection of zearalenone, zearalenol and deoxynivalenol from medicinally important dried rhizomes and root tubers. Afr. J. Biotechnol. 2008, 7, 4136–4139. [Google Scholar]
- Veprikova, Z.; Zachariasova, M.; Dzuman, Z.; Zachariasova, A.; Fenclova, M.; Slavikova, P.; Vaclavikova, M.; Mastovska, K.; Hengst, D.; Hajslova, J. Mycotoxins in plant-based dietary supplements: Hidden health risk for consumers. J. Agric. Food Chem. 2015, 63, 6633–6643. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.S.; Kong, W.J.; Wang, S.; Wei, J.H.; Yang, M.H. Simultaneous analysis of multiple mycotoxins in Alpinia oxyphylla by UPLC-MS/MS. World Mycotoxin J. 2017, 10, 41–51. [Google Scholar] [CrossRef]
- Huang, P.; Kong, W.; Wang, S.; Wang, R.; Lu, J.; Yang, M. Multiclass mycotoxins in lotus seeds analysed by an isotope-labelled internal standard-based UPLC-MS/MS. J. Pharm. Pharmacol. 2018, 70, 1378–1388. [Google Scholar] [CrossRef]
- Duarte, S.C.; Salvador, N.; Machado, F.; Costa, E.; Almeida, A.; Silva, L.J.; Pereira, A.M.; Lino, C.; Pena, A. Mycotoxins in teas and medicinal plants destined to prepare infusions in Portugal. Food Control 2020, 115, 107290. [Google Scholar] [CrossRef]
- Narváez, A.; Rodríguez-Carrasco, Y.; Castaldo, L.; Izzo, L.; Ritieni, A. Ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry for multi-residue analysis of mycotoxins and pesticides in botanical nutraceuticals. Toxins 2020, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Caldeirão, L.; Sousa, J.; Nunes, L.C.; Godoy, H.T.; Fernandes, J.O.; Cunha, S.C. Herbs and herbal infusions: Determination of natural contaminants (mycotoxins and trace elements) and evaluation of their exposure. Food Res. Int. 2021, 144, 110322. [Google Scholar] [CrossRef]
- Shephard, G.S.; Burger, H.M.; Gambacorta, L.; Gong, Y.Y.; Krska, R.; Rheeder, J.P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem. Toxicol. 2013, 62, 217–225. [Google Scholar] [CrossRef]
- Abia, W.A.; Warth, B.; Sulyok, M.; Krska, R.; Tchana, A.; Njobeh, P.B.; Turner, P.C.; Kouanfack, C.; Eyongetah, M.; Dutton, M.; et al. Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food Chem. Toxicol. 2013, 62, 927–934. [Google Scholar] [CrossRef]
Mycotoxin | Fungal Source (Genus) | Health Effects |
---|---|---|
Aflatoxin B1 | Aspergillus | Teratogenic, hepatotoxic, immunosuppressive, carcinogenic and mutagenic. |
Deoxynivalenol | Fusarium | Gastrointestinal damage, reproductive effects toxicosis, genotoxicity and immunosuppressive. |
Fumonisins | Fusarium | Teratogenic, carcinogenic, hepatotoxic, nephrotoxic, immunosuppressive and neurotoxic. |
Nivalenol | Fusarium | Anorexic, immunotoxic, hematotoxic and genotoxic. |
Ochratoxin A | Aspergillus Penicillium | Carcinogenic, teratogenic, immunosuppressive and nephrotoxic. |
Zearalenone | Fusarium | Carcinogenic, hormonal imbalance (hyperestrogenism) and reproductive effects. |
Plant Name | Trader: Location | AFB1 | FB1 | FB2 | FB3 | OTA | ZEN |
---|---|---|---|---|---|---|---|
Bulbine narcissifolia Salm-Dyck | MS: Thaba ‘Nchu | - | 10.0 | 18.0 | 1.0 | - | - |
Helichrysum odoratissimum (L.) Sweet. | SV: Zastron | - | 12.0 | 15.0 | - | - | - |
Hypoxis hemerocallidea Fisch., C.A.Mey. & Avé-Lall. | MS: Dewetsdorp | - | - | - | - | - | 183.0 |
Adenia gummifera (Harv.) Harms | MS: Sasolburg | - | - | - | - | - | 54.0 |
Aloe ferox Mill. | MS: Senekal | - | - | - | - | 4.0 | - |
Galium capense Thunb | MS: Winburg | - | - | 2.0 | - | - | - |
Siphonochilus aethiopicus (Schweif.) B.L. Burt | SV: Kroonstad | - | - | - | - | - | 7.0 |
Helichrysum odoratissimum (L.) Sweet. | SV: Kroonstad | - | - | 6.0 | - | - | - |
Dicoma anomala Sond. | SV: Bloemfontein | 15.0 | - | - | - | ||
Pentanisia prunelloides (Klotzsch ex Eckl. & Zeyh.) Walp. | SV: Bloemfontein | - | 7.0 | 1.0 | 1.0 | - | - |
Mean of positive samples ± standard deviation | 15.0 | 9.6 ± 2.5 | 8.4 ± 7.7 | 1.0 | 4.0 | 81.3 ± 91.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndoro, J.; Manduna, I.T.; Nyoni, M.; de Smidt, O. Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS. Toxins 2022, 14, 690. https://doi.org/10.3390/toxins14100690
Ndoro J, Manduna IT, Nyoni M, de Smidt O. Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS. Toxins. 2022; 14(10):690. https://doi.org/10.3390/toxins14100690
Chicago/Turabian StyleNdoro, Julius, Idah Tichaidza Manduna, Makomborero Nyoni, and Olga de Smidt. 2022. "Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS" Toxins 14, no. 10: 690. https://doi.org/10.3390/toxins14100690
APA StyleNdoro, J., Manduna, I. T., Nyoni, M., & de Smidt, O. (2022). Multiple Mycotoxin Contamination in Medicinal Plants Frequently Sold in the Free State Province, South Africa Detected Using UPLC-ESI-MS/MS. Toxins, 14(10), 690. https://doi.org/10.3390/toxins14100690