Isolation and Insecticidal Activity of Essential Oil from Artemisia lavandulaefolia DC. against Plutella xylostella
Abstract
:1. Introduction
2. Results
2.1. Bioassays of Five Constituents after Separation
2.2. Bioassay of the Eight Fractions after Separation
2.3. Bioassay of Subfraction Zb2 after Separation
2.4. Subfraction Composition
2.5. Bioassay of Eucalyptol and Caryophyllene Oxide
2.6. Effects on Enzymes
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Material Preparation and Essential Oil Extraction
5.2. Test Insects
5.3. Chemicals and Reagents
5.4. Isolation of Essential Oil
5.5. Identification of the Active Constituents
5.6. Bioassays
5.7. Median Lethal Dose (LD50) and Median Lethal Concentration (LC50) of Chemicals
5.8. Enzyme Assays
5.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Feng, X.; Liu, S.; You, M.; Furlong, M.J. Biology, ecology, and management of the diamondback moth in china. Annu. Rev. Entomol. 2016, 61, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Charleston, D.S.; Kfir, R. The possibility of using Indian mustard, Brassica juncea, as a trap crop for the diamondback moth, Plutella xylostella, in South Africa. Crop Prot. 2000, 19, 455–460. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Charleston, D.S.; Kfir, R.; Dicke, M.; Vet, L.E.M. Impact of botanical pesticides derived from Melia azedarach and Azadirachta indica on the biology of two parasitoid species of the diamondback moth. Biol. Control 2005, 33, 131–142. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Islam, M.T.; Da Mata, A.M.O.F.; de Aguiar, R.P.S.; Paz, M.F.C.J.; de Alencar, M.V.O.B.; Ferreira, P.M.P.; de Carvalho Melo-Cavalcante, A.A. Therapeutic potential of essential oils focusing on diterpenes. Phytother. Res. 2016, 30, 1420–1444. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, X.; Huang, T.; Li, G.; Zou, K.; Zhou, J. Essential oils resources and ifs application in tobacco industry. Guangdong Chem. Ind. 2007, 34, 73–75. [Google Scholar]
- Luo, J.Y.; An, X. Plant Essential Oil and Natural Pigment Processing Technology, 2nd ed.; Chemical Industry Press: Beijing, China, 2005; pp. 177–179. [Google Scholar]
- Gao, J.M. Botany, 2nd ed.; Science Press: Beijing, China, 2012; pp. 223–227. [Google Scholar]
- Cha, J.D.; Kim, Y.H.; Kim, J.Y. Essential oil and 1,8-cineole from Artemisia lavandulaefolia induces apoptosis in kb cells via mitochondrial stress and caspase activation. Food Sci. Biotechnol. 2010, 19, 185–191. [Google Scholar] [CrossRef]
- Han, X.B.; Xie, X.K.; Qiao, R.X. Toxicity determination of five species of Artemisia plants to gypsy moth. China For. By-Prod. Spec. 2011, 6, 18–21. [Google Scholar]
- Yuan, H.B.; Shang, L.N.; Wei, C.Y.; Ren, B.Z. Comparison of constituents and insecticidal activities of essential oil from Artemisia lavandulaefolia by steam distillation and supercritical-CO2 fluid extraction. Chem. Res. Chin. Univ. 2010, 26, 888–892. [Google Scholar]
- Mo, M.J.; Wu, H.J.; Han, S.C.; Zhao, Y.H.; Su, L.T. Bio-activity of the alcohol extracts from 16 plant species against citrus red mite Panonychus citri McGregor. J. Environ. Entomol. 2008, 30, 44–49. [Google Scholar]
- Huang, X.; Ge, S.Y.; Liu, J.H.; Wang, Y.; Yuan, H.B. Chemical composition and bioactivity of the essential oil from Artemisia lavandulaefolia (Asteraceae) on Plutella xylostella (Lepidoptera: Plutellidae). Fla. Entomol. 2018, 101, 44–48. [Google Scholar] [CrossRef]
- Chu, S.S.; Liu, Q.R.; Liu, Z.L. Insecticidal activity and chemical composition of the essential oil of Artemisia vestita from China against Sitophilus zeamais-ScienceDirect. Biochem. Syst. Ecol. 2010, 38, 489–492. [Google Scholar] [CrossRef]
- Sertkaya, E.; Kaya, K.; Soylu, S. Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Ind. Crop Prod. 2010, 31, 107–112. [Google Scholar] [CrossRef]
- Bravim, A.T.; Santos, D.; Salazar, J.; Junior, Z.; Menini, L. Chemical identification and insecticidal effect of Tephrosia vogelii essential oil against Cerosipha forbesi in strawberry crop. Crop Prot. 2021, 139, 105405. [Google Scholar]
- Deng, Z.B.; Liu, Q.; Yang, Y.; Wang, X.F. Study on the chemical constituents of volatile oil from Artemisia lavandulaefolia DC. J. Northeast. Norm. Univ. (Nat. Sci.) 1987, 3, 396–397. [Google Scholar]
- Zhang, J.; Shi, B.; Gao, P.; Wang, J.; Wu, W. Composition, in vitro antioxidant and antimicrobial activity of the essential oils from Artemisia lavandulaefolia DC. J. Med. Plants Res. 2012, 6, 1284–1288. [Google Scholar]
- Jordán, M.J.; Martínez, R.M.; Cases, M.A.; Sotomayor, J.A. Watering level effect on Thymus hyemalis lange essential oil yield and composition. J. Agric. Food Chem. 2003, 51, 5420–5427. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chu, S.S.; Liu, Q.R. Chemical composition and insecticidal activity against Sitophilus zeamais of the essential oils of Artemisia capillaris and Artemisia mongolica. Molecules 2010, 15, 2600–2608. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.D.; Jeong, M.R.; Choi, H.J.; Jeong, S.I.; Song, Y.H. Chemical composition and antimicrobial activity of the essential oil of Artemisia lavandulaefolia. Planta Med. 2005, 71, 575–577. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Guo, S.; Zhang, W.; Kai, Y.; Geng, Z.; Du, S.; Wang, C.; Deng, Z. Identification of repellent and insecticidal constituents from Artemisia mongolica essential oil against Lasioderma serricorne. J. Chem. 2015, 2015, 549057. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Cho, S.R.; Kim, G.H. Insecticidal and antifeeding activity of Perilla frutescens-derived material against the diamondback moth, Plutella xylostella L. Entomol. Res. Bull. 2019, 49, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Wang, C.F.; You, C.X.; Geng, Z.F.; Sun, R.Q.; Guo, S.S.; Du, S.S.; Liu, Z.L.; Deng, Z.W. Bioactivity of essential oil of Litsea cubeba from China and its main compounds against two stored product insects. J. Asia Pac. Entomol. 2014, 17, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Franzios, G.; Mirotsou, M.; Hatziapostolou, E.; Kral, J.; Scouras, Z.G.; Mavragani-Tsipidou, P. Insecticidal and genotoxic activities of mint essential oils. J. Agric. Food Chem. 1997, 45, 2690–2694. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Baris, K.O. Feeding and oviposition deterrent activities of microencapsulated cardamom oleoresin and eucalyptol against Cydia pomonella. Chil. J. Agr. Res. 2016, 76, 62–70. [Google Scholar]
- Juergens, U.R.; Dethlefsen, U.; Steinkamp, G.; Gillissen, A.; Repges, R.; Vetter, H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Respir. Med. 2003, 97, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.K.; Veena, P.; Aggarwal, K.K.; Sushil, K. Toxicity, feeding deterrence, and effect of activity of 1,8-cineole from Artemisia annua on progeny production of Tribolium castanaeum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2001, 94, 979–983. [Google Scholar] [CrossRef]
- Durden, K.; Sellars, S.; Cowell, B.; Brown, J.J.; Pszczolkowski, M.A. Artemisia annua extracts, artemisinin and 1,8-cineole, prevent fruit infestation by a major, cosmopolitan pest of apples. Pharm. Biol. 2011, 49, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Santana, O.; Andrés, M.F.; Sanz, J.; Errahmani, N.; González-Coloma, A. Valorization of essential oils from Moroccan aromatic plants. Nat. Prod. Commun. 2014, 9, 1109–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isikber, A.A.; Alma, M.H.; Kanat, M.; Karci, A. Fumigant toxicity of essential oils from Laurus nobilis and Rosmarinus officinalis against all life stages of Tribolium confusum. Phytoparasitica 2006, 34, 167–177. [Google Scholar] [CrossRef]
- Barbosa, P.; Vieira, P.; Dias, L.; Pedro, L.; Barroso, J.; Figueiredo, A.; Mota, M. Control of the pinewood nematode Bursaphelenchus xylophilus by essential oils and extracts obtained from plants: A review. Environ. Chem. Lett. 2012, 1, 22–23. [Google Scholar]
- Badgujar, R.H.; Mendki, P.S.; Kotkar, H.M. Management of Plutella xylostella using Cinnamomum zeylanicum and Syzygium aromaticum extracts and their major secondary metabolites. Biopestic. Int. 2017, 13, 1–14. [Google Scholar]
- Thanavendanand, G.; Kennedy, J.S. Biochemical characterization and insecticidal activity of different solvent crude extracts of Lantana camara L. on diamondback moth, Plutella xylostella (Linn.). Int. Conf. Agric. For. 2015, 1, 117–138. [Google Scholar]
- Sajedeh, J.; Nooshin, Z.S.; Leila, R.; Antoni, S. Chemical composition and insecticidal efficacy of Cyperus rotundus essential oil against three stored product pests. Int. Biodeterior. Biodegrad. 2018, 133, 93–98. [Google Scholar]
- Zhang, W.; Zhang, Z.; Chen, Z.; Liang, J.; Geng, Z.; Guo, S.; Du, S.; Deng, Z. Chemical composition of essential oils from six Zanthoxylum species and their repellent activities against two stored-product insects. J. Chem. 2017, 2017, 1287362. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, J.S.; Rider, D.S.; Walsh, T.K.; Vos, M.D.; Gordon, K.H.J.; Ponnala, L.; Macmil, S.L.; Roe, B.A.; Jander, G. Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Mol. Biol. 2010, 19, 155–164. [Google Scholar] [CrossRef]
- Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D. 3D graphene/copper oxide nano-flowers based acetylcholinesterase biosensor for sensitive detection of organophosphate pesticides. Sens. Actuators B Chem. 2019, 279, 95–101. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Zueva, I.V.; Petrov, K.A.; Lukashenko, S.S.; Nizameev, I.R.; Kulik, N.V.; Voloshina, A.D.; Almasy, L.; Kadirov, M.K.; Masson, P. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactivator 2-PAM as encapsulated drug model. Colloids Surf. B Biointerfaces 2018, 171, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Piri, A.; Sahebzadeh, N.; Zibaee, A.; Sendi, J.J.; Shahriari, M. Toxicity and physiological effects of ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chemosphere 2020, 256, 127103. [Google Scholar] [CrossRef] [PubMed]
- Visetson, S. Synergistic effects of sesame oil with cypermethrin on the survival and detoxification enzyme activity of Plutella xylostella L. larvae. Kasetsart J. Nat. Sci. 2003, 37, 52–59. [Google Scholar]
- Li, X.; Xi, G.; Piao, R.; Zhang, L.; Yang, H. Effects of ginsenoside Rb1 on avoidance rate and enzyme activity of Plutella xylostella. J. Jilin Agric. Univ. 2019, 41, 280–287. [Google Scholar]
- Liu, S.W.; Ji, M.S.; Gu, Z.M.; Wei, S.H.; Wang, Y.Z. Effects of capsaicin on the enzyme activities of Glutathione S-Transferase and Na+, K+-ATP ase in Plutella xylostella. Chin. J. Pestic. Sci. 2008, 10, 240. [Google Scholar]
- Duan, Y.; Wu, L.; Song, C.; Yan, X.; Chi, H. Effects of stem and leaves extracts from Mentha spicata L. on detoxification enzymes of Plutella xylostella larvae. Shanxi Agric. Sci. 2020, 48, 1503–1509. [Google Scholar]
- Gao, Q.; Song, L.; Sun, J.; Cao, H.Q.; Wang, L.; Lin, H.; Tang, F. Repellent action and contact toxicity mechanisms of the essential oil extracted from Chinese chive against Plutella xylostella larvae. Arch. Insect Biochem. Physiol. 2019, 100, e21509. [Google Scholar] [CrossRef] [Green Version]
- Koundal, R.; Dolma, S.K.; Chand, G.; Agnihotri, V.K.; Reddy, S. Chemical composition and insecticidal properties of essential oils against diamondback moth ( Plutella xylostella L.). Toxin Rev. 2018, 39, 371–381. [Google Scholar] [CrossRef]
- Sun, Z.W. Plant Chemistry, 1st ed.; Northeast Forestry University Press: Harbin, China, 2000; pp. 234–236. [Google Scholar]
Treatment Time (h) | Neutral Constituent | Alkaline Constituent | Weak Acid Constituent | Strong Acidic Constituent | Aldehyde Ketone Constituent |
---|---|---|---|---|---|
2 | 89.44 ± 0.08 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
4 | 96.67 ± 0.06 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
6 | 99.44 ± 0.02 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
8 | 100.00 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
10 | 100.00 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
12 | 100.00 ± 0.00 a | 0.00 ± 0.00 c | 1.67 ± 0.04 b | 0.00 ± 0.00 c | 0.00 ± 0.00 c |
24 | 100.00 ± 0.00 a | 0.56 ± 0.02 c | 3.33 ± 0.05 b | 2.22 ± 0.04 bc | 0.00 ± 0.00 c |
Treatment Time (h) | Neutral Constituent | Alkaline Constituent | Weak Acid Constituent | Strong Acidic Constituent | Aldehyde Ketone Constituent |
---|---|---|---|---|---|
2 | 100.00 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
4 | 100.00 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
6 | 100.00 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.56 ± 0.02 b |
8 | 100.00 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.56 ± 0.02 b | 0.56 ± 0.02 b |
10 | 100.00 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.03 b | 2.78 ± 0.06 b | 1.67 ± 0.04 b |
12 | 100.00 ± 0.00 a | 1.67 ± 0.04 c | 5.56 ± 0.07 bc | 6.11 ± 0.07 bc | 7.22 ± 0.08 b |
24 | 100.00 ± 0.00 a | 7.22 ± 0.06 c | 13.33 ± 0.11 bc | 20.00 ± 0.13 b | 21.11 ± 0.11 b |
Treatment Time (h) | Za | Zb | Zc | Zd | Ze | Zf | Zg | Zh |
---|---|---|---|---|---|---|---|---|
2 | 28.89 ± 0.06 b | 50.00 ± 0.05 a | 15.56 ± 0.05 c | 14.44 ± 0.09 c | 7.78 ± 0.04 c | 52.22 ± 0.08 a | 11.11 ± 0.03 c | 8.89 ± 0.03 c |
4 | 36.67 ± 0.07 b | 55.56 ± 0.07 a | 21.11 ± 0.03 c | 16.67 ± 0.07 cd | 7.78 ± 0.04 e | 56.67 ± 0.10 a | 16.67 ± 0.05 cd | 10.00 ± 0.00 e |
6 | 41.11 ± 0.11 b | 60.00 ± 0.09 a | 23.33 ± 0.05 c | 26.67 ± 0.09 c | 10.00 ± 0.00 d | 60.00 ± 0.13 a | 18.89 ± 0.03 cd | 11.11 ± 0.03 d |
8 | 50.00 ± 0.12 b | 67.78 ± 0.07 a | 27.78 ± 0.04 c | 27.78 ± 0.08 c | 13.33 ± 0.05 d | 63.33 ± 0.11 a | 23.33 ± 0.05 cd | 14.44 ± 0.05 d |
10 | 54.44 ± 0.10 b | 72.22 ± 0.07 a | 30.00 ± 0.00 c | 28.89 ± 0.09 cd | 18.89 ± 0.08 de | 64.44 ± 0.12 a | 26.67 ± 0.05 cd | 16.67 ± 0.05 e |
12 | 60.00 ± 0.07 c | 78.89 ± 0.06 a | 34.44 ± 0.05 d | 31.11 ± 0.09 de | 24.44 ± 0.05 ef | 70.00 ± 0.11 b | 32.22 ± 0.04 de | 20.00 ± 0.05 f |
24 | 62.22 ± 0.07 c | 84.44 ± 0.07 a | 37.78 ± 0.06 d | 36.67 ± 0.01 d | 27.78 ± 0.04 de | 74.44 ± 0.09 b | 36.67 ± 0.07 d | 22.22 ± 0.07 e |
Treatment Time (h) | Za | Zb | Zc | Zd | Ze | Zf | Zg | Zh |
---|---|---|---|---|---|---|---|---|
2 | 0.00 ± 0.00 d | 47.78 ± 0.08 b | 18.89 ± 0.08 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 22.22 ± 0.04 c | 100.00 ± 0.00 a |
4 | 0.00 ± 0.00 e | 52.22 ± 0.04 b | 18.89 ± 0.08 d | 0.00 ± 0.00 e | 0.00 ± 0.00e | 0.00 ± 0.00 e | 23.33 ± 0.05 c | 100.00 ± 0.00 a |
6 | 0.00 ± 0.00 d | 54.44 ± 0.08 b | 28.89 ± 0.11 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 27.78 ± 0.04 c | 100.00 ± 0.00 a |
8 | 0.00 ± 0.00 d | 64.44 ± 0.07 b | 32.22 ± 0.11 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 33.33 ± 0.05 c | 100.00 ± 0.00 a |
10 | 0.00 ± 0.00 d | 67.78 ± 0.08 b | 41.11 ± 0.11 c | 1.11 ± 0.03 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 36.67 ± 0.07 c | 100.00 ± 0.00 a |
12 | 0.00 ± 0.00 e | 83.33 ± 0.11 b | 51.11 ± 0.15 c | 3.33 ± 0.05 e | 3.33 ± 0.05 e | 0.00 ± 0.00 e | 41.11 ± 0.06 d | 100.00 ± 0.00 a |
24 | 4.44 ± 0.05 c | 97.78 ± 0.04 a | 58.89 ± 0.11 b | 7.78 ± 0.04 c | 5.56 ± 0.05 c | 2.22 ± 0.04 c | 52.22 ± 0.07 b | 100.00 ± 0.00 a |
Treatment Time (h) | Zb1 | Zb2 | Zb3 | Zb4 |
---|---|---|---|---|
2 | 0.00 ± 0.00 d | 28.89 ± 0.06 a | 11.11 ± 0.03 b | 5.56 ± 0.05 c |
4 | 0.00 ± 0.00 c | 34.44 ± 0.09 a | 13.33 ± 0.05 b | 8.88 ± 0.03 b |
6 | 0.00 ± 0.00 d | 42.22 ± 0.08 a | 16.67 ± 0.05 b | 10.00 ± 0.05 c |
8 | 1.11 ± 0.03 d | 50.00 ± 0.07 a | 22.22 ± 0.07 b | 12.22 ± 0.07 c |
10 | 2.22 ± 0.04 d | 58.89 ± 0.08 a | 25.56 ± 0.05 b | 15.56 ± 0.07 c |
12 | 4.44 ± 0.05 d | 67.78 ± 0.10 a | 27.78 ± 0.07 b | 17.78 ± 0.04 c |
24 | 10.00 ± 0.05 d | 76.67 ± 0.09 a | 32.22 ± 0.04 b | 18.89 ± 0.06 c |
Treatment Time (h) | Zb1 | Zb2 | Zb3 | Zb4 |
---|---|---|---|---|
2 | 0.00 ± 0.00 b | 18.89 ± 0.03 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
4 | 0.00 ± 0.00 b | 27.78 ± 0.08 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
6 | 0.00 ± 0.00 b | 37.78 ± 0.04 a | 3.33 ± 0.05 b | 0.00 ± 0.00 b |
8 | 0.00 ± 0.00 c | 47.78 ± 0.07 a | 7.78 ± 0.04 b | 0.00 ± 0.00 c |
10 | 0.00 ± 0.00 c | 56.67 ± 0.07 a | 11.11 ± 0.03 b | 2.22 ± 0.04 c |
12 | 1.11 ± 0.03 c | 66.67 ± 0.09 a | 15.56 ± 0.05 b | 4.44 ± 0.07 b |
24 | 1.11 ± 0.03 c | 82.22 ± 0.07 a | 18.89 ± 0.06 b | 6.67 ± 0.07 b |
No. | Retention Time (min) | Name of Constituent | Molcular Formula | RI 1 | Relative Content (%) | Identification Method |
---|---|---|---|---|---|---|
1 | 6.417 | 1,5-Heptadien-4-one, 3,3,6-trimethyl | C10H16O | 1148 | 14.62 | RI, MS 2 |
2 | 7.623 | Caryophyllene oxide | C15H24O | 1172 | 36.78 | RI, MS |
3 | 8.318 | Eucalyptol | C10H18O | 1680 | 48.60 | RI, MS |
Compounds | N 1 | Slope ± SE 2 | LD50 3 (95% FL 4) | λ2 | Slope ± SE | LC50 3 (95% FLb) | λ2 |
---|---|---|---|---|---|---|---|
Eucalyptol | 150 | 4.39 ± 0.46 | 76.97 (28.74–111.79) | 12.37 | 5.44 ± 0.51 | 3.25 (2.37–4.05) | 6.371 |
Caryophyllene oxide | 150 | 6.23 ± 0.58 | 20.71 (16.36–25.48) | 5.863 | 13.923 ± 1.32 | 1.06 (0.87–1.21) | 13.592 |
Enzymes | CK 1 | 50 μL/mL | 100 μL/mL | 150 μL/mL | 200 μL/mL | 250 μL/mL |
---|---|---|---|---|---|---|
CarE | 0.193 ± 0.001 c | 0.619 ± 0.001 bc | 0.864 ± 0.001 bc | 0.871 ± 0.051 bc | 0.958 ± 0.086 b | 1.97 ± 0.055 a |
GST | 69.022 ± 8.873 c | 56.853 ± 4.882 bc | 70.363 ± 1.09 bc | 76.199 ± 3.107 b | 78.464 ± 4.78 b | 95.853 ± 6.793 a |
AchE | 0.064 ± 0.022 a | 0.061 ± 0.017 a | 0.057 ± 0.012 ab | 0.056 ± 0.005 ab | 0.046 ± 0.021 ab | 0.027 ± 0.018 b |
Enzymes | CK | 10 mg/mL | 20 mg/mL | 25 mg/mL | 50 mg/mL | 100 mg/mL |
---|---|---|---|---|---|---|
CarE | 0.076 ± 0.001 a | 0.049 ± 0.001 b | 0.038 ± 0.013 b | 0.033 ± 0.011 b | 0.033 ± 0.001 b | 0.031 ± 0.001 b |
GST | 84.095 ± 10.576 a | 61.674 ± 7.944 b | 48.267 ± 2.487 b | 41.278 ± 2.613 b | 42.878 ± 3.989 b | 52.927 ± 6.865 b |
AchE | 0.280 ± 0.068 a | 0.280 ± 0.064 a | 0.181 ± 0.038 a | 0.162 ± 0.006 a | 0.154 ± 0.049 a | 0.137 ± 0.051 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Huang, Y.; Yang, C.; Liu, T.; Liu, X.; Yuan, H. Isolation and Insecticidal Activity of Essential Oil from Artemisia lavandulaefolia DC. against Plutella xylostella. Toxins 2021, 13, 842. https://doi.org/10.3390/toxins13120842
Huang X, Huang Y, Yang C, Liu T, Liu X, Yuan H. Isolation and Insecticidal Activity of Essential Oil from Artemisia lavandulaefolia DC. against Plutella xylostella. Toxins. 2021; 13(12):842. https://doi.org/10.3390/toxins13120842
Chicago/Turabian StyleHuang, Xing, Yulin Huang, Chunyue Yang, Tiantian Liu, Xing Liu, and Haibin Yuan. 2021. "Isolation and Insecticidal Activity of Essential Oil from Artemisia lavandulaefolia DC. against Plutella xylostella" Toxins 13, no. 12: 842. https://doi.org/10.3390/toxins13120842