Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review
Abstract
:1. Introduction
2. Design and Methods
3. Considered Medicinal Plants
4. Extraction, and Analytical Techniques
5. Results
5.1. Alkanna
5.2. Anchusa
5.3. Borago
5.4. Brachyglottis
5.5. Cineraria
5.6. Cynoglossum
5.7. Eupatorium
5.8. Heliotropium
5.9. Lithospermum
5.10. Petasites
5.11. Senecio
5.12. Symphytum
5.13. Tussilago
6. Discussion
6.1. Extraction Techniques
6.2. Analytical Techniques
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roeder, E. Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie 1995, 50, 83–93. [Google Scholar] [PubMed]
- Analytik und Toxizität von Pyrrolizidinalkaloiden sowie eine Einschätzung des gesundheitlichen Risikos durch deren Vorkommen in Honig. Available online: https://www.bfr.bund.de/cm/343/analytik-und-toxizitaet-von-pyrrolizidinalkaloiden.pdf (accessed on 7 January 2019).
- Schmeller, T.; El-Shazly, A.; Wink, M. Allelochemical activities of pyrrolizidine alkaloids: Interactions with neuroreceptors and acetylcholine related enzymes. J. Chem. Ecol. 1997, 23, 399–416. [Google Scholar] [CrossRef]
- Rietjens, I.M.C.M.; Martena, M.J.; Boersma, M.G.; Spiegelenberg, W.; Alink, G.M. Molecular mechanisms of toxicity of important food-borne phytotoxins. Mol. Nutr. Food Res. 2005, 49, 131–158. [Google Scholar] [CrossRef]
- Moreira, R.; Pereira, D.M.; Valentão, P.; Andrade, P.B. Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 2018, 31, 1668. [Google Scholar] [CrossRef] [Green Version]
- Benamar, H.; Tomassini, L.; Venditti, A.; Marouf, A.; Bennaceur, M.; Serafini, M.; Nicoletti, M. Acetylcholinesterase inhibitory activity of pyrrolizidine alkaloids from Echium. Confusum. Coincy. Nat. Prod. Res. 2017, 19, 1668. [Google Scholar] [CrossRef] [PubMed]
- Colegate, S.M.; Gardner, D.R.; Betz, J.M.; Fischer, O.W.; Liede-Schumann, S.; Boppré, M. Pro-toxic 1,2-Dehydropyrrolizidine Alkaloid Esters, Including Unprecedented 10-Membered Macrocyclic Diesters, in the Medicinally-used Alafia cf. caudata and Amphineurion marginatum. Phytochem. Anal. 2016, 27, 257–276. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, T. Chemical ecology of pyrrolizidine alkaloids. Planta 1999, 207, 483–495. [Google Scholar] [CrossRef]
- Mattocks, A.R. Toxicity of Pyrrolizidine Alkaloids. Nature 1968, 217, 723–728. [Google Scholar] [CrossRef]
- Bush, L.P.; Fannin, F.F.; Siegel, M.R.; Dahlman, D.L.; Burton, H.R. Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte-grass interactions. Agric. Ecosyst. Environ. 1993, 44, 81–102. [Google Scholar] [CrossRef]
- Bundesgesundheitsamt (German Federal Health Bureau). Bekanntmachung über die Zulassung und Registrierung von Arzneimitteln (abwehr von Arzneimittelrisiken Stufe 2). Bundesanzeiger 1992, 111, 4805. [Google Scholar]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J. 2017, 15, 4908. [Google Scholar]
- Aktualisierte Risikobewertung zu Gehalten an 1,2-ungesättigten Pyrrolizidinalkaloiden (PA) in Lebensmitteln. Available online: https://www.bfr.bund.de/cm/343/aktualisierte-risikobewertung-zu-gehalten-an-1-2-ungesaettigten-pyrrolizidinalkaloiden-pa-in-lebensmitteln.pdf (accessed on 19 April 2020).
- El-Shazly, A.; El-Domiaty, M.; Witte, L.; Wink, M. Pyrrolizidine alkaloids in members of the Boraginaceae from Sinai (Egypt). Biochem. Syst. Ecol. 1998, 26, 619–636. [Google Scholar] [CrossRef]
- Roeder, E.; Wiedenfeld, H.; Schraut, R. Pyrrolizidine alkaloids from Alkanna tinctoria. Phytochemistry 1984, 23, 2125–2126. [Google Scholar] [CrossRef]
- Hendriks, H.; Bruins, A.P.; Huizing, H.J. Detection of Curassavine and some related pyrrolizidine alkaloids in an Anchusa officinalis strain by means of positive ion and negative ion chemical ionization GC/MS. Biol. Mass Spectrom. 1988, 17, 129–132. [Google Scholar] [CrossRef]
- Larson, K.M.; Roby, M.R.; Stermitz, F.R. Unsaturated pyrrolizidines from borage (Borago officinalis), a common garden herb. J. Nat. Prod. 1984, 47, 747–748. [Google Scholar] [CrossRef]
- Dodson, C.D.; Stermitz, F.R. Pyrrolizidine Alkaloids from Borage (Borago officinalis) Seeds and Flowers. J. Nat. Prod. 1986, 49, 727–728. [Google Scholar] [CrossRef]
- Herrmann, M.; Joppe, H.; Schmaus, G. Thesinine-4′-O-β-D-glucoside the first glycosylated plant pyrrolizidine alkaloid from Borago officinalis. Phytochemistry 2002, 60, 399–402. [Google Scholar] [CrossRef]
- Benn, M.; Gul, W. Pyrrolizidine alkaloids in the antipodean genus Brachyglottis (Asteraceae). Biochem. Syst. Ecol. 2007, 35, 676–681. [Google Scholar] [CrossRef]
- Bai, Y.; Benn, M. The Alkaloids of Brachyglottis hectorii. Arkat USA 2006, 3, 34–42. [Google Scholar]
- Tundis, R.; Loizzo, M.R.; Statti, G.A.; Passalacqua, N.G.; Peruzzi, L.; Menichini, F. Pyrrolizidine alkaloid profiles of the Senecio cineraria Group (Asteraceae). Z. Naturforsch. Sect. C J. Biosci. 2007, 62, 467–472. [Google Scholar] [CrossRef]
- El-Shazly, A. Pyrrolizidine alkaloid profiles of some Senecio species from Egypt. Z. Naturforsch. Sect. C J. Biosci. 2002, 57, 429–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedenfeld, H.; Montes, C.; Tawil, B.; Contin, A.; Wynsma, R. Pyrrolizidine alkaloid level in Senecio bicolor (Willd.) Tod, ssp. cineraria (DC.) from Middle Europe. Pharmazie 2006, 61, 559–561. [Google Scholar] [PubMed]
- Damianakos, H.; Jeziorek, M.; Sykłowska-Baranek, K.; Buchwald, W.; Pietrosiuk, A.; Chinou, I. Pyrrolizidine alkaloids from Cynoglossum columnae Ten. (Boraginaceae). Phytochem. Lett. 2016, 15, 234–237. [Google Scholar] [CrossRef]
- El-Shazly, A.; Sarg, T.; Ateya, A.; Abdel Aziz, E.; Witte, L.; Wink, M. Pyrrolizidine alkaloids of Cynoglossum officinale and Cynoglossum amabile (Family Boraginaceae). Biochem. Syst. Ecol. 1996, 24, 415–421. [Google Scholar] [CrossRef]
- Furuya, T.; Hikichi, M. Lindelofine and supinine: Pyrrolizidine alkaloids from Eupatorium stoechadosmum. Phytochemistry 1973, 12, 225. [Google Scholar] [CrossRef]
- Edgar, J.A.; Lin, H.J.; Kumana, C.R.; Ng, M.M. Pyrrolizidine alkaloid composition of three Chinese medicinal herbs, Eupatorium cannabinum, E. japonicum and Crotalaria assamica. Am. J. Chin. Med. 1992, 20, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, E. Echinatine and supinine: Pyrrolizidine alkaloids from Eupatorium cannabinum. Phytochemistry 1975, 14, 2086–2087. [Google Scholar] [CrossRef]
- Hendriks, H.; Malingré, T.M.; Elema, E.T. Pyrrolizidine alkaloids, flavonoids and volatile compounds in the genus Eupatorium—Eupatorium cannabinum L., an ancient drug with new perspectives. Pharm. Weekbl. Sci. Ed. 1983, 5, 281–286. [Google Scholar] [CrossRef]
- Colegate, S.M.; Upton, R.; Gardner, D.R.; Panter, K.E.; Betz, J.M. Potentially toxic pyrrolizidine alkaloids in Eupatorium perfoliatum and three related species. Implications for herbal use as boneset. Phytochem. Anal. 2018, 29, 613–626. [Google Scholar] [CrossRef]
- Kast, C.; Kilchenmann, V.; Reinhard, H.; Droz, B.; Lucchetti, M.A.; Dübecke, A.; Beckh, G.; Zoller, O. Chemical fingerprinting identifies Echium vulgare, Eupatorium cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 316–327. [Google Scholar] [CrossRef] [Green Version]
- Wiedenfeld, H.; Guerrero, R.; Roeder, E. Pyrrolizidine alkaloids from Eupatorium portoricense. Planta Med. 1995, 61, 380–381. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.; Passreiter, C.M.; Medinilla, B.; Castillo, J.J.; Witte, L. Non-toxic pyrrolizidine alkaloids from Eupatorium semialatum. Biochem. Syst. Ecol. 2001, 29, 143–147. [Google Scholar] [CrossRef]
- Reina, M.; Gonzalez-Coloma, A.; Gutierrez, C.; Cabrera, R.; Henriquez, J.; Villarroel, L. Pyrrolizidine alkaloids from Heliotropium megalanthum. J. Nat. Prod. 1998, 61, 1418–1420. [Google Scholar] [CrossRef] [PubMed]
- Davicino, J.G.; Pestchanker, M.J.; Giordano, O.S. Pyrrolizidine alkaloids from Heliotropium curassavicum. Phytochemistry 1988, 27, 960–962. [Google Scholar] [CrossRef]
- Roeder, E.; Breitmaier, E.; Birecka, H.; Frohlicht, M.W.; Badzies-Crombach, A. Pyrrolizidine alkaloids of Heliotropium spathulatum. Phytochemistry 1991, 30, 1703–1706. [Google Scholar] [CrossRef]
- Ravi, S.; Lakshmanan, A.J.; Herz, W. Iso-lycopsamine, a pyrrolizidine alkaloid from Heliotropium keralense. Phytochemistry 1990, 29, 361–364. [Google Scholar] [CrossRef]
- Mohanraj, S.; Subramanian, P.S.; Herz, W. Minor alkaloids of Heliotropium curassavicum. Phytochemistry 1982, 21, 1775–1779. [Google Scholar] [CrossRef]
- Farsam, H.; Yassa, N.; Sarkhail, P.; Shafiee, A. New pyrrolizidine alkaloids from Heliotropium crassifolium. Planta Med. 2000, 66, 389–391. [Google Scholar] [CrossRef]
- Yassa, N.; Farsam, H.; Shafiee, A.; Rustaiyan, A. Pyrrolizidine alkaloids from Heliotropium esfandiarii. Planta Med. 1996, 62, 583–584. [Google Scholar] [CrossRef]
- Shafiee, A.; Salimi, M.; Farsam, H.; Yassa, N. Pyrrolizidine alkaloids from Heliotropium dissitiflorum Boiss. Daru 2002, 10, 168–170. [Google Scholar]
- Farrag, N.M.; Abdel-Aziz, E.M.; El-Shafae, A.M.; Ateya, A.M.; Domiaty, M.M. El Pyrrolizidine alkaloids of Heliotropium bacciferum Forssk from Egypt. Int. J. Pharmacogn. 1996, 34, 374–377. [Google Scholar] [CrossRef]
- Zalkow, L.H.; Boxetti, S.; Gelbaum, L.; Gordon, M.; Patil, B.B.; Shaxi1, A.; Van Dbrveer, D. Pyrrolizidine Alkaloids from Middle Eastern Plants. J. Nat. Prod. 1979, 42, 603–614. [Google Scholar] [CrossRef]
- O’Dowd, D.J.; Edgar, J.A. Seasonal dynamics in the pyrrolizidine alkaloids of Heliotropium europaeum. Aust. J. Ecol. 1989, 14, 95–105. [Google Scholar] [CrossRef]
- Constantinidis, T.; Harvala, C.; Skaltsounis, A.L. Pyrrolizidine N-oxide alkaloids of Heliotropium hirsutissimum. Phytochemistry 1993, 32, 1335–1337. [Google Scholar] [CrossRef]
- Lakshmanan, A.J.; Shanmugasundaram, S. Helibractinecine, a pyrrolizidine alkaloid from Heliotropium bracteatum. Phytochemistry 1994, 36, 245–248. [Google Scholar] [CrossRef]
- Mohanraj, S.; Kulanthaivel, P.; Subramanian, P.S.; Herz, W. Helifoline, a pyrrolizidine alkaloid from Heliotropium ovalifolium. Phytochemistry 1981, 20, 1991–1995. [Google Scholar] [CrossRef]
- Lakshmanan, A.J.; Shanmugasundaram, S. Heliscabine, a pyrrolizidine ester alkaloid from Heliotropium scabrum. Phytochemistry 1995, 39, 473–475. [Google Scholar] [CrossRef]
- Krenn, L.; Wiedenfeld, H.; Roeder, E. Pyrrolizidine alkaloids from Lithospermum officinale. Phytochemistry 1994, 37, 275–277. [Google Scholar] [CrossRef]
- Wiedenfeld, H.; Pietrosiuk, A.; Furmanowa, M.; Roeder, E. Pyrrolizidine alkaloids from Lithospermum canescens Lehm. Z. Nat. Sect. C J. Biosci. 2003, 58, 173–176. [Google Scholar] [CrossRef]
- Pietrosiuk, A.; Sykłowska-Baranek, K.; Wiedenfeld, H.; Wolinowska, R.; Furmanowa, M.; Jaroszyk, E. The shikonin derivatives and pyrrolizidine alkaloids in hairy root cultures of Lithospermum canescens (Michx.) Lehm. Plant Cell Rep. 2006, 25, 1052–1058. [Google Scholar] [CrossRef]
- Roeder, E.; Rengel, B. Pyrrolizidine Alkaloids from Erythrorhzion. Phytochemistry 1990, 29, 690–693. [Google Scholar] [CrossRef]
- Mroczek, T.; Glowniak, K.; Wlaszczyk, A. Simultaneous determination of N-oxides and free bases of pyrrolizidine alkaloids by cation-exchange solid-phase extraction and ion-pair high-performance liquid chromatography. J. Chromatogr. A 2002, 949, 249–262. [Google Scholar] [CrossRef]
- Niwa, H.; Ishiwata, H.; Yamada, K. Separation and determination of macrocyclic pyrrolizidine alkaloids of the otonecine type present in the edible plant Petasites japonicus by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1983, 257, 146–150. [Google Scholar] [CrossRef]
- Aydin, A.A.; Letzel, T. Simultaneous investigation of sesquiterpenes, pyrrolizidine alkaloids and N-oxides in Butterbur (Petasites hybridus) with an offline 2D-combination of HPLC-UV and LC-MMI-ToF-MS. J. Pharm. Biomed. Anal. 2013, 85, 74–82. [Google Scholar] [CrossRef]
- Wildi, E.; Langer, T.; Schaffner, W.; Büter, K.B. Quantitative analysis of petasin and pyrrolizidine alkaloids in leaves and rhizomes of in situ grown Petasites hybridus plants. Planta Med. 1998, 64, 264–267. [Google Scholar] [CrossRef]
- Langer, T.; Möstl, E.; Chizzola, R.; Gutleb, R. A competitive enzyme immunoassay for the pyrrolizidine alkaloids of the senecionine type. Planta Med. 1996, 62, 267–271. [Google Scholar] [CrossRef]
- Chizzola, R.; Ozelsberger, B.; Langer, T. Variability in chemical constituents in Petasites hybridus from Austria. Biochem. Syst. Ecol. 2000, 28, 421–432. [Google Scholar] [CrossRef]
- Segall, H.J. Reverse Phase Isolation of Pyrrolizidine Alkaloids. J. Liq. Chromatogr. 1979, 2, 429–436. [Google Scholar] [CrossRef]
- Yang, X.; Yang, L.; Xiong, A.; Li, D.; Wang, Z. Authentication of Senecio scandens and S. vulgaris based on the comprehensive secondary metabolic patterns gained by UPLC-DAD/ESI-MS. J. Pharm. Biomed. Anal. 2011, 56, 165–172. [Google Scholar] [CrossRef]
- Borstel, K.V.; Witte, L.; Hartmann, T. Pyrrolizidine alkaloid patterns in populations of Senecio vulgaris, S. vernalis and their hybrids. Phytochemistry 1989, 28, 1635–1638. [Google Scholar] [CrossRef]
- Witte, L.; Ernst, L.; Adam, H.; Hartmannt, T. Chemotypes of two pyrrolizidine alkaloid-containing Senecio species. Phytochemistry 1992, 31, 559–565. [Google Scholar] [CrossRef]
- Schaneberg, B.T.; Molyneux, R.J.; Khan, I.A. Evaporative light scattering detection of pyrrolizidine alkaloids. Phytochem. Anal. 2004, 15, 36–39. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, N.; Choi, F.F.K.; Qiao, C.F.; Song, J.Z.; Li, S.L.; Liu, X.; Cai, Z.W.; Fu, P.P.; Lin, G.; et al. A new approach for simultaneous screening and quantification of toxic pyrrolizidine alkaloids in some potential pyrrolizidine alkaloid-containing plants by using ultra performance liquid chromatography-tandem quadrupole mass spectrometry. Anal. Chim. Acta 2010, 681, 33–40. [Google Scholar] [CrossRef]
- Cheng, D.; Nguyen, V.-T.; Ndihokubwayo, N.; Ge, J.; Mulder, P.P.J. Pyrrolizidine alkaloid variation in Senecio vulgaris populations from native and invasive ranges. PeerJ 2017, 5, e3686. [Google Scholar] [CrossRef] [Green Version]
- Segall, H.J. Preparative isolation of pyrrolizidine alkaloids derived from senecio vulgaris. J. Liq. Chromatogr. 1979, 2, 1319–1323. [Google Scholar] [CrossRef]
- Pelser, P.B.; De Vos, H.; Theuring, C.; Beuerle, T.; Vrieling, K.; Hartmann, T. Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 2005, 66, 1285–1295. [Google Scholar] [CrossRef]
- Pestchanker, M.J.; Giordano, O.S. Pyrrolizidine Alkaloids from Five Senecio Species. J. Nat. Prod. 1986, 49, 722–723. [Google Scholar] [CrossRef]
- Pieters, L.A.C.; Vlietinck, A.J. Quantitative 1h fourier transform nuclear magnetic resonance spectroscopic analysis of mixtures of pyrrolizidine alkaloids from Senecio vulgaris. Fresenius Z. für Anal. Chem. 1985, 321, 355–358. [Google Scholar] [CrossRef]
- Bicchi, C.; Rubiolo, P.; Frattini, C. Capillary gas chromatography-fourier transform infrared spectroscopy of pyrrolizidine alkaloids of Senecio inaequidens DC. J. Chromatogr. A 1989, 473, 161–170. [Google Scholar] [CrossRef]
- Hartmann, T.; Toppel, G. Senecionine n-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 1987, 26, 1639–1643. [Google Scholar] [CrossRef]
- Gardner, D.R.; Thorne, M.S.; Molyneux, R.J.; Pfister, J.A.; Seawright, A.A. Pyrrolizidine alkaloids in Senecio madagascariensis from Australia and Hawaii and assessment of possible livestock poisoning. Biochem. Syst. Ecol. 2006, 34, 736–744. [Google Scholar] [CrossRef]
- Krebs, H.C.; Carl, T.; Habermehl, G.G. Pyrrolizidine alkaloid composition in six Brazilian Senecio species. Phytochemistry 1996, 43, 1227–1229. [Google Scholar] [CrossRef]
- Christov, V.; Evstatieva, L. Alkaloid profile of Bulgarian species from genus Senecio L. Z. Naturforsch. Sect. C J. Biosci. 2003, 58, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C.; D’Amato, A.; Cappelletti, E. Determination of pyrrolizidine alkaloids in senecio inaequidens D.C. by capillary gas chromatography. J. Chromatogr. A 1985, 349, 23–29. [Google Scholar] [CrossRef]
- Bicchi, C.; Caniato, R.; Tabacchi, R.; Tsoupras, G. Capillary gas chromatography/positive and negative ion chemical ionization mass spectrometry on pyrrolizidine alkaloids of Senecio inaequidens using ammonia and hydroxyl ions as the reagent species. J. Nat. Prod. 1989, 52, 32–41. [Google Scholar]
- Bicchi, C.; Rubiolo, P.; Frattini, C.; Sandra, P.; David, F. Off-Line supercritical fluid extraction and capillary gas chromatography of pyrrolidine alkaloids in Senecio species. J. Nat. Prod. 1991, 54, 941–945. [Google Scholar] [CrossRef]
- Zalkow, L.H.; Asibal, C.F.; Glinski, J.A.; Bonetti, S.J.; Gelbaum, L.T.; Vanderveer, D.; Powis, G. Macrocyclic pyrrolizidine alkaloids from Senecio anonymus. separation of a complex alkaloid extract using droplet counter-current chromatography. J. Nat. Prod. 1988, 51, 690–702. [Google Scholar] [CrossRef]
- Pieters, L.A.; Hartmann, T.; Janssens, J.; Vlietinck, A.J. Comparison of capillary gas chromatography with1H and13C nuclear magnetic resonance spectroscopy for the quantitation of pyrrolizidine alkaloids from Senecio vernalis. J. Chromatogr. A 1989, 462, 387–391. [Google Scholar] [CrossRef]
- Parker, C.E.; Verma, S.; Tomer, K.B.; Reed, R.L.; Buhler, D.R. Determination of Senecio Alkaloids by thermospray liquid chromatography/mass spectrometry. Biol. Mass Spectrom. 1990, 19, 1–12. [Google Scholar] [CrossRef]
- Yaber Grass, M.A.; Leicach, S.R. Changes in Senecio grisebachii pyrrolizidine alkaloids abundances and profiles as response to soil quality. J. Plant Interact. 2012, 7, 175–182. [Google Scholar] [CrossRef]
- Kostova, N.; Christov, V.; Cholakova, M.; Nikolova, E.; Evstatieva, L. Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio. J. Serb. Chem. Soc. 2006, 71, 1275–1280. [Google Scholar] [CrossRef]
- Ray, A.C.; Williams, H.J.; Reagor, J.C. Pyrrolizidine alkaloids from Senecio longilobus and Senecio glabellus. Phytochemistry 1987, 26, 2431–2433. [Google Scholar] [CrossRef]
- Pestchanker, M.J.; Ascheri, M.S.; Giordano, O.S. Uspallatine, a pyrrolizidine alkaloid from senecio uspallatensis. Phytochemistry 1985, 24, 1622–1624. [Google Scholar] [CrossRef]
- Qualls, C.W.; Segall, H.J. Rapid isolation and identification of pyrrolizidine alkaloids (senecio vulgaris) by use of high-performance liquid chromatography. J. Chromatogr. A 1978, 150, 202–206. [Google Scholar] [CrossRef]
- Macel, M.; Vrieling, K.; Klinkhamer, P.G.L. Variation in pyrrolizidine alkaloid patterns of Senecio jacobaea. Phytochemistry 2004, 65, 865–873. [Google Scholar] [CrossRef]
- Noorwala, M.; Mohammad, F.V.; Ahmad, V.U.; Sener, B.; Ergun, F.; Deliorman, D. Pyrrolizidine alkaloids from Senecio lorenthii. Fitoterapia 2000, 71, 618–620. [Google Scholar] [CrossRef]
- Roeder, E.; Bourauel, T. Pyrrolizidine alkaloids from Senecio leucanthemifolius and Senecio rodriguezii. Nat. Toxins 1993, 1, 241–245. [Google Scholar] [CrossRef]
- Liddell, J.R.; Logie, C.G. A re-investigation of the alkaloids of Senecio pterophorus. Phytochemistry 1993, 34, 1629–1631. [Google Scholar] [CrossRef]
- Segall, H.J.; Krick, T.P. Pyrrolizidine alkaloids: Organohalogen derivative isolated from Senecio jacobaea (Tansy Ragwort). Toxicol. Lett. 1979, 4, 193–198. [Google Scholar] [CrossRef]
- Tinney, G.; Theuring, C.; Paul, N.; Hartmann, T. Effects of rust infection with Puccinia lagenophorae on pyrrolizidine alkaloids in Senecio vulgaris. Phytochemistry 1998, 49, 1589–1592. [Google Scholar] [CrossRef]
- Chizzola, R. Rapid sample preparation technique for the determination of pyrrolizidine alkaloids in plant extracts. J. Chromatogr. A 1994, 668, 427–433. [Google Scholar] [CrossRef]
- Kirk, H.; Vrieling, K.; van der Meijden, E.; Klinkhamer, P.G.L. Species by environment interactions affect pyrrolizidine alkaloid expression in Senecio jacobaea, Senecio aquaticus, and their hybrids. J. Chem. Ecol. 2010, 36, 378–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hol, W.H.G.; Vrieling, K.; Van Veen, J.A. Nutrients decrease pyrrolizidine alkaloid concentrations in Senecio jacobaea. New Phytol. 2003, 158, 175–181. [Google Scholar] [CrossRef]
- Crews, C.; Driffield, M.; Berthiller, F.; Krska, R. Loss of pyrrolizidine alkaloids on decomposition of ragwort (Senecio jacobaea) as measured by LC-TOF-MS. J. Agric. Food Chem. 2009, 57, 3669–3673. [Google Scholar] [CrossRef]
- Mandic, B.; Godjevac, D.; Beskoski, V.; Simic, M.; Trifunovic, S.; Tesevic, V.; Vajs, V.; Milosavljevic, S. Pyrrolizidine alkaloids from seven wild-growing Senecio species in Serbia and Montenegro. J. Serb. Chem. Soc. 2009, 74, 27–34. [Google Scholar] [CrossRef]
- Bohlmann, F.; Zdero, C.; Jakupovic, J.; Grenz, M.; Castro, V.; Kino, R.M.; Robinson, H.; Vincent, L.P.D. Further pyrrolizidine alkaloids and furoeremophilanes from Senecio species. Phytochemistry 1986, 25, 1151–1159. [Google Scholar] [CrossRef]
- Lüthy, J.; Zweifel, U.; Karlhuber, B.; Schlatter, C. Pyrrolizidine Alkaloids of Senecio alpinus L. and Their Detection in Feedingstuffs. J. Agric. Food Chem. 1981, 29, 302–305. [Google Scholar] [CrossRef]
- Steixjes, M.E.; Kelley, R.B.; Molyneux, R.J.; Seiber, J.N. Gc-Ms determination of pyrrolizidine alkaloids in four senecio species. J. Nat. Prod. 1991, 54, 759–773. [Google Scholar]
- Kapadia, G.J.; Ramdass, A.; Bada, F. Pyrrolizidine alkaloids of Senecio glabellus. Pharm. Biol. 1990, 28, 67–71. [Google Scholar] [CrossRef]
- Vásquez, L.R.; Artiles, M.R.; Coloma, A.G.; Pérez, R.C.; Mesia, L.R. Pyrrolizidine alkaloids of Senecio sp from Peru. Quim. Nova 2011, 29, 67–71. [Google Scholar]
- Suau, R.; Cabezudo, B.; Rico, R.; Nájera, F.; López-Romero, J.M.; García, A.I. Pyrrolizidine alkaloids from three Spanish Senecio species. Biochem. Syst. Ecol. 2002, 30, 981–984. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.H.; Wang, W.; Chen, L.X.; Ma, H.Y.; Zhang, C.F.; Zhang, M.; Bligh, S.W.A.; Wang, Z.T. Quantitative analysis by HPLC-MS2of the Pyrrolizidine alkaloid adonifoline in Senecio scandens. Phytochem. Anal. 2008, 19, 25–31. [Google Scholar] [CrossRef]
- Dong-Liang, C.; Jin-Kui, N.; Roeder, E. Pyrrolizidine alkaloids from Senecio kaschkarovii. Phytochemistry 1992, 31, 3671–3672. [Google Scholar] [CrossRef]
- Asada, Y.; Furuya, T.; Shiro, M.; Nakai, H. Senecicannabine, a new pyrrolizidine alkaloid from Senecio cannabifolius. Tetrahedron Lett. 1982, 23, 189–192. [Google Scholar] [CrossRef]
- Were, O.; Benn, M.; Munavu, R.M. The pyrrolizidine alkaloids of Senecio syringifolius and S. hadiensis from Kenya. Phytochemistry 1993, 32, 1595–1602. [Google Scholar] [CrossRef]
- Porter, L.A.; Geissman, T.A. Angularine, a New Pyrrolizidine Alkaloid from Senecio angulatus L. J. Org. Chem. 1962, 27, 4132–4134. [Google Scholar] [CrossRef]
- Benn, M.; Were, O. Ruwenine and ruzorine: Pyrrolizidine alkaloids of Senecio ruwenzoriensis. Phytochemistry 1992, 31, 3295–3296. [Google Scholar] [CrossRef]
- Röder, E.; Wiedenfeld, H.; Pfitzer, A. Doriasenine, a pyrrolizidine alkaloid from Senecio doria. Phytochemistry 1988, 27, 4000–4001. [Google Scholar] [CrossRef]
- Bredenkamp, M.W.; Wiechers, A.; van Rooyen, P.H. A new pyrrolizidine alkaloid N-oxide and the revised structure of sceleratine. Tetrahedron Lett. 1985, 26, 5721–5724. [Google Scholar] [CrossRef]
- Furuya, T.; Hikichi, M. Alkaloids and triterpenoids of Symphytum officinale. Phytochemistry 1971, 10, 2217–2220. [Google Scholar] [CrossRef]
- Kim, N.C.; Oberlies, N.H.; Brine, D.R.; Handy, R.W.; Wani, M.C.; Wall, M.E. Isolation of symlandine from the roots of common comfrey (Symphytum officinale) using countercurrent chromatography. J. Nat. Prod. 2001, 64, 251–253. [Google Scholar] [CrossRef]
- Couet, C.E.; Crews, C.; Hanley, A.B. Analysis, separation, and bioassay of pyrrolizidine alkaloids from comfrey (Symphytum officinale). Nat. Toxins 1996, 4, 163–167. [Google Scholar] [CrossRef]
- Mossoba, M.M.; Lin, H.S.; Andrzejewski, D.; Sphon, J.A.; Betz, J.M.; Miller, L.J.; Eppley, R.M.; Trucksess, M.W.; Page, S.W. Application of Gas-Chromatography Matrix-Isolation Fourier-Transform Infrared-Spectroscopy to the Identification of Pyrrolizidine Alkaloids from Comfrey Root (Symphytum-officinale L.). J. AOAC Int. 1994, 60, 945–948. [Google Scholar] [CrossRef]
- Liu, F.; Wan, S.Y.; Jiang, Z.; Li, S.F.Y.; Ong, E.S.; Osorio, J.C.C. Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography-electrospray ionization mass spectrometry. Talanta 2009, 80, 916–932. [Google Scholar] [CrossRef]
- Smyrska-Wieleba, N.; Wojtanowski, K.K.; Mroczek, T. Comparative HILIC/ESI-QTOF-MS and HPTLC studies of pyrrolizidine alkaloids in flowers of Tussilago farfara and roots of Arnebia euchroma. Phytochem. Lett. 2017, 20, 339–349. [Google Scholar] [CrossRef]
- Lebada, R.; Schreier, A.; Scherz, S.; Resch, C.; Krenn, L.; Kopp, B. Quantitative analysis of the pyrrolizidine alkaloids senkirkine and senecionine in Tussilago farfara L. by capillary electrophoresis. Phytochem. Anal. 2000, 11, 336–339. [Google Scholar] [CrossRef]
- Adamczak, A.; Opala, B.; Gryszczyńska, A.; Buchwald, W. Content of pyrrolizidine alkaloids in the leaves of coltsfoot (Tussilago farfara L.) in Poland. Acta Soc. Bot. Pol. 2013, 82, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Nedelcheva, A.; Kostova, N.; Sidjimov, A. Pyrrolizidine alkaloids in Tussilago farfara from Bulgaria. Biotechnol. Biotechnol. Equip. 2015, 29, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Xu, Y.; Mu, X.; Zhang, Q.; Wang, R.; Lv, J. Sensitive determination of pyrrolizidine alkaloids in Tussilago farfara L. by field-amplified, sample-stacking, sweeping micellar electrokinetic chromatography. J. Sep. Sci. 2016, 39, 4243–4250. [Google Scholar] [CrossRef]
- Kopp, T.; Salzer, L.; Abdel-Tawab, M.; Mizaikoff, B. Efficient Extraction of Pyrrolizidine Alkaloids from Plants by Pressurised Liquid Extraction—A Preliminary Study. Planta Med. 2019, 86, 85–90. [Google Scholar] [CrossRef]
- Siciliano, T.; De Leo, M.; Bader, A.; De Tommasi, N.; Vrieling, K.; Braca, A.; Morelli, I. Pyrrolizidine alkaloids from Anchusa strigosa and their antifeedant activity. Phytochemistry 2005, 66, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; Bader, A.; Siciliano, T.; Morelli, I.; De Tommasi, N. New Pyrrolizidine Alkaloids and Glycosides from Anchusa strigosa. Planta Med. 2003, 69, 835–841. [Google Scholar] [PubMed]
- These, A.; Bodi, D.; Ronczka, S.; Lahrssen-Wiederholt, M.; Preiss-Weigert, A. Structural screening by multiple reaction monitoring as a new approach for tandem mass spectrometry: Presented for the determination of pyrrolizidine alkaloids in plants. Anal. Bioanal. Chem. 2013, 405, 9375–9383. [Google Scholar] [CrossRef]
- Vacillotto, G.; Favretto, D.; Seraglia, R.; Pagiotti, R.; Traldi, P.; Mattoli, L. A rapid and highly specific method to evaluate the presence of pyrrolizidine alkaloids in Borago officinalis seed oil. J. Mass Spectrom. 2013, 48, 1078–1082. [Google Scholar] [CrossRef]
- Van Dam, N.M.; Verpoorte, R.; van der Meijden, E. Extreme differences in pyrrolizidine alkaloid levels between leaves of Cynoglossum officinale. Phytochemistry 1994, 37, 1013–1016. [Google Scholar] [CrossRef]
- Van Dam, N.M.; van der Meijden, E.; Verpoorte, R. Induced responses in three alkaloid-containing plant species. Oecologia 1993, 95, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Van Dam, N.M.; Witte, L.; Theuring, C.; Hartmann, T. Distribution, biosynthesis and turnover of pyrrolizidine alkaloids in Cynoglossum officinale. Phytochemistry 1995, 39, 287–292. [Google Scholar] [CrossRef]
- Pfister, J.A.; Molyneux, R.J.; Baker, D.C. Pyrrolizidine Alkaloid content of Houndstongue (Cynoglossum officinale L.). J. Range Manag. 1992, 45, 254–256. [Google Scholar] [CrossRef] [Green Version]
- Mroczek, T.; Baj, S.; Chrobok, A.; Glowniak, K. Screening for pyrrolizidine alkaloids in plant materials by electron ionization RP-HPLC-MS with thermabeam interface. Biomed. Chromatogr. 2004, 18, 744–751. [Google Scholar] [CrossRef]
- Zalkow, L.H.; Gelbaum, L.; Keinan, E. Isolation of the pyrrolizidine alkaloid europine N-oxide from heliotropium maris-mortui and H. rotundifolium. Phytochemistry 1978, 17, 172. [Google Scholar] [CrossRef]
- Reina, M.; Gonzalez-Coloma, A.; Gutierrez, C.; Cabrera, R.; Henriquez, J.; Villarroel, L. Bioactive saturated pyrrolizidine alkaloids from Heliotropium floridum. Phytochemistry 1997, 46, 845–853. [Google Scholar] [CrossRef]
- Souza, J.S.N.; Machado, L.L.; Pessoa, O.D.L.; Braz-Filho, R.; Overk, C.R.; Yao, P.; Cordell, G.A.; Lemos, T.L.G. Pyrrolizidine alkaloids from Heliotropium indicum. J. Braz. Chem. Soc. 2005, 16, 140–1414. [Google Scholar] [CrossRef] [Green Version]
- Birecka, H.; DiNolfo, T.E.; Martin, W.B.; Frohlich, M.W. Polyamines and leaf senescence in pyrrolizidine alkaloid-bearing Heliotropium plants. Phytochemistry 1984, 23, 991–997. [Google Scholar] [CrossRef]
- Lakshmanan, A.J.; Shanmugasundaram, S. Ester alkaloids of Heliotropium bracteatum. Phytochemistry 1995, 40, 291–294. [Google Scholar] [CrossRef]
- Birecka, H.; Frohlich, M.W.; Hull, L.; Chaskes, M.J. Pyrrolizidine alkaloids of Heliotropium from Mexico and adjacent U.S.A. Phytochemistry 1980, 19, 421–426. [Google Scholar] [CrossRef]
- Schenk, A.; Siewert, B.; Toff, S.; Drewe, J. UPLC TOF MS for sensitive quantification of naturally occurring pyrrolizidine alkaloids in Petasites hybridus extract (Ze 339). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 997, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Knez, Z.; Hadolin, M.; Debrunner, B. Separation of pyrrolizidine alkaloids from Petasites hybridus with high pressure n-propane extraction. Chem. Tech. 1999, 51, 141–143. [Google Scholar]
- Zhang, F.; Wang, C.H.; Xiong, A.Z.; Wang, W.; Yang, L.; Branford-White, C.J.; Wang, Z.T.; Bligh, S.W.A. Quantitative analysis of total retronecine esters-type pyrrolizidine alkaloids in plant by high performance liquid chromatography. Anal. Chim. Acta 2007, 19, 25–31. [Google Scholar] [CrossRef]
- Lee, S.T.; Schoch, T.K.; Stegelmeier, B.L.; Gardner, D.R.; Than, K.A.; Molyneux, R.J. Development of enzyme-linked immunosorbent assays for the hepatotoxic alkaloids riddelliine and riddelliine N-oxide. J. Agric. Food Chem. 2001, 49, 4144–4151. [Google Scholar] [CrossRef]
- Cheng, D.L.; Niu, J.K.; Roeder, E. Pyrrolizidine Alkaloids from Senecio-Kaschkarovii. Phytochemistry 1992, 31, 3671–3672. [Google Scholar]
- Perez-Castorena, A.L.; Arciniegas, A.; Castro, A.; Villasenor, J.L.; Toscano, R.A.; De Vivar, A.R. Pyrrolizidine alkaloids from Senecio roseus and Senecio helodes. J. Nat. Prod. 1997, 60, 1322–1325. [Google Scholar] [CrossRef]
- Bai, Y.; Benn, M.; Majak, W. Pyrrolizidine alkaloids of three species of Senecio in British Columbia. Planta Med. 1996, 62, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Benn, M.H.; Mathenge, S.; Munavu, R.M.; Were, S.O. The principal alkaloid of Senecio schweinfurthii. Phytochemistry 1995, 40, 1327–1329. [Google Scholar] [CrossRef]
- Urones, J.G.; Barcala, P.B.; Marcos, I.S.; Moro, R.F.; Esteban, M.L.; Rodriguez, A.F. Pyrrolizidine alkaloids from Senecio gallicus and S. Adonidifolius. Phytochemistry 1988, 27, 1507–1510. [Google Scholar] [CrossRef]
- Dimenna, G.P.; Krick, T.P.; Segall, H.J. Rapid high-performance liquid chromatography isolation of monoesters, diesters and macrocyclic diester pyrrolizidine alkaloids from Senecio jacobaea and Amsinckia intermedia. J. Chromatogr. A 1980, 192, 474–478. [Google Scholar] [CrossRef]
- Roeder, E.; Wiedenfeld, H.; Britz-Kirstgen, R. Pyrrolizidine alkaloids from Senecio cacaliaster. Phytochemistry 1984, 23, 1761–1763. [Google Scholar] [CrossRef]
- Molyneux, R.J.; Earl Johnson, A. Extraordinary levels of production of pyrrolizidine alkaloids in senecio riddellii. J. Nat. Prod. 1984, 47, 1030–1032. [Google Scholar] [CrossRef]
- Ndjoko, K.; Wolfender, J.L.; Röder, E.; Hostettmann, K. Determination of pyrrolizidine alkaloids in Senecio species by liquid chromatography/thermospray-mass spectrometry and liquid chromatography/nuclear magnetic resonance spectroscopy. Planta Med. 1999, 65, 562–566. [Google Scholar] [CrossRef]
- Ramsdell, H.S.; Buhler, D.R. High-performance liquid chromatographic analysis of pyrrolizidine (Senecio) alkaloids using a reversed-phase styrene-divinylbenzence resin column. J. Chromatogr. A 1981, 210, 154–158. [Google Scholar] [CrossRef]
- Mroczek, T.; Widelski, J.; Gowniak, K. Optimization of Extraction of Pyrrolizidine Alkaloids from Plant Material. Chem. Anal. 2006, 51, 567–580. [Google Scholar]
- Stegemann, T.; Kruse, L.H.; Brütt, M.; Ober, D. Specific Distribution of Pyrrolizidine Alkaloids in Floral Parts of Comfrey (Symphytum officinale) and its Implications for Flower Ecology. J. Chem. Ecol. 2018, 45, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Oberlies, N.H.; Kim, N.-C.; Brine, D.R.; Collins, B.J.; Handy, R.W.; Sparacino, C.M.; Wani, M.C.; Wall, M.E. Analysis of herbal teas made from the leaves of comfrey (Symphytum officinale): Reduction of N-oxides results in order of magnitude increases in the measurable concentration of pyrrolizidine alkaloids. Public Health Nutr. 2004, 7, 919–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keeffe, C.M.; Stutte, G.W.; McKeon-Bennett, M. Ragwort: Invasive weed and potential pharmaceutical. Hortic. Rev. (Am. Soc. Hortic. Sci.) 2015, 43, 145–183. [Google Scholar]
- Culvenor, C.C.J.; Edgar, J.A.; Smith, L.W.; Hirono, I. The occurrence of senkirkine in Tussilago farfara. Aust. J. Chem. 1976, 29, 229–230. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Liu, F.; Goh, J.J.L.; Yu, L.; Li, S.F.Y.; Ong, E.S.; Ong, C.N. Determination of senkirkine and senecionine in Tussilago farfara using microwave-assisted extraction and pressurized hot water extraction with liquid chromatography tandem mass spectrometry. Talanta 2009, 79, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Mattocks, A.R.; Pigott, C.D. Pyrrolizidine alkaloids from Cynoglossum germanicum. Phytochemistry 1990, 29, 2871–2872. [Google Scholar] [CrossRef]
- Hendriks, H.; Balraadjsing, W.; Huizing, H.J.; Bruins, A.P. Investigation into the presence of pyrrolizidine alkaloids in Eupatorium cannabinum by means of positive and negative ion chemical ionization GC-MS. Planta Med. 1987, 53, 456–461. [Google Scholar] [CrossRef]
- Tosun, F.; Tamer, U. Determination of pyrrolizidine alkaloids in the seeds of Heliotropium europaeum by GC-MS. Ankara Univ. Eczac. Fak. Derg. 2004, 33, 7–9. [Google Scholar]
- Avula, B.; Wang, Y.H.; Wang, M.; Smillie, T.J.; Khan, I.A. Simultaneous determination of sesquiterpenes and pyrrolizidine alkaloids from the rhizomes of Petasites hybridus (L.) G.M. et Sch. and dietary supplements using UPLC-UV and HPLC-TOF-MS methods. J. Pharm. Biomed. Anal. 2012, 70, 53–63. [Google Scholar] [CrossRef]
- Sener, B.; Ergun, F. Pyrrolizidine alkaloids from Petasites hybridus (L.) Gaertner. Gazi Univ. Eczac. Fak. Derg. 1996, 13, 171–173. [Google Scholar]
- Roseman, D.M.; Wu, X.; Bober, M.; Miller, R.B.; Kurth, M.J.; Milco, L.A. Development of a Class-Specific Competitive Enzyme-Linked Immunosorbent Assay for the Detection of Pyrrolizidine Alkaloids in Vitro. J. Agric. Food Chem. 1992, 40, 1008–1014. [Google Scholar] [CrossRef]
- Bober, M.A.; Kurth, M.J.; Milco, L.A.; Roseman, D.M.; Miller, R.B.; Segal, H.J. A Pyrrolizidine Alkaloid Enzyme-Linjed-Immunosorbent-Assay Detection Strategy. Acs Symp. Ser. 1991, 451, 176–183. [Google Scholar]
- Roeder, E.; Pflueger, T. Analysis of pyrrolizidine alkaloids: A competitive enzyme-linked immunoassay (ELISA) for the quantitative determination of some toxic pyrrolizidine alkaloids. Nat. Toxins 1995, 3, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Pieters, L.A.C.; Vlietinck, A.J. Comparison of high-performance liquid chromatography with1H nuclear magnetic resonance spectrometry for the quantitative analysis of pyrrolizidine alkaloids from Senecio vulgaris. J. Liq. Chromatogr. 1986, 9, 745–755. [Google Scholar] [CrossRef]
- Pieters, L.A.C.; Vlietinck, A.J. Quantitative analysis of pyrrolizidine alkaloid mixtures from Senecio vulgaris by carbon-13 nuclear magnetic resonance spectroscopy. Magn. Reson. Chem. 1987, 25, 8–10. [Google Scholar] [CrossRef]
- Janeš, D.; Kreft, S. TLC densitometric method for screening of lycopsamine in comfrey root (Symphytum officinale L.) extracts using retrorsine as a reference compound. Acta Pharm. 2014, 64, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Roeder, E.; Liu, K.; Mutterlein, R. Quantitative Photometric-Determination of Pyrrolizidine Alkaloids in Symphyti Radix. Fresenius J. Anal. Chem. 1992, 343, 621–624. [Google Scholar] [CrossRef]
- Adamczak, A.; Opala, B.; Gryszczyńska, A.; Buchwald, W. Acta Societatis Botanicorum Poloniae; Polish Botanical Society: Warsaw, Poland, 2013; ISBN 0163-7827 0163-782. [Google Scholar]
- Kopp, T.; Abdel-Tawab, M.; Khoeiklang, M.; Mizaikoff, B. Development of a Selective Adsorbing Material for Binding of Pyrrolizidine Alkaloids in Herbal Extracts, Based on Molecular Group Imprinting. Planta Med. 2019, 85, 1107–1113. [Google Scholar] [CrossRef] [Green Version]
- Alwahibi, M.S.; Perveen, K. Chemical analysis by GC-MS and in vitro antibacterial activity of Alkanna tinctoria extracts against skin infection causing bacteria. Biomed. Res. 2017, 28, 7946–7949. [Google Scholar]
- Altundag, E.; Ozturk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Proc. Soc. Behav. Sci. 2011, 19, 756–777. [Google Scholar] [CrossRef] [Green Version]
- Baharvand-Ahmadi, B.; Bahmani, M.; Tajeddini, P.; Rafieian-Kopaei, M.; Naghdi, N. An ethnobotanical study of medicinal plants administered for the treatment of hypertension. J. Ren. Inj. Prev. 2016, 5, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Leos-Rivas, C.; Verde-Star, M.J.; Torres, L.O.; Oranday-Cardenas, A.; Rivas-Morales, C.; Barron-Gonzalez, M.P.; Morales-Vallarta, M.R.; Cruz-Vega, D.E. In vitro Amoebicidal Activity of Borage (Borago officinalis) Extract on Entamoeba histolytica. J. Med. Food 2011, 14, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Thanina, A.C.; Karim, A.; Mourad, B. Phytochemical screening of Algerian Borago officinalis L. And evaluation of its antioxidant and antimicrobial activities against respiratory pathogens. Int. J. Phytomed. 2014, 26, 110–128. [Google Scholar]
- Andrea, A.; Carmita, J.-J.; Diana, S.M.; Haydelba, D. Analysis of antimicrobial effect of twelve medicinal plants of ancient use in Ecuador. Cienc. UNEMI 2016, 9, 11–18. [Google Scholar]
- Choi, H.J.; Song, J.H.; Kwon, D.H.; Baek, S.H. Antiviral and anticancer activities of 13(E)-labd-13-ene-8α,15-diol isolated from Brachyglottis monroi. Phyther. Res. 2010, 24, 169–174. [Google Scholar]
- Yook, C.N.; Na, Y.S.; Choi, H.J.; You, I.S.; Baek, J.M.; Baek, S.H. Antifungal effect of brachyglottis repanda ethanol extract. Toxicol. Res. 2013, 26, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Choi, H.J.; Lee, J.S. Anticancer and antimicrobial activities of 13(E)-labd-13-ene-8α,15-diol from Brachyglottis monroi. J. Appl. Biol. Chem. 2013, 56, 49–51. [Google Scholar] [CrossRef] [Green Version]
- De Boer, H.J.; Kool, A.; Broberg, A.; Mziray, W.R.; Hedberg, I.; Levenfors, J.J. Anti-fungal and anti-bacterial activity of some herbal remedies from Tanzania. J. Ethnopharmacol. 2005, 96, 461–469. [Google Scholar] [CrossRef]
- Selvi, F.; Coppi, A.; Cecchi, L. High epizoochorous specialization and low DNA sequence divergence in mediterranean cynoglossum (Boraginaceae): Evidence from fruit traits and ITS region. Taxon 2011, 60, 969–985. [Google Scholar] [CrossRef]
- Hilger, H.H.; Greuter, W.; Stier, V. Taxa and names in Cynoglossum sensu lato (Boraginaceae, Cynoglosseae): An annotated, synonymic inventory, with links to the protologues and mention of original material. Biodivers. Data J. 2015, 3, e4831. [Google Scholar] [CrossRef]
- Giday, M.; Teklehaymanot, T.; Animut, A.; Mekonnen, Y. Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in northwest Ethiopia. J. Ethnopharmacol. 2007, 110, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Qwarse, M.; Sempombe, J.; Mihale, M.J.; Henry, L.; Mugoyela, V.; Sung, F.; Salaam, D. Cytotoxicity, Antibacterial and Antifungal Activities of Five Plant Species used by Agro-Pastoral Communities in Mbulu District, Tanzania. Int. J. Res. Pharm. Chem. 2017, 7, 1–14. [Google Scholar]
- Jeziorek, M.; Damianakos, H.; Pietrosiuk, A.; Kawiak, A. Cytotoxic and antimicrobial activity of Cynoglossum columnae Ten. in vitro roots. Planta Med. 2012, 78, 371. [Google Scholar] [CrossRef]
- Boyko, N.N.; Zaytsev, A.I.; Osolodchenko, T.P. Screening of antimicrobial activity of ethanolic extracts from raw materials containing alkaloids. J. Chem. Pharm. Res. 2015, 7, 160–166. [Google Scholar]
- Anitha, M.; Daffodil, E.D.; Muthukumarasamy, S.; Mohan, V.R. Hepatoprotective and antioxidant activity of ethanol extract of Cynoglossum zeylanicum (vahl ex hornem) thurnb ex lehm in CCl4treated rats. J. Appl. Pharm. Sci. 2012, 3, 25–27. [Google Scholar]
- Mattocks, A.R. Spectrophotometric Determination of Unsaturated Pyrrolizidine Alkaloids. Anal. Chem. 1967, 39, 443–447. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Sata, N.; Torssell, K.B.G.; Nishiyama, S. New labdene diterpenes from Eupatorium glutinosum. J. Nat. Prod. 2002, 65, 728–729. [Google Scholar] [CrossRef]
- Urzua, A.; Caroli, M.; Vasquez, L.; Mendoza, L.; Wilkens, M.; Tojo, E. Antimicrobial study of the resinous exudate and of diterpenoids isolated from Eupatorium salvia (Asteraceae). J. Ethnopharmacol. 1998, 62, 251–254. [Google Scholar] [CrossRef]
- Sirinthipaporn, A.; Jiraungkoorskul, W. Wound Healing Property Review of Siam Weed, Chromolaena odorata. Pharmacogn. Rev. 2017, 11, 35–38. [Google Scholar]
- Ayyanar, M.; Ignacimuthu, S. Herbal medicines for wound healing among tribal people in Southern India: Ethnobotanical and scientific evidences. Int. J. Appl. Res. Nat. Prod. 2009, 2, 29–42. [Google Scholar]
- Sivajothi, V.; Shruthi, D.S.; Sajini, R.J. Cytotoxic effect of Heliotropium indicum extracts on Hela cell lines. Int. J. Pharm. Pharm. Sci. 2015, 7, 412–414. [Google Scholar]
- Chunthorng-Orn, J.; Dechayont, B.; Phuaklee, P.; Prajuabjinda, O.; Juckmeta, T.; Itharat, A. Cytotoxic, anti-inflammatory and antioxidant activities of Heliotropium indicum extracts. J. Med. Assoc. Thail. 2016, 99, 102–109. [Google Scholar]
- Dash, G.K.; Abdullah, M.S. A review on Heliotropium indicum L. (Boraginaceae). Int. J. Pharm. Sci. Res. 2013, 4, 1253–1258. [Google Scholar]
- Koffuor, G.A.; Boye, A.; Amoateng, P.; Ameyaw, E.O.; Abaitey, A.K. Investigating the site of action of an aqueous extract of Heliotropium indicum linn (Boraginaceae) on smooth muscles. Res. J. Pharmacol. 2012, 6, 12–19. [Google Scholar]
- Sobiyi, O.K.; Ashafa, A.O.T. In vitro anthelmintic activity of Heliotropium indicum, Senna fistula and Spigelia anthelmia used as worm expeller in South West Nigeria. Bangladesh J. Pharmacol. 2015, 10, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Andujar, I.; Recio, M.; Giner, R.; Ríos, J. Traditional Chinese Medicine Remedy to Jury: The Pharmacological Basis for the Use of Shikonin as an Anticancer Therapy. Curr. Med. Chem. 2013, 20, 2892–2898. [Google Scholar] [CrossRef]
- Sun, H.; Xu, H.; Zhang, A.; Wang, P.; Han, Y.; Wang, X. In vitro anticancer activity of acetylshikonin action against cervical cancer. Plant Sci. Today 2014, 1, 39–45. [Google Scholar] [CrossRef]
- Sasaki, K.; Abe, H.; Yoshizaki, F. In vitro antifungal activity of naphthoquinone derivatives. Biol. Pharm. Bull. 2002, 25, 669–670. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.-L. Antiviral Agents from Traditional Chinese Medicines against Hepatitis B Virus. Ph.D. Thesis, Chinese University of Hong Kong, Hong Kong, China, 2003. [Google Scholar]
- Aydin, A.A.; Zerbes, V.; Parlar, H.; Letzel, T. The medical plant butterbur (Petasites): Analytical and physiological (re)view. J. Pharm. Biomed. Anal. 2013, 75, 220–229. [Google Scholar] [CrossRef]
- D’Onofrio, F.; Raimo, S.; Spitaleri, D.; Casucci, G.; Bussone, G. Usefulness of nutraceuticals in migraine prophylaxis. Neurol. Sci. 2017, 38, 117–120. [Google Scholar] [CrossRef]
- Avula, B.; Sagi, S.; Wang, Y.H.; Zweigenbaum, J.; Wang, M.; Khan, I.A. Characterization and screening of pyrrolizidine alkaloids and N-oxides from botanicals and dietary supplements using UHPLC-high resolution mass spectrometry. Food Chem. 2018, 178, 136–148. [Google Scholar] [CrossRef]
- Wang, D.; Huang, L.; Chen, S. Senecio scandens Buch.-Ham.: A review on its ethnopharmacology, phytochemistry, pharmacology, and toxicity. J. Ethnopharmacol. 2013, 149, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Waako, P.J.; Katuura, E.; Smith, P.; Folb, P. East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. Afr. J. Ecol. 2007, 45, 102–106. [Google Scholar] [CrossRef]
- De Wet, H.; Ramulondi, M.; Ngcobo, Z.N. The use of indigenous medicine for the treatment of hypertension by a rural community in northern Maputaland, South Africa. South Afr. J. Bot. 2016, 103, 78–88. [Google Scholar] [CrossRef]
- Hnatyszyn, O.; Moscatelli, V.; Garcia, J.; Rondina, R.; Costa, M.; Arranz, C.; Balaszczuk, A.; Ferraro, G.; Coussio, J.D. Argentinian plant extracts with relaxant effect on the smooth muscle of the corpus cavernosum of Guinea pig. Phytomedicine 2003, 10, 669–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez González, C.; Serrano Vega, R.; González-Chávez, M.; Zavala Sánchez, M.A.; Pérez Gutiérrez, S. Anti-inflammatory activity and composition of Senecio salignus Kunth. Biomed Res. Int. 2013, 1, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Ng, T.B. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci. 2000, 66, 725–735. [Google Scholar] [CrossRef]
- Durre Shahwar Antioxidant potential of the extracts of Putranjiva roxburghii, Conyza bonariensis, Woodfordia fruiticosa and Senecio chrysanthemoids. Afr. J. Biotechnol. 2012, 11, 4288–4295.
- Sharma, P.; Shah, G.C. Composition and antioxidant activity of Senecio nudicaulis Wall. ex DC. (Asteraceae): A medicinal plant growing wild in Himachal Pradesh, India. Nat. Prod. Res. 2015, 29, 883–886. [Google Scholar] [CrossRef]
- Rojo, L.E.; Benites, J.; López, J.; Rojas, M.; Díaz, P.; Ordóñez, J.; Pastene, E. Antioxidant capacity and polyphenolic content of twelve traditionally used herbal medicinal infusions from the South American Andes. Bol. Latinoam. Caribe Plantas Med. Aromat. 2009, 8, 498–508. [Google Scholar]
- Fortin, H.; Vigor, C.; Lohézic-Le Dévéhat, F.; Robin, V.; Le Bossé, B.; Boustie, J.; Amoros, M. In vitro antiviral activity of thirty-six plants from La Réunion Island. Fitoterapia 2002, 73, 346–350. [Google Scholar] [CrossRef]
- Li, H.; Zhou, C.; Zhou, L.; Chen, Z.; Yang, L.; Bai, H.; Wu, X.; Peng, H.; Zhao, Y. In vitro antiviral activity of three enantiomeric sesquiterpene lactones from Senecio species against hepatitis B virus. Antivir. Chem. Chemother. 2005, 16, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Echiburú-Chau, C.; Alfaro-Lira, S.; Brown, N.; Salas, C.O.; Cuellar, M.; Santander, J.; Ogalde, J.P.; Rothhammer, F. The selective cytotoxicity elicited by phytochemical extract from Senecio graveolens (Asteraceae) on breast cancer cells is enhanced by hypoxia. Int. J. Oncol. 2014, 44, 1357–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Q.; Minter, D.E.; Franzblau, S.G.; Reinecke, M.G. Anti-tuberculosis compounds from two Bolivian medicinal plants, Senecio mathewsii and Usnea florida. Nat. Prod. Commun. 2008, 3, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Romo De Vivar, A.; Pérez, A.L.; Vidales, P.; Nieto, D.A.; Villaseñor, J.L. Pyrrolizidine alkaloids from Senecio jacalensis and Senecio callosus. Biochem. Syst. Ecol. 1996, 24, 175–176. [Google Scholar] [CrossRef]
- Liddell, J.R.; Stermitz, F.R.; Lombardo De Barros, C.S. Pyrrolizidine alkaloids from Senecio oxyphyllus, a Brazilian poisonous plant. Biochem. Syst. Ecol. 1992, 20, 393. [Google Scholar] [CrossRef]
- Craig, A.M.; Sheggeby, G.; Wicks, C. Large scale extraction of pyrrolizidine alkaloids from tansy ragwort (Senecio jacobaea). Vet. Hum. Toxicol. 1984, 26, 108–111. [Google Scholar]
- Bestimmung von Pyrrolizidinalkaloiden (PA) in Pflanzenmaterial Mittels SPE-LC-MS/MS. Available online: https://www.bfr.bund.de/cm/343/bestimmung-von-pyrrolizidinalkaloiden.pdf (accessed on 27 February 2019).
- Staiger, C. Comfrey root: From tradition to modern clinical trials. Wien. Med. Wochenschr. 2013, 163, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Frölich, C.; Ober, D.; Hartmann, T. Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species. Phytochemistry 2007, 68, 1026–1037. [Google Scholar] [CrossRef]
- Wu, Q.Z.; Zhao, D.X.; Xiang, J.; Zhang, M.; Zhang, C.F.; Xu, X.H. Antitussive, expectorant, and anti-inflammatory activities of four caffeoylquinic acids isolated from Tussilago farfara. Pharm. Biol. 2016, 54, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Janovska, D.; Kubikova, K.; Kokoska, L. Screening for antimicrobial activity of some medicinal plants species of traditional Chinese medicine. Czech. J. Food Sci. 2003, 21, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Uzun, E.; Sariyar, G.; Adsersen, A.; Karakoc, B.; Ötük, G.; Oktayoglu, E.; Pirildar, S. Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species. J. Ethnopharmacol. 2004, 95, 287–296. [Google Scholar] [CrossRef]
- Zhao, J.; Evangelopoulos, D.; Bhakta, S.; Gray, A.I.; Seidel, V. Antitubercular activity of Arctium lappa and Tussilago farfara extracts and constituents. J. Ethnopharmacol. 2014, 155, 796–800. [Google Scholar] [CrossRef]
- Cho, J.; Kim, H.M.; Ryu, J.-H.; Jeong, Y.S.; Lee, Y.S.; Jin, C. Neuroprotective and antioxidant effects of the ethyl acetate fraction prepared from Tussilago farfara L. Biol. Pharm. Bull. 2005, 28, 455–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.R.; Lee, J.Y.; Lee, H.H.; Aryal, D.K.; Kim, Y.G.; Kim, S.K.; Woo, E.R.; Kang, K.W. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem. Toxicol. 2006, 44, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
Technique | Temperature | Pressure | Sample | Solvent | Remarks |
---|---|---|---|---|---|
Maceration | ≤boiling point | atmospheric | e.g., flask | any solvent | sample is extracted by soaking in solvent |
Refluxing | ≤boiling point | atmospheric | round bottomed flask | any solvent | maceration on increased temperature, vaporization of solvent is avoided by condensation |
Soxhlet | ≤boiling point | atmospheric | Soxhlet cartridge | any solvent | special form of percolation (continuous) |
Percolation | room temperature | atmospheric | e.g., column | any solvent | sample placed in column, solvent is added, flow through and is released |
Sonication | room temperature | atmospheric | e.g., flask | any solvent | maceration assisted by sonication to increase solubility |
SFE (Supercritical Fluid Extraction) | >boiling point | pressurized | reaction vessel | e.g., CO2 | temperature and pressure above critical point to control extraction characteristics |
PLE (Pressurized Liquid Extraction) | >boiling point | pressurized | reaction vessel | no corrosive/decomposing solvents | pressurization allows temperatures above boiling point, faster extractions |
MAE (Microwave Assisted Extraction) | >boiling point | atmospheric | reaction vessel | no decomposing solvents | pressurization or pressure stabile reaction vessels allow temperatures above boiling point, faster extractions heated by radiation |
HPPE (High Pressure Propane Extraction) | >boiling point | pressurized | reaction vessel | propane | variation of SFE |
Cold Ion Exchange | room temperature | atmospheric | column | any solvent | plant material placed in column solvent is pumped continues in cycle, analyte is adsorbed on specific material |
PHWE (Pressurized Hot Water Extraction) | >boiling point | pressurized | column | water (different modifier) | sample is placed in column, hot water (modifier) is pumped through column |
Genus | Identified PAs |
---|---|
Alkanna (Boraginaceae) | 7-Angeloylretronecine [14,15], 9-Angeloylretronecine [14], 7-Tigloylretronecine [14], 7-Senecioylretronecine [14], 9-Tigloylretronecine [14], 9-Senecioylretronecine [14], 7-Angeloyol-9-(hydroxypropenoyl) retronecine [14], 7-Tigloyl-9-(hydroxy propenoyl) retronecine [14], 7-Angeloyol-9-(2,3-dihydroxypropanoyl) retronecine [14], 7-Tigloyl-9-(2,3-dihydroxypropanoyl) retronecine [14], Triangularine [14,15], Triangularicine [14], Dihydroxytriangularicine [14,15] |
Anchusa (Boraginaceae) | Anthamidin [14], Supinine [14,16], Intermedin [14,16], Lycopsamine [14,16], Currassavine [16] |
Borago (Boraginaceae) | Lycopsamine [17], Supinidine [17],Viridiflorate [17], Cynaustine [17], Amabaline [17,18], Thesinine [18,19] |
Brachyglottis (Asteraceae) | Senecionine [20,21], Retrorsine [20,21], Integerrimine [20], Senkirkine [20], Hectorine [20,21], Petasin [20,21], Angeloylheliotridine [20], Clivorine [20] |
Cineraria (Asteraceae) | Otosenine [22,23], Florosenine [22,23], Floridanine [22,23], Doronine [22], Senecionine [23,24], Integerrimine [23,24], Seneciphylline [23,24], Jacobine [23,24], Usaramine [23] |
Cynoglossum (Boraginaceae) | Heliosupine [25,26], Rinderine [25,26] Echinatine [25,26], Viridiflorine [26] |
Eupatorium (Asteraceae) | Lindelofine [27], Supinine [27,28,29,30], Lycopsamine [30,31,32], Intermedin [30,31,32], Amabaline [28,33], Echinatine [28,29,30,32,33], Rinderine [28], Viridiflorine [28], Cynaustraline [28], Tussilagine [34] |
Heliotropium (Boraginaceae) | Trachelanthamine [35,36], Floridine [35], Heliovicine [35], Lycopsamine [37,38], Intermedin [38], Amabiline [37], Curassavine [37,39], Heliospathine [37], Europine [40,41,42,43], Liamin [40], Heliotrine [42,43,44,45], Lasiocarpine [42,45,46], Retronecine [38,47,48,49], Helibracteatine [47], Helifoline [48], Heliscabine [49], Heliosupine [44,46], Echinatine [44], Supinine [43], Heleurine [43], Coromandaline [39] |
Lithospermum (Boraginaceae) | Lithosenine [50], Lycopsamine [51], Canescine [51,52] derivatives, Canescinine [51], Intermedine [51,53], Mysocorpine [53] |
Petasites (Asteraceae) | Senkirkine [54,55,56], Senecionine [54,56,57,58,59], Intergerrimine [58,59], Petasitenine [55], Neopetasitenine [55] |
Senecio (Asteraceae) | Ridelline [60,61,62,63,64,65,66], Retrorsine [60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85], Seneciphylline [60,61,62,63,64,65,66,67,68,70,71,72,75,77,78,80,81,82,83,84,86,87,88,89,90,91,92,93,94,95,96,97,98,99], Senecionine [60,61,62,63,64,65,66,67,68,69,70,71,73,74,75,76,77,78,79,80,81,82,83,84,86,87,89,90,91,92,93,94,95,96,97,98,99,100,101],Senkirkine [60,61,62,65,68,73,74,77,79,80,83,89,97,98,101], Jacobine [68,78,82,87,91,94,95,96,99], Integerrimine [61,62,63,64,66,68,69,70,71,72,73,74,75,76,77,78,79,80,82,83,84,87,89,92,93,94,95,97,99,100,101], Spartiodine [61,62,63,66,68,70,77,78,82,90,92], Senecivernine [62,63,66,68,69,71,73,74,75,76,77,78,80,82,87,94,97], Platyphylline [61,62,100,102,103], Usaramine [61,63,66,68,69,70,71,73,74,77,78,79], Adinofoline [61,68,104], Florosenine [68,71,73,74,77,94,98,101], Erucifoline [68,83,87,94,95], Otosenine [68,71,73,74,77,88,94,97,101], Triangularine [75,100,105], Sarracine [75,100,105], Sarracinine [100], Eruciflorine [68,87], Onetine [68], Floridanine [68], Senecicannabine [68,106], 7-Angeloylheliotridine [97,103], 9-Tiglylplatynecine [75,100], 7-Angeloylretronecine [75,97], Petasin [97], 9-Angeloylplatynecine [75], Monocrotaline [65], Uspallatine [69,85], Rosmarinine [90,107,108], Angularine [107,108], Hadiensiene [107], Ruwenine [109], Ruzorine [109], Doriasenine [110], Sceleratine [111] |
Symphytum (Boraginaceae) | Echimidine [112,113,114], Symphytine [112,113], Lasiocarpine [64], Intermedin [115], Lycopsamine [114,115,116] |
Tussilago (Asteraceae) | Senkirkine [117,118,119,120], Senecionine [116,118,119,120,121], Intergerrimine [120], Seneciphylline [120], Senecivernine [122] |
Genus | Technique | Solvent |
---|---|---|
Alkanna (Boraginaceae) | Maceration | 0.5 N HCl [14], Methanol [15] |
Anchusa (Boraginaceae) | Maceration | 0.5 N HCl [14], Chloroform [123,124], Methanol [123,124], Methanol/Water/Formic Acid (25/2/73) [125] |
Borago (Boraginaceae) | Maceration | Methanol/Water/Formic Acid (25/2/73) [125], Methanol/Water [126], Hexane [18] |
Refluxing | Methanol/Water (4:1) [19] | |
Brachyglottis (Asteraceae) | Maceration | Methanol [21], Ethanol [20] |
Cineraria (Asteraceae) | Maceration | Methanol [22,24], 0.5 N HCl [23] |
Cynoglossum (Boraginaceae) | Maceration | 0.5 M Sulfuric Acid [127,128], Methanol [129], 0.5M HCl [26] |
Soxhlet | Methanol [25,130] | |
Refluxing | Tartaric Acid in Methanol [131] | |
Eupatorium (Asteraceae) | Maceration | Methanol [27,29,30,31], Water [31], 0.05 M Sulfuric Acid [32] |
Soxhlet | Methanol/Dichlormethane [34] | |
Percolation | Ethanol [33] | |
Heliotropium (Boraginaceae) | Maceration | Methanol [36,37,39,45,46,132], Ethanol [35,38,43,133,134,135], Methanol/Water/Formic Acid (25/23/2) [125] |
Percolation | Methanol [40,41,42], Ethanol [39,47,49,136] | |
Refluxing | Methanol [137] | |
Lithospermum (Boraginaceae) | Soxhlet | Methanol [50,51,53] |
Refluxing | Tartaric Acid in Methanol [131] | |
Sonication | Methanol [52] | |
Petasites (Asteraceae) | Maceration | Methanol [57,59,93], Water [55] |
Refluxing | Methanol/Tartaric Acid [54] | |
Soxhlet | Ethanol [55] | |
SFE | CO2 [138] | |
HP-Propan | Propane [139] | |
Senecio (Asteraceae) | Maceration | 0.05 M Sulfuric Acid [72], 1 M Sulfuric Acid [63], 0.05 M Hydrochloric Acid [140], 0.1 M Hydrochloric Acid [92], 1 M Hydrochloric Acid [68], Chloroform 0.1 M Hydrochloric Acid (1:1) [73], Methanol [64,69,75,85,90,97,106,140,141,142,143], Ethanol [79,84,107,144,145,146], 0.4 M Formic Acid [66], Et2O/Pertolum Ether/Methanol (1:1:1) [98], 0.05 M Sulfuric Acid [72] |
Refluxing | Methanol [86,91,93], Ethanol [61] | |
Soxhlet | Methanol [71,74,76,82,83,86,91,96,99,100,103,107,108,147,148,149,150,151] | |
Sonication | 0.05 M Hydrochloric Acid | |
SFE | CO2 [78] | |
PLE | Sulfuric Acid [122], Phosphoric Acid [122], Ammonia [122], Acetic Acid [122], Formic Acid [122] | |
Cold Ion Exchange/ Continuous Extractor | Methanol [81], Petroleum Ether [101] | |
Symphytum (Boraginaceae) | Maceration | Methanol (hot) [93], Methanol [64,152], 0.025 M Sulfuric Acid [153], Water (hot) [154], Tartaric acid in Methanol [152]; Ethanol [152] 0.7 M HCl [152], Chloroform/Methanol [152] |
Refluxing | Tartaric Acid in Methanol [54,152], Methanol/Water (50/50) [116], Ethanol [152], 0.7 M HCl [152], Ascorbic Acid in Methanol [152] | |
Sonication | Chloroform (basic) [155], Methanol/Water (50/50) [116], Methanol/Chloroform (15/85) [116], Methanol [116], Ethanol [116], Tartaric Acid in Methanol [152], Acetic Acid [152] | |
Percolation | Methanol [152] | |
HWPE | Water [116] | |
PLE | Acetic Acid [122], Phosphoric Acid [122], Formic Acid [122], Sulfuric Acid [122], Ammonia [122] | |
Tussilago (Asteraceae) | Maceration | Methanol/Citric Acid [118,119,121], Methanol/Ammonia [118], 0.25 M Sulfuric Acid [156], Water [118], Acidified Water [118] |
Microwave | Methanol/Water acidified with hydrochloric acid or acetic acid [157] | |
Refluxing | Methanol/Tartaric acid [117], Water [54,118], Methanol alkaline [118], 1 M HCl [157] | |
Soxhlet | Methanol [118] | |
PHWE | Hot water [157] | |
PLE | Acetic acid [122], Phosphoric acid [122], Formic acid [122], Sulfuric acid [122], Ammonia [122] |
Genus | Separation | Detection | LoD (ppm) | LoQ (ppm) |
---|---|---|---|---|
Alkanna (Boraginaceae) | GC | MS [14] | -- | -- |
DCCC | UV [15] | -- | -- | |
Anchusa (Boraginaceae) | GC | MS [14,16] | -- | -- |
HPLC | MS [124,125] | -- | -- | |
Borago (Boraginaceae) | GC | MS [18,19] | -- | -- |
HPLC | MS [126] | -- | -- | |
HPLC | MS/MS [125] | -- | -- | |
HPLC | Orbitrap [125,126] | -- | 0.325 | |
TLC | Ehrlichs Reagent [17] | |||
Brachyglottis (Asteraceae) | GC | MS [20,21] | -- | -- |
TLC | Visual [20,21] | -- | -- | |
Cineraria (Asteraceae) | GC | MS [14,22] | -- | -- |
Cynoglossum (Boraginaceae) | HPLC | MS [25,131] | -- | -- |
GC | MS [26,129,158] | -- | -- | |
TLC | Visual [25,158] | -- | -- | |
none | Photometric [127,128,129] | -- | -- | |
none | q-NMR [130] | -- | -- | |
Eupatorium (Asteraceae) | HPLC | MS/MS [31,32] | -- | -- |
GC | MS [28,30,34,159] | -- | -- | |
TLC | Visual [27,29,33], Chloranillin [30], Mattocks Reagent [34] | -- | -- | |
Heliotropium (Boraginaceae) | HPLC | MS/MS [125] | -- | -- |
GC | MS [45,135,137,160] | -- | -- | |
None | p-Toluene Sulfonic Acid [137] | -- | -- | |
TLC | Dragendorffs [137] | -- | -- | |
None | Photometric [137] | -- | -- | |
Lithospermum (Boraginaceae) | GC | MS [50,51,52,131] | -- | -- |
HPLC | DAD [131] | -- | -- | |
HPLC | MS [131] | -- | -- | |
TLC | Ehrlichs—Reagent [52] | -- | -- | |
Petasites (Asteraceae) | HPLC | UV [54,55,56,161] | 0.10–5.0 | 0.35–25.0 |
HPLC | RI [55] | -- | <10 | |
HPLC | ToF-MS [56,161] | 0.01 | 0.50 | |
UPLC | ToF-MS [138] | -- | 0.002 | |
GC | FID [93] | 2 | -- | |
TLC | Densiometric [54] | 20 | 40 | |
TLC | UV [57] | 1 | -- | |
None | Photometric [162] | -- | -- | |
None | ELISA [57,58,59] | 0.10 | -- | |
Senecio (Asteraceae) | GC | FID [68,72,77,78,82,84,87,95,99], | -- | -- |
GC | MS [62,63,67,68,73,74,75,76,77,83,84,87,92,94,99,103,147] | -- | -- | |
GC | NPD [68,72,87], | -- | -- | |
GC | FTIR [71], | -- | -- | |
HPLC | UV [140,151] | 0.13 × 10−3– 0.31 × 10−3 | -- | |
HPLC | ELSD [64] | 40 | -- | |
HPLC | MS [86,150] | -- | -- | |
HPLC | MS/MS [66,96,104] | 0.5 × 10−3 | 1.0 × 10−3 | |
UHPLC | DAD-MS [61] | -- | -- | |
UHPLC | MS/MS [65] | 0.3 × 10−6– 11 × 10−6 | 0.8 × 10−3–36 × 10−3 | |
None | ELISA [141,163,164,165] | 0.02 × 10−3– 10,000 × 10−3 | -- | |
None | q-NMR (1H/13C) [80,149,166,167] | -- | -- | |
Symphytum (Boraginaceae) | HPLC | DAD [54] | 0.06–0.2 | 0.10–0.35 |
HPLC | ELSD [64] | 40 | -- | |
HPLC | MS [116] | -- | -- | |
HPLC | MS/MS [122] | 1 × 10–3 | 5 × 10−3 | |
GC | FID [93,114] | -- | -- | |
GC | MS [114,153] | -- | -- | |
GC | NPD [154] | 0.4 × 10–3– 1.0 × 10–3 | -- | |
GC | FTIR [115] | -- | -- | |
TLC | Densiometric [54,168] | 22 | 73 | |
TLC | Visual [154] | -- | -- | |
None | Photometric [152,169] | 1 | -- | |
Tussilago (Asteraceae) | HPLC | UV [170] | -- | -- |
HPLC | Q-ToF [117] | 0.275 × 10–3 | 0.916 × 10−3 | |
HPLC | MS/MS [122,171] | <1.0 × 10–3 | <5.0 × 10−3 | |
HPLC | MS/MS [157] | 0.26–1.32 | 1.04–5.29 | |
CE | UV [118] | <0.1 × 10–3 | -- | |
MEKC | UV [121] | 2.0 × 10–3– 5.0 × 10–3 | -- | |
GC | MS [120] | -- | -- | |
TLC | VIS [117] | -- | -- | |
Titration | Visually [156] | -- | -- |
Technique | Sample (g) | Volume (mL) | Time (h) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | Tinctures | -- | -- | -- | Room Temperature | Ethanol/Water | Only free bases |
2 | Maceration | 0.2 | 10 | 16 | Room Temperature | Methanol | Reference Point |
3 | Infusion | 3.3 | 200 | 10 | Boiling Point. | Water | High contents |
4 | Decoctions | 3.3 | 200 | 10 | Boiling Point | Water | High contents |
Technique | Sample (g) | Volume (mL) | Time (h) | Temperature (°C) | Solvent | Result (ratio) | |
---|---|---|---|---|---|---|---|
1 | Soxhlet | 10 | -- | 24 | Bp. | Ethanol | 1.0 |
2 | Boiling | 10 | 300 | 1 | Bp. | Water | 0.5 |
Technique | Sample (g) | Volume (mL) | Time (h) | Temperature (°C) | Solvent | Result (%) | |
---|---|---|---|---|---|---|---|
1 | Maceration | 6–10 | 20 | 0.5 | Room Temperature | Sulfuric Acid 0.1 N | 5 * |
2 | Soxhlet | -- | -- | 48 | Boiling Point | Methanol | 44 * |
Technique | Sample (g) | Volume (mL) | Time (h) | Temperature (°C) | Solvent/ Pressure | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | Soxhlet | 10 | -- | 4 | Boiling Point | Methanol ambient | 0.74 */2.39 ** |
2 | SFE | 0.5 | 80 | 4 | 50 | Methanol/ CO2 15MPa | 0.68 */2.92 ** |
3 | SFE | 0.5 | 80 | 4 | 55 | Methanol/ CO2 10MPa | 0.65 */2.74 ** |
4 | SFE | 0.5 | 80 | 4 | 55 | Methanol/CO2 15MPa | 0.84 */3.24 ** |
5 | SFE | 0.5 | 80 | 4 | 60 | Methanol/CO2 15MPa | 0.81 */3.16 ** |
Technique | Sample (g) | Volume (mL) | Time (min) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | PLE | 1 | 30 | 30 | 50/75/100/125 | Phosphoric acid 1% | 360.6/314.5/331.4/191.2 |
2 | PLE | 1 | 30 | 30 | 50/75/100/125 | Phosphoric acid 5% | 409.7/393.6/396.7/197.6 |
3 | PLE | 1 | 30 | 30 | 50/75/100/125 | Ammonia 1% | 177.9/185.2/218.4/106.6 |
4 | PLE | 1 | 30 | 30 | 50/75/100/125 | Ammonia 5% | 168.9/291.6/212.8/146.3 |
5 | PLE | 1 | 30 | 30 | 50/75/100/125 | Sulfuric acid 1% | 168.4/251.1/119.5/146.5 |
6 | PLE | 1 | 30 | 30 | 50/75/100/125 | Sulfuric acid 5% | 250.7/253.8/85.1/153.8 |
7 | PLE | 1 | 30 | 30 | 50/75/100/125 | Acetic acid 1% | 787.5/863.0/558.2/234.6 |
8 | PLE | 1 | 30 | 30 | 50/75/100/125 | Acetic acid 5% | 831.1/838.0/603.0/195.9 |
9 | PLE | 1 | 30 | 30 | 50/75/100/125 | Formic acid 1% | 798.9/776.9/574.9/255.5 |
10 | PLE | 1 | 30 | 30 | 50/75/100/125 | Formic acid 5% | 880.2/774.4/729.2/208.9 |
11 | BfR based | 2 | 40 | 30 | RT | Formic Acid/Methanol/Water | 504.7 |
Technique | Sample (g) | Volume (mL) | Time (min) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | Sonication | 0.3 | 10 | 10 | Room Temperature | Methanol/HCl 0.2% | 85.2 |
2 | Sonication | 0.3 | 10 | 20 | Room Temperature | Methanol/HCl 1.0% | 75.9 |
3 | Sonication | 0.3 | 10 | 40 | Room Temperature | Methanol/HCl 5.0% | 85.5 |
4 | Sonication | 0.3 | 25 | 20 | Room Temperature | Methanol/HCl 0.2% | 86.6 |
5 | Sonication | 0.3 | 25 | 40 | Room Temperature | Methanol/HCl 1.0% | 86.1 |
6 | Sonication | 0.3 | 25 | 10 | Room Temperature | Methanol/HCl 5.0% | 74.5 |
7 | Sonication | 0.3 | 40 | 40 | Room Temperature | Methanol/HCl 0.2% | 86.8 |
8 | Sonication | 0.3 | 40 | 10 | Room Temperature | Methanol/HCl 1.0% | 79.4 |
9 | Sonication | 0.3 | 40 | 20 | Room Temperature | Methanol/HCl 5.0% | 81.5 |
Technique | Sample (g) | Volume (mL) | Time (h) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | Maceration | 1 | 100 | 6 | Room temperature | Methanol | 802 |
2 | Maceration | 1 | 100 | 12 | Room temperature | Methanol | 695 |
3 | Maceration | 1 | 100 | 18 | Room temperature | Methanol | 854 |
4 | Maceration | 1 | 100 | 12 | 50–60 | Methanol | 1081 |
5 | Reflux | 1 | 100 | 2 (1st) | Boiling Point | Methanol | 1251 |
6 | Reflux | 1 | 100 | 2 (2nd) | Boiling Point | Methanol | 155 |
7 | Percolation | 5 | 500 | 2 | Room temperature | Methanol | 1051 |
8 | Percolation | 2 | 200 | 2 | Room temperature | Methanol | 640 |
9 | Maceration | 1 | 100 | 10 | Room temperature | 1% methanolic solution of tartaric acid | 1024 |
10 | Reflux | 1 | 100 | 1 | Boiling Point | 1% methanolic solution of tartaric acid | 1092 |
11 | Reflux | 1 | 100 | 2 | Boiling Point | 1% methanolic solution of tartaric acid | 1301 |
12 | Reflux | 1 | 100 | 4 | Boiling Point | 1% methanolic solution of tartaric acid | 1155 |
13 | Sonication | 1 | 100 | 0.5 | Room temperature | 1% methanolic solution of tartaric acid | 436 |
14 | Maceration | 1 | 100 | 18 | Room temperature | Ethanol 95% | 363 |
15 | Reflux | 1 | 100 | 4 | Boiling Point | Ethanol 95% | 1258 |
16 | Maceration | 1 | 100 | 6 | Room temperature | 2.5% HCl | 498 |
17 | Reflux | 1 | 100 | 0.5 | Boiling Point | 2.5% HCl | 304 |
18 | Reflux | 1 | 100 | 2 | Boiling Point | 2.5% HCl | 214 |
19 | Maceration | 1 | 100 | 1 | Room temperature | Chlorofom/MeOH/Ammonia | 229 |
20 | Sonication | 1 | 100 | 0.5 | Room temperature | 5% Acetic Acid | 650 |
21 | Reflux | 1 | 100 | 2 | Boiling Point | 1% methanolic solution of ascorbic acid | 163 |
Technique | Sample (g) | Volume (mL) | Time (min) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | Sonication | 1 | 50 | 10 | Room Temperature | Methanol/Water (50/50) | approx. 7.5 |
2 | Sonication | 1 | 50 | 10 | Room Temperature | Methanol/Water (50/50), pH: 2.5 | approx. 7.5 |
3 | Sonication | 1 | 50 | 10 | Room Temperature | Methanol/Chloroform (15/85) | approx. 1.5 |
4 | Sonication | 1 | 50 | 10 | Room Temperature | Methanol | approx. 3.0 |
5 | Sonication | 1 | 50 | 10 | Room Temperature | Ethanol 95% | approx. 1.0 |
6 | Reflux | 1 | 60 | 60 | 65 | Methanol/Water (50/50) | approx. 30 |
7 | PHWE | 1 | 60 | 40 | 60 | Methanol/Water (50/50) | approx. 12.5 |
8 | PHWE | 1 | 60 | 40 | 80 | Methanol/Water (50/50) | approx. 10.0 |
Technique | Sample (g) | Volume (mL) | Time (min) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | PLE | 1 | 30 | 30 | 50/75/100/125 | Phosphoric acid 1% | 389.1/485.5/312.3/615.8 |
2 | PLE | 1 | 30 | 30 | 50/75/100/125 | Phosphoric acid 5% | 564.4/619.5/677.3/586.8 |
3 | PLE | 1 | 30 | 30 | 50/75/100/125 | Formic acid 1% | 321.3/318.4/422.6/462.6 |
4 | PLE | 1 | 30 | 30 | 50/75/100/125 | Formic acid 5% | 474.1/386.1/510.6/472.9 |
5 | PLE | 1 | 30 | 30 | 50/75/100/125 | Sulfuric acid 1% | 481.7/444.2/455.2/486.1 |
6 | PLE | 1 | 30 | 30 | 50/75/100/125 | Sulfuric acid 5% | 726.6/716.4/711.0/502.4 |
7 | BfR based | 2 | 40 | 30 | RT | Formic Acid/Methanol/Water | 251.7 |
Technique | Sample (g) | Volume (mL) | Time (min) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | Flask | 15 | 1500 | 30 | Room Temperature | Water | 2.9 |
2 | Reflux | 15 | 1500 | 15 | Boiling Point | Water | 9.3 |
3 | Reflux | 10 | 1000 | 15 | Boiling Point | Water acidified with citric acid | 8.0 |
4 | Reflux | 10 | 300 | 15 | Boiling Point | Methanol/Water (50/50) acidified with citric acid | 8.0 |
5 | Reflux | 10 | 600 | 15 | Boiling Point | Methanol/Water (50/50) acidified with citric acid | 11.2 |
6 | Reflux | 10 | 1000 | 15 | Boiling Point | Methanol/Water (50/50) acidified with citric acid | 11.0 |
7 | Reflux | 10 | 1000 | 120 | Boiling Point | Methanol/Water (50/50) acidified with citric acid | 9.2 |
8 | Reflux | 10 | 300 | 15 | Boiling Point | Methanol/Water (50/50) alkalized with ammonia | 8.9 |
9 | Reflux | 10 | 1000 | 15 | Boiling Point | Methanol/Water (50/50) alkalized with ammonia | 8.4 |
10 | Soxhlet | 10 | 500 | 2880 | Boiling Point | Methanol | 2.5 |
11 | Reflux | 10 | 1000 | 15 | Boiling Point | Methanol alkalized with ammonia | 5.0 |
Technique | Sample (g) | Volume (mL) | Time (min) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | MAE | 1 | 40 | 15 | Bp. | Water/Methanol acidified with HCl | 104.4 |
2 | Reflux | 1 | 60 | 60 | Bp. | 1 N HCl | 109.6 |
3 | PHWE | 0.25 | 50 | 50 | 60 | Water | 88.2 |
4 | Reflux | 1 | 60 | 60 | Bp. | 1 N HCl | 87.9 |
Technique | Sample (g) | Volume (mL) | Time (min) | Temperature (°C) | Solvent | Result (ppm) | |
---|---|---|---|---|---|---|---|
1 | PLE | 1 | 30 | 30 | 50/75/100/125 | Phosphoric acid 1% | 62.3/63.6/62.0/62.8 |
2 | PLE | 1 | 30 | 30 | 50/75/−0/125 | Phosphoric acid 5% | 58.3/64.8/65.0/62.4 |
3 | PLE | 1 | 30 | 30 | 50/75/100/125 | Ammonia 1% | 21.0/21.5/22.2/20.9 |
4 | PLE | 1 | 30 | 30 | 50/75/100/125 | Ammonia 5% | 21.2/20.8/20.2/20.6 |
5 | PLE | 1 | 30 | 30 | 50/75/100/125 | Sulfuric acid 1% | 60.6/62.0/65.6/63.4 |
6 | PLE | 1 | 30 | 30 | 50/75/100/125 | Sulfuric acid 5% | 60.9/61.2/60.0/62.8 |
7 | PLE | 1 | 30 | 30 | 50/75/100/125 | Acetic acid 1% | 59.7/62.4/62.4/62.8 |
8 | PLE | 1 | 30 | 30 | 50/75/100/125 | Acetic acid 5% | 63.7/60.7/62.6/63.7 |
9 | PLE | 1 | 30 | 30 | 50/75/100/125 | Formic acid 1% | 62.8/62.0/63.3/64.3 |
10 | PLE | 1 | 30 | 30 | 50/75/100/125 | Formic acid 5% | 59.6/62.6/62.2/63.6 |
11 | BfR based | 2 | 40 | 30 | RT | Formic Acid/Methanol/Water | 41.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopp, T.; Abdel-Tawab, M.; Mizaikoff, B. Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins 2020, 12, 320. https://doi.org/10.3390/toxins12050320
Kopp T, Abdel-Tawab M, Mizaikoff B. Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins. 2020; 12(5):320. https://doi.org/10.3390/toxins12050320
Chicago/Turabian StyleKopp, Thomas, Mona Abdel-Tawab, and Boris Mizaikoff. 2020. "Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review" Toxins 12, no. 5: 320. https://doi.org/10.3390/toxins12050320
APA StyleKopp, T., Abdel-Tawab, M., & Mizaikoff, B. (2020). Extracting and Analyzing Pyrrolizidine Alkaloids in Medicinal Plants: A Review. Toxins, 12(5), 320. https://doi.org/10.3390/toxins12050320