Assessment of Food By-Products’ Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone
Abstract
:1. Introduction
2. Results
2.1. UHPLC Results
2.2. Method Validation Results
2.3. Effect of Influencing Conditions on the Binding Proces
2.3.1. Effect of Incubation Time
2.3.2. Effect of Food by-Product Concentration
2.3.3. Effect of Medium pH
2.3.4. Effect of Incubation Temperature
2.4. Response Surface Methodology Results
3. Conclusions
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Sample Preparation
4.3. Experimental Design
4.3.1. In Vitro Binding Experiments
4.3.2. Evaluation of Adsorption Using Response Surface Methodology (RSM)
4.4. UHPLC Analysis
4.5. Method Validation
4.6. Data Calculation and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Palade, L.M.; Croitoru, C.; Arnous, A. Preliminary assessment for the synthesis of lignin-type molecules using crude onion peroxidase. Chem. Pap. 2019, 73, 801–810. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-processing of agro-byproducts to animal feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef] [PubMed]
- European Commission Commission Regulation (EU). No 68/2013 of 16 January 2013 on the Catalogue of feed materials. In Official Journal of the European Union; European Union Commission Regulation (EU): Brussels, Belgium, 2013; pp. 1–64. [Google Scholar]
- European Union Commission Regulation (EU). 2017/1017 of 15 June 2017 amending Regulation (EU) No 68/2013 on the Catalogue of feed materials. In Official Journal of the European Union; European Union Commission Regulation (EU): Brussels, Belgium, 2017; Volume L 159, pp. 48–119. [Google Scholar]
- Amagase, H. Clarifying the real bioactive constituents of garlic. J. Nutr. 2006, 136, 716S–725S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes. Front. Plant Sci. 2016, 7, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australas. J. Anim. Sci. 2017, 30, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Avantaggiato, G.; Greco, D.; Damascelli, A.; Solfrizzo, M.; Visconti, A. Assessment of Multi-mycotoxin Adsorption Efficacy of Grape Pomace. J. Agric. Food Chem. 2014, 62, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Chedea, V.S.; Palade, L.M.; Marin, D.E.; Pelmus, R.S.; Habeanu, M.; Rotar, M.C.; Gras, M.A.; Pistol, G.C.; Taranu, I. Intestinal absorption and antioxidant activity of grape pomace polyphenols. Nutrients 2018, 10, 588. [Google Scholar] [CrossRef] [Green Version]
- Taranu, I.; Habeanu, M.; Gras, M.A.; Pistol, G.C.; Lefter, N.; Palade, M.; Ropota, M.; Sanda Chedea, V.; Marin, D.E. Assessment of the effect of grape seed cake inclusion in the diet of healthy fattening-finishing pigs. J. Anim. Physiol. Anim. Nutr. 2018, 102, e30–e42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olas, B.; Skalski, B.; Ulanowska, K. The Anticancer Activity of Sea Buckthorn [Elaeagnus rhamnoides (L.) A. Nelson]. Front. Pharmacol. 2018, 9, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dannenberger, D.; Tuchscherer, M.; Nürnberg, G.; Schmicke, M.; Kanitz, E. Sea Buckthorn Pomace Supplementation in the Diet of Growing Pigs—Effects on Fatty Acid Metabolism, HPA Activity and Immune Status. Int. J. Mol. Sci. 2018, 19, 596. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Shukla, P.K.; Bhattacharyya, A.; Kumar, U.; Roy, D.; Yadav, B.; Prakash, A. Effect of dietary supplementation of sea buckthorn and giloe leaf meal on the body weight gain, feed conversion ratio, biochemical attributes, and meat composition of turkey poults. Vet. World 2018, 11, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Kolosova, A.; Stroka, J. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin J. 2011, 4, 225–256. [Google Scholar] [CrossRef]
- Kosicki, R.; Błajet-Kosicka, A.; Grajewski, J.; Twarużek, M. Multiannual mycotoxin survey in feed materials and feedingstuffs. Anim. Feed Sci. Technol. 2016, 215, 165–180. [Google Scholar] [CrossRef]
- Prapapanpong, J.; Udomkusonsri, P.; Mahavorasirikul, W.; Choochuay, S.; Tansakul, N. In vitro studies on gastrointestinal monogastric and avian models to evaluate the binding efficacy of mycotoxin adsorbents by liquid chromatography-tandem mass spectrometry. J. Adv. Vet. Anim. Res. 2019, 6, 125–132. [Google Scholar] [CrossRef]
- Colović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Ðuragić, O.; Kos, J.; Pinotti, L. Decontamination of mycotoxin-contaminated feedstuffs and compound feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Abbasi Pirouz, A.; Selamat, J.; Zafar Iqbal, S.; Iskandar Putra Samsudin, N. Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake. Toxins 2020, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Boudergue, C.; Burel, C.; Dragacci, S.; FAVROT, M.; FREMY, J.; Massimi, C.; PRIGENT, P.; Debongnie, P.; Pussemier, L.; Boudra, H. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2009, 6, 22E. [Google Scholar] [CrossRef]
- Lu, H.; Liu, F.; Zhu, Q.; Zhang, M.; Li, T.; Chen, J.; Huang, Y.; Wang, X.; Sheng, J. Aflatoxin B1 can be complexed with oxidised tea polyphenols and the absorption of the complexed aflatoxin B1 is inhibited in rats. J. Sci. Food Agric. 2017, 97, 1910–1915. [Google Scholar] [CrossRef] [PubMed]
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A.; Lebrihi, A. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. Part A 2011, 28, 1590–1609. [Google Scholar] [CrossRef] [PubMed]
- De Mil, T.; Devreese, M.; De Baere, S.; Van Ranst, E.; Eeckhout, M.; De Backer, P.; Croubels, S. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration. Toxins 2015, 7, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Greco, D.; D’Ascanio, V.; Santovito, E.; Logrieco, A.F.; Avantaggiato, G. Comparative efficacy of agricultural by-products in sequestering mycotoxins. J. Sci. Food Agric. 2019, 99, 1623–1634. [Google Scholar] [CrossRef]
- European Union Regulation (EC). No. 386/2009 of 12 May 2009 amending Regulation (EC) No. 1831/2003 of the European Parliament and of the Council as regards the etablishment of a new functional group of feed additives. In Official Journal of the European Union; European Union Regulation (EC): Luxembourg, 2009; Volume L 118/66, p. 2009. [Google Scholar]
- Banlunara, W.; Bintvihok, A.; Kumagai, S. Immunohistochemical study of proliferating cell nuclear antigen (PCNA) in duckling liver fed with aflatoxin B1 and esterified glucomannan. Toxicon 2005, 46, 954–957. [Google Scholar] [CrossRef]
- Solis-Cruz, B.; Hernandez-Patlan, D.; Petrone, V.M.; Pontin, K.P.; Latorre, J.D.; Beyssac, E.; Hernandez-Velasco, X.; Merino-Guzman, R.; Owens, C.; Hargis, B.M.; et al. Evaluation of Cellulosic Polymers and Curcumin to Reduce Aflatoxin B1 Toxic Effects on Performance, Biochemical, and Immunological Parameters of Broiler Chickens. Toxins 2019, 11, 121. [Google Scholar] [CrossRef] [Green Version]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Müller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef]
- Scaglioni, P.T.; Badiale-Furlong, E. Rice husk as an adsorbent: A new analytical approach to determine aflatoxins in milk. Talanta 2016, 152, 423–431. [Google Scholar] [CrossRef]
- Adunphatcharaphon, S.; Petchkongkaew, A.; Greco, D.; D’Ascanio, V.; Visessanguan, W.; Avantaggiato, G. The Effectiveness of Durian Peel as a Multi-Mycotoxin Adsorbent. Toxins 2020, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Muhammad, I.; Li, R.; Jin, H.; Guo, Z.; Yang, Y.; Hamid, S.; Li, J.; Cheng, P.; Zhang, X. Development of a UPLC-FLD method for detection of aflatoxin B1 and M1 in animal tissue to study the effect of curcumin on mycotoxin clearance Rates. Front. Pharmacol. 2017, 8, 650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcaro, G.; Moret, S.; Conte, L.S. Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta 2013, 105, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, M.I.; Iqbal, Z.; Shah, Y.; Ahmad, L.; Nazir, S.; Watson, D.G.; Khan, J.A.; Nasir, F.; Khan, A.; et al. A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta 2011, 84, 789–801. [Google Scholar] [CrossRef] [PubMed]
- European Union. 96/23/EC COMMISSION DECISION of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (notified under document number C(2002) 3044)(Text withEEA relevance) (2002/657/EC). In 96/23/EC Commission Decision; European Union: Brussels, Belgium, 2002; p. 29. [Google Scholar]
- FDA. Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds; FDA U.S. Food Drug Administration: Silver Spring, MD, USA, 2019; pp. 1–54.
- Sharifipour, F.; Hojati, S.; Landi, A.; Faz Cano, A. Kinetics and Thermodynamics of Lead Adsorption from Aqueous Solutions onto Iranian Sepiolite and Zeolite. Int. J. Environ. Res. 2015, 9, 1001–1010. [Google Scholar] [CrossRef]
- Hamdaoui, O.; Naffrechoux, E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 2007, 147, 381–394. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Abbasi Pirouz, A.; Abedi Karjiban, R.; Abu Bakar, F.; Selamat, J. A Novel Adsorbent Magnetic Graphene Oxide Modified with Chitosan for the Simultaneous Reduction of Mycotoxins. Toxins 2018, 10, 361. [Google Scholar] [CrossRef] [Green Version]
- El-Khaiary, M.I.; Malash, G.F. Common data analysis errors in batch adsorption studies. Hydrometallurgy 2011, 105, 314–320. [Google Scholar] [CrossRef]
- Döll, S.; Dänicke, S. In vivo detoxification of Fusarium toxins. Arch. Anim. Nutr. 2004, 58, 419–441. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1118916034. [Google Scholar]
- Hinkelmann, K. Design and Analysis of Experiments, Special Designs and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 3, ISBN 1118147642. [Google Scholar]
- Motulsky, H.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting; Oxford University Press: England, UK, 2004; ISBN 0198038348. [Google Scholar]
- Fournier, D.A.; Skaug, H.J.; Ancheta, J.; Ianelli, J.; Magnusson, A.; Maunder, M.N.; Nielsen, A.; Sibert, J. AD Model Builder: Using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 2012, 27, 233–249. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chen, J.; Li, A.; Liu, F.; Zhang, Q. Adsorption of resorcinol and catechol from aqueous solution by aminated hypercrosslinked polymers. React. Funct. Polym. 2005, 64, 63–73. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, N.; Yang, L.; Wang, J.; Song, S.; Nie, D.; Yang, X.; Hou, J.; Wu, A. Cross-linked chitosan polymers as generic adsorbents for simultaneous adsorption of multiple mycotoxins. Food Control 2015, 57, 362–369. [Google Scholar] [CrossRef]
- Fernandes, J.-M.; Calado, T.; Guimarães, A.; Rodrigues, M.A.M.; Abrunhosa, L. In vitro adsorption of aflatoxin B1, ochratoxin A, and zearalenone by micronized grape stems and olive pomace in buffer solutions. Mycotoxin Res. 2019, 35, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zargar, R.; Raghuwanshi, P.; Rastogi, A.; Koul, A.L.; Khajuria, P.; Ganai, A.W.; Kour, S. Protective and ameliorative effect of sea buckthorn leaf extract supplementation on lead induced hemato-biochemical alterations in Wistar rats. Vet. World 2016, 9, 929–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Velázquez, A.L.B.; Billes, F.; Dixon, J.B. Bonding mechanisms between aflatoxin B1 and smectite. Appl. Clay Sci. 2010, 50, 92–98. [Google Scholar] [CrossRef]
- Wang, G.; Miao, Y.; Sun, Z.; Zheng, S. Simultaneous adsorption of aflatoxin B1 and zearalenone by mono- and di-alkyl cationic surfactants modified montmorillonites. J. Colloid Interface Sci. 2018, 511, 67–76. [Google Scholar] [CrossRef]
- Elliott, C.T.; Connolly, L.; Kolawole, O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res. 2020, 36, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Kolosova, A.; Stroka, J. Evaluation of the effect of mycotoxin binders in animal feed on the analytical performance of standardised methods for the determination of mycotoxins in feed. Food Addit. Contam. Part A 2012, 29, 1959–1971. [Google Scholar] [CrossRef]
- Taranu, I.; Marin, D.E.; Palade, M.; Pistol, G.C.; Chedea, V.S.; Gras, M.A.; Rotar, C. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet in performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon 2019, 162, 24–31. [Google Scholar] [CrossRef]
- Duca, R.C.; Bravin, F.; Delaforge, M.; Vladescu, L.; Badea, I.A.; Criste, R.D. Development of a new HPLC method used for determination of zearalenone and its metabolites in broiler samples. Influence of zearalenone on the nutritional properties of broiler meat. J. Agric. Food Chem. 2009, 57, 10497–10504. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, B.; Örnemark, U. (Eds.) The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Prague, Czech Republic, 2014; ISBN 978-91-87461-59-0. [Google Scholar]
- Spiess, A.-N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpa, O.M.; Unuabonah, E.I. Small-Sample Corrected Akaike Information Criterion: An appropriate statistical tool for ranking of adsorption isotherm models. Desalination 2011, 272, 20–26. [Google Scholar] [CrossRef]
Parameters | AFB1 | ZEA |
---|---|---|
Precision | ||
Repeatability, RSD | 1.58 | 1.61 |
Reproducibility, RSD | 2.41 | 2.83 |
Accuracy | ||
Accuracy | 100.76 | 101.64 |
bias | 0.76 | 1.64 |
Limits of Detection and Quantification-Sensitivity | ||
LOD (μg/mL) | 0.15 | 0.15 |
LOQ (μg/mL) | 0.50 | 0.50 |
Linearity | ||
Domain (μg/mL) | 0.05 | 6.25 |
R2 value | 0.998 | 0.998 |
RSD | 5.37 | 5.55 |
GSM | |||||||
Kf | 1/n | SSE | DFE | MSE | RMSE | AICc | |
AFB1 | 0.367 | 0.248 | 1.08 × 10 −4 | 2 | 5.414 × 10 −5 | 7.35 × 10 −3 | −118.387 |
ZEA | 0.343 | 0.264 | 1.64 × 10 −4 | 2 | 8.233 × 10 −5 | 9.07 × 10 −3 | −113.357 |
SBM | |||||||
Kf | 1/n | SSE | DFE | MSE | RMSE | AICc | |
AFB1 | 0.217 | 0.341 | 1.31 × 10 −3 | 2 | 6.56 × 1 −4 | 0.025 | −88.445 |
ZEA | 0.418 | 0.213 | 3.07 × 10 −3 | 2 | 1.53 × 10 −3 | 0.039 | −78.234 |
Term | p Value | |
---|---|---|
AFB1 | ZEA | |
Food by-product | <0.0001 * | <0.0001 * |
Contact time (min) | <0.0001 * | <0.0001 * |
Food by-product concentration (mg/mL) | <0.0001 * | <0.0001 * |
Medium pH | 0.8210 | 0.8342 |
Temperature (°C) | 0.0739 | 0.3796 |
Term | Parameter Estimates | p Value | ||||||
---|---|---|---|---|---|---|---|---|
GSM | SBM | GSM | SBM | |||||
AFB1 | ZEA | AFB1 | ZEA | AFB1 | ZEA | AFB1 | ZEA | |
Food by-product concentration (10,30) | 8.681 | 5.901 | 11.108 | 5.305 | <0.0001 * | <0.0001 * | <0.0001 * | <0.0001 * |
pH (3,9) | 4.263 | 3.369 | 4.612 | 2.037 | 0.0010 * | 0.0023 * | 0.0083 * | 0.0044 * |
Temperature (25,40) | −0.190 | −0.112 | 0.003 | −1.535 | 0.8665 | 0.9098 | 0.9981 | 0.0258 * |
Food by-product concentration × pH | −4.883 | −2.313 | −4.578 | −0.383 | 0.0008 * | 0.0458 * | 0.0173 * | 0.5986 |
Food by-product concentration × Temperature | −0.006 | 0.600 | 2.068 | 1.724 | 0.9961 | 0.5884 | 0.2573 | 0.0252 * |
pH × Temperature | 1.744 | 1.970 | −1.932 | −0.004 | 0.1770 | 0.0852 | 0.2891 | 0.9953 |
Food by-product concentration × Food by-product concentration | −4.851 | −3.741 | −2.499 | −2.270 | 0.0365 * | 0.0621 | 0.4285 | 0.0831 |
pH × pH | 3.373 | 8.102 | 3.002 | 5.592 | 0.1358 | 0.0003 * | 0.3430 | 0.0002 * |
Temperature × Temperature | 0.759 | 0.955 | −2.726 | 0.265 | 0.7308 | 0.6208 | 0.3884 | 0.8336 |
Goodness-of-fit | p value | RSquare | RMSE | RSquare Adj. | PRESS | PRESS RMSE | Predicted RSquare | |
GSM | ||||||||
AFB1 | <0.0001 * | 0.82 | 5.01 | 0.74 | 1337.82 | 6.46 | 0.55 | |
ZEA | <0.0001 * | 0.78 | 4.37 | 0.69 | 1007.13 | 5.61 | 0.48 | |
SBM | ||||||||
AFB1 | <0.0001 * | 0.76 | 7.11 | 0.66 | 2400.11 | 8.66 | 0.48 | |
ZEA | <0.0001 * | 0.84 | 2.87 | 0.77 | 389.14 | 3.49 | 0.65 |
Parameter | Tested Interval | Fixed Conditions |
---|---|---|
Time (min) | 1 min–24 h | pH 7, 0.5% w/v (5 mg/mL), 37 °C, 250 rpm |
Food by-product concentration (mg/mL) | 0.5–3% w/v (5–30 mg/mL) | pH 7, 90 min, 37 °C, 250 rpm |
pH | pH 3, 5, 7 and 9 | 0.5% w/v (5 mg/mL), 90 min, 37 °C, 250 rpm |
Temperature (°C) | 25 °C, 37 °C and 40 °C | 0.5% w/v (5 mg/mL) at pH 7, for 90 min at 250 rpm |
Factors | Coded Factor Level | ||||
---|---|---|---|---|---|
– | a | 0 | A | + | |
Concentration (mg/mL) | 10 | 10 | 20 | 30 | 30 |
pH | 3 | 3 | 6 | 9 | 9 |
Temperature (°C) | 25 | 25 | 32.5 | 40 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palade, L.M.; Dore, M.I.; Marin, D.E.; Rotar, M.C.; Taranu, I. Assessment of Food By-Products’ Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone. Toxins 2021, 13, 2. https://doi.org/10.3390/toxins13010002
Palade LM, Dore MI, Marin DE, Rotar MC, Taranu I. Assessment of Food By-Products’ Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone. Toxins. 2021; 13(1):2. https://doi.org/10.3390/toxins13010002
Chicago/Turabian StylePalade, Laurentiu Mihai, Madalina Ioana Dore, Daniela Eliza Marin, Mircea Catalin Rotar, and Ionelia Taranu. 2021. "Assessment of Food By-Products’ Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone" Toxins 13, no. 1: 2. https://doi.org/10.3390/toxins13010002
APA StylePalade, L. M., Dore, M. I., Marin, D. E., Rotar, M. C., & Taranu, I. (2021). Assessment of Food By-Products’ Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone. Toxins, 13(1), 2. https://doi.org/10.3390/toxins13010002