Mycotoxin Contamination Concerns of Herbs and Medicinal Plants
Abstract
:1. Introduction
2. Regulations Concerning Production and Distribution of Medicinal Herbs
3. Data on Contamination of Selected Medicinal Plants by Mycotoxins
3.1. Glycyrrhiza Glabra (Liquorice)
3.2. Matricaria Chamomilla (Chamomile)
3.3. Mentha sp. (Mint)
3.4. Panax Ginseng (Ginseng)
3.5. Silybum Marianum L. (Milk Thistle)
3.6. Zingiber Officinale (Ginger)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ong, C.K.; Bodeker, G. WHO Global Atlas of Traditional, Complementary, and Alternative Medicine. Kobe, Japan: World Health Organization, Centre for Health Development. 2005. Available online: https://apps.who.int/iris/bitstream/handle/10665/43108/9241562862_map.pdf?sequence=1&isAllowed=y (accessed on 15 January 2020).
- World Health Organization. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. 2007. Available online: https://apps.who.int/medicinedocs/documents/s14878e/s14878e.pdf (accessed on 15 January 2020).
- World Health Organization. World Health Organization Resolution-Promotion and Development of Training and Research in Traditional Medicine. 1977. Available online: https://apps.who.int/iris/bitstream/handle/10665/93212/WHA30.49_eng.pdf?sequence=1&isAllowed=y (accessed on 10 January 2020).
- Bent, S. Herbal medicine in the United States: A review of efficacy, safety and regulation. J. Gen. Intern. Med. 2008, 23, 854–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Market Research Futures. Global Herbal Medicine Market Research Report—Forecast to 2023. 2018. Available online: https://www.reuters.com/brandfeatures/venture-capital/article?id=32992 (accessed on 10 December 2010).
- Neergheen-Bhujun, V.S. Underestimating the toxicological challenges associated with the use of herbal medicinal products in developing countries. Biomed Res. Int. 2013, 2013, 804086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO (World Health Organization). 2008. Available online: http://www.who.int/mediacentre/factsheets/Fs134/en (accessed on 13 March 2020).
- Selwet, M. Negatywne aspekty występowania wybranych mikotoksyn w paszach. Wiadomości Zootech. 2010, 48, 9–13. [Google Scholar]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. World-wide occurrence of mycotoxins in commodities, feeds and feeds ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Gajęcka, M.; Jakimiuk, E.; Zielonka, Ł.; Obremski, K.; Gajęcki, M. The biotransformation of chosen mycotoxins. Pol. J. Vet. Sci. 2009, 12, 293–303. [Google Scholar]
- Pitt, J.I. What are mycotoxins? Aust. Mycotoxin Newslett. 1996, 7, 1. [Google Scholar]
- International Agency for Research on Cancer. Monographs on the evaluation of the carcinogenic risk of chemicals to humans: Some naturally occurring substances. In Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; IARC: Lyon, France, 1993; Volume 56, pp. 245–521. [Google Scholar]
- Petzinger, E.; Ziegler, K. Ochratoxin A from a toxicological perspective. J. Vet. Pharmacol. Ther. 2000, 23, 91–98. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Deoxynivalenol in food and feed: Occurrence and exposure. Efsa J. 2013, 11, 337. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed. Efsa J. 2013, 13, 3262. [Google Scholar]
- European Union (EU). Directive 2004/24/EC of the European parliament and of the council of 31 March 2004 amending, as regards traditional herbal medicinal products, Directive 2001/83/EC on the Community code relating to medicinal products for human use. Off. J. Eur. Union 2004, 136, 85–90. Available online: https://ec.europa.eu/health/documents/eudralex/vol-1_de (accessed on 10 December 2019).
- International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans. In Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene; IARC: Lyon, France, 2002; Volume 82. [Google Scholar]
- Joint Expert Committee on Food Additives and Contaminants (JECFA). Evaluation of certain contaminants in foods. In Proceedings of the 82 Report of the Joint FAO/WHO Expert Committee on Food Additives, Rome, Italy, 8–17 November 2016; Available online: http://www.fao.org/foo d/food-safetyquality/scientificadvice/jecfa/jecfaadditives/detail/en/c/4 84/ (accessed on 10 December 2019).
- Miller, J.D. Fungi and mycotoxins in grain: Implications for stored product research. J. Stored Prod. 1995, 31, 1–16. [Google Scholar] [CrossRef]
- Santos, L.; Marin, S.; Sanchis, V.; Ramos, A.J. Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J. Sci. Food Agric. 2009, 89, 1802–1807. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.W.; Zhang, C.; Logrieco, A.F.; Yang, M.H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S. Current status of herbal products: Regulatory Overview. J. Pharm. Bioallied Sci. 2015, 7, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.S.; Ganai, F.A.; Yousuf, A.R.; Balkhi, M.H.; Bhat, T.M.; Sharma, P. Pharmacological and toxicological evaluation of Urtica Dioca. Pharm. Biol. 2013, 51, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Leciejewicz-Ziemecka, E. Ocena zanieczyszczeń w surowcach farmaceutycznych jako element wymagań farmakopealnych. Biul. Inst. Lek. 2000, 44, 239–409. [Google Scholar]
- Convention on International Trade in Endangered Species. Convention on International Trade in Endangered Species of Wild Fauna and Flora. 1983. Available online: https://www.cites.org/eng/disc/text.php (accessed on 20 January 2020).
- World Health Organization. World Health Organization Traditional Medicine Strategy: 2002–2005. 2001. Available online: http://www.wpro.who.int/health_technology/book_who_traditional_medicine_strategy_2002_2005.pdf (accessed on 25 November 2019).
- World Health Organization. WHO Traditional Medicine Strategy: 2014–2023. 2013. Available online: http://www.searo.who.int/entity/health_situation_trends/who_trm_strategy_2014-2023.pdf?ua=1 (accessed on 25 November 2019).
- Schilter, B.; Andersson, C.; Anton, R.; Constable, A.; Kleiner, J.; O’Brien, J.; Renwick, A.G.; Korver, O.; Smit, F.; Walker, R. Guidance for the safety assessment of botanicals and botanical preparations for use in the food and food supplements. Food Chem. Toxicol. 2003, 41, 1625–1649. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Guidance on safety assessment of botanicals and botanical preparations intended for use as ingredients in food supplements, on request of EFSA. Efsa J. 2009, 7, 1249. [Google Scholar]
- European Pharmacopeia. Determination of aflatoxin B1 in herbal drugs. Eur. Pharmacop. 2006, 7, 4801–4802. [Google Scholar]
- Official Journal of the European Union. Directive 2004/24/EC. 31 March 2004. Available online: http://www.eur-lex.europa.eu/LexUriServ/LexUriServ (accessed on 25 November 2019).
- European Commission (EC). European Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs, 2006. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- European Commission (EC). European Commission Regulation (EC) No. 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off. J. Eur. Union 2007, 255, 14–17. [Google Scholar]
- European Commission (EC). Imposing Special Conditions Governing the Import of Certain Feed and Food from Certain Third Countries Due to Contamination Risk by Aflatoxins and Repealing. Regulation (EC) No 1152/2009. 2014. Available online: http://food.gov.uk/business-industry/imports/banned_restricted/highrisknonpoao (accessed on 25 November 2019).
- European Pharmacopoeia. Council of Europe European Directorate for the Quality of Medicines (EDQM), 7th ed.; European Pharmacopoeia: Strasbourg, France, 2011. [Google Scholar]
- Anukul, N.; Vangnai, K.; Mahakarnchanakul, W. Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. J. Food Drug Anal. 2013, 21, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Hu, Y.; Gao, D.; Luo, Y.; Chen, A.J.; Jiao, X.; Hao, W. Occurrence of Toxigenic Fungi and Mycotoxins on Root Herbs from Chinese Markets. J. Food Prot. 2018, 81, 754–761. [Google Scholar] [CrossRef]
- Karkanis, A.; Martins, N.; Petropoulos, S.A.; Ferreira, I.C.F.R. Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabra L.): A medicinal plant. Food Rev. Int. 2018, 34, 182–203. [Google Scholar] [CrossRef] [Green Version]
- Bresch, H.; Urbanek, M.; Nusser, M. Ochratoxin A in food containing liquorice. Nahrung 2000, 44, 276–278. [Google Scholar] [CrossRef]
- Tan, Y.; Kuang, Y.; Zhao, R.; Chen, B.; Wu, J. Determination of T-2 and HT-2 toxins in traditional Chinese medicine marketed in China by LC–ELSD after sample clean-up by two solid-phase extractions. Chromatographia 2011, 73, 407–410. [Google Scholar] [CrossRef]
- Huang, X.; Wang, S.; Mao, D.; Miao, S.; Hu, Q.; Hi, S. Optimized QuEChERS method combined with UHPLC-MS/MS for the simultaneous determination of 15 mycotoxins in liquorice. J. AOAC Int. 2018, 101, 633–642. [Google Scholar] [CrossRef]
- Omurtag, G.Z.; Yazicioglu, D. Determination of fumonisin B1 and B2 in herbal tea and medicinal plants in Turkey by high performance liquid chromatography. J. Food Prot. 2004, 67, 1782–1786. [Google Scholar] [CrossRef]
- Roy, A.K.; Sinha, K.K.; Chourasia, H.K. Aflatoxin Contamination of Some Common Drug Plants. Appl. Environ. Microbiol. 1988, 54, 842–843. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.K.; Chourasia, H.K. Mycoflora, mycotoxins producibility and mycotoxins in traditional herbal drugs from India. J. Gen. Appl. Microbiol. 1990, 36, 295–302. [Google Scholar] [CrossRef]
- Ariño, A.; Herrera, M.; Estopañan, G.; Juan, T. High levels of ochratoxin A in licorice and derived products. Int. J. Food Microbiol. 2007, 114, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Pietri, A.; Rastelli, S.; Bertuzzi, T. Ochratoxin A and Aflatoxins in Liquorice Products. Toxins 2010, 2, 758–770. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Zheng, Y.; Luan, L.; Ren, Y.; Wua, Y. Analysis of ochratoxin A and ochratoxin B in traditional Chinese medicines by ultra-high-performance liquid chromatography–tandem mass spectrometry using [13C20,ochratoxin A as an internal standard. J. Chromatogr. 2010, 1217, 4365–4374. [Google Scholar] [CrossRef]
- Tosun, H.; Arslan, R. Determination of aflatoxin B1 levels in organic spices and herbs. Sci. World J. 2013, 2013, 874093. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, Z.; Gao, W.; Chen, J.; Yang, M.; Kuang, Y.; Huang, L.; Chen, S. Simultaneous determination of aflatoxin B1 and ochratoxin A in licorice roots and fritillary bulbs by solid-phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry. Food Chem. 2013, 138, 1048–1054. [Google Scholar] [CrossRef]
- Ahmad, B.; Ashiq, S.; Hussain, A.; Bashir, S.; Hussain, M. Evaluation of mycotoxins, mycobiota, and toxigenic fungi in selected medicinal plants of Khyber Pakhtunkhwa. Fungal Biol. 2014, 118, 776–784. [Google Scholar] [CrossRef]
- Singh, O.; Khanam, Z.; Misra, N.; Srivastava, M.K. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev. 2011, 5, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.L.; Martins, H.M.; Bernardo, F. Fumonisins B1 and B2 in black tea and medicinal plants. J. Food Prot. 2001, 64, 1268–1270. [Google Scholar] [CrossRef]
- Conway, G.A.; Slocumb, J.C. Plants used as abortifacients and emmenagogues by Spanish new Mexicans. J. Ethnopharmacol. 1979, 1, 241–261. [Google Scholar] [CrossRef]
- Nazem, V.; Sabzalian, M.R.; Saeidi, G.; Rahimmalek, M. Essential oil yield and composition and secondary metabolites in self- and open-pollinated populations of mint (Mentha spp.). Ind. Crop. Prod. 2019, 130, 332–340. [Google Scholar] [CrossRef]
- Halt, M. Moulds and mycotoxins in herb tea and medicinal plants. Eur. J. Epidemiol. 1998, 14, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, I.; Vedoya, G.; Maurutto, S.; Haidukowski, M.; Varsavsky, E. Assessment of toxigenic fungi on Argentine an medicinal herbs. Microbiol. Res. 2004, 159, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Škrinjar, M.; Mandić, A.I.; Mišan, A.Č.; Sakač, M.B.; Šarič, L.Č.; Zec, M.M. Effect of mint (Mentha piperita L.) And caraway (Carum carvi L.) on the growth of some toxigenic Aspergillus species and aflatoxin B1 production. Proc. Nat. Scimatica Srp. Novi Sad 2009, 116, 131–139. [Google Scholar] [CrossRef]
- Liu, L.; Jin, H.; Sun, L.; Ma, S.; Lin, R. Determination of Aflatoxins in Medicinal Herbs by High-performance Liquid Chromatography-Tandem Mass Spectrometry. Phytochem. Anal. 2012, 23, 469–476. [Google Scholar] [CrossRef]
- Shim, W.B.; Kim, K.; Ofori, J.A.; Chung, Y.C.; Chung, D.H. Occurrence of aflatoxins in herbal medicine distributed in South Korea. J. Food Prot. 2012, 75, 1991–1999. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, W.; Dou, X.; Qin, J.; Zhao, M.; Yang, M. Occurrence of multi—Class mycotoxins in Menthae haplocalycis analyzed by ultra—Fast liquid chromatography coupled with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 3974–3984. [Google Scholar] [CrossRef]
- Seely, D.; Dugoua, J.J.; Perri, D. Safety and efficacy of Panax ginseng during pregnancy and lactation. J. Clin. Pharm. 2008, 15, 87–94. [Google Scholar]
- Weiss, R. Herbal Medicine; Beaconsfield Publishers LTD: Gothenburg, Sweden, 1988; pp. 176–177. [Google Scholar]
- Lee, D.; Lyu, J.; Lee, K.G. Analysis of aflatoxins in herbal medicine and health functional foods. Food Control 2015, 48, 33–36. [Google Scholar] [CrossRef]
- Bi, B.; Bao, J.; Xi, G.; Xu, Y.; Zhang, L. Determination of multiple mycotoxin residues in Panax ginseng using simultaneous UPLC-ESI-MS/MS. J. Food Saf. 2018, 38, 12458. [Google Scholar] [CrossRef]
- D’Ovidio, K.; Trucksess, M.; Weaver, C.; Horn, E.; McIntosh, M.; Bean, G. Aflatoxins in ginseng roots. Food Addit. Contam. 2006, 23, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Trucksess, M.; Weaver, C.; Oles, C.J.; Rump, L.V.; White, K.D.; Betz, J.M.; Rader, J.I. Use of multitoxin immunoaffinity columns for determination of aflatoxins and ochratoxin A in ginseng and ginger. J. AOAC Int. 2007, 90, 1042–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipiak-Szok, A.; Kurzawa, M.; Szłyk, E.; Twarużek, M.; Błajet-Kosicka, A.; Grajewski, J. Determination of mycotoxins alkaloids, phytochemicals antioxidants and cytotoxicity in Asiatic ginseng (Ashwagandha, Dong Quai, Panax ginseng). Chem. Pap. 2017, 71, 1073–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Ji, G.E. Ginseng fermented by mycotoxin non-producing Aspergillus niger: Ginsenoside analysis and anti-proliferative effects. Food Sci. Biotechnol. 2017, 26, 987–991. [Google Scholar] [CrossRef]
- Chen, L.; Guo, W.; Zheng, Y.; Zhou, J.; Liu, T.; Chen, W.; Liang, D.; Zhao, M.; Zhu, Y.; Wu, Q.; et al. Occurrence and characterization of fungi and mycotoxins in contaminated medicinal herbs. Toxins 2020, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Wianowska, D.; Gil, M. Silymarin Extraction from Silybum marianum L. Gaertner. In Water Extraction of Bioactive Compounds from Plants to Drug Development, 1st ed.; Elsevier: Cambridge, MA, USA, 2017; pp. 385–397. [Google Scholar]
- Tournas, V.H.; Sapp, C.; Trucksess, M.W. Occurrence of aflatoxins in milk thistle herbal supplements. Food Addit. Contam. 2012, 29, 994–999. [Google Scholar] [CrossRef]
- Arroyo-Manzanares, N.; Garcia-Campaña, A.M.; Gámiz-Gracia, L. Multiclass mycotoxin analysis in Silybum marianum by ultra-high-performance liquid chromatography–tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid–liquid microextraction. J. Chromatogr. A 2013, 1282, 11–19. [Google Scholar] [CrossRef]
- Veprikova, Z.; Zachariasova, M.; Dzuman, Z.; Zachariasova, A.; Fenclova, M.; Slavikova, P.; Vaclavikova, M.; Mastovska, K.; Hengst, D.; Hajslova, J. Mycotoxins in Plant-Based Dietary Supplements: Hidden Health Risk for Consumers. J. Agric. Food Chem. 2015, 63, 6633–6643. [Google Scholar] [CrossRef]
- Badreldin, H.A.; Blunden, G.; Musbah, O.T. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar]
- Lippolis, V.; Irurhe, O.; Porricelli, A.C.R.; Cortese, M.; Schena, R.; Imafidon, T.; Oluwadun, A.; Pascale, M. Natural co—Occurrence of aflatoxins and ochratoxin A in ginger (Zingiber officinale) from Nigeria. Food Control 2017, 73, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Commission Regulation (EC) No 594/2012 of 5 July 2012 amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Off. J. Eur. Union 2012, 176, 43–45. [Google Scholar]
- Chourasia, H.K. Mycobiota and mycotoxins in herbal drugs of Indian pharmaceutical industries. Mycol. Res. 1995, 99, 697–703. [Google Scholar] [CrossRef]
- Koul, A.; Sumbali, G. Detection of zearalenone, zearalenol and deoxynivalenol from medicinally important dried rhizomes and root tubers. Afr. J. Biotechnol. 2008, 7, 4136–4139. [Google Scholar]
- Wen, J.; Kong, W.; Hu, Y.; Wang, J.; Yang, M. Multi—Mycotoxins analysis in ginger and related products by UHPLC—FLR detection and LC—MS/MS confirmation. Food Control 2014, 43, 82–87. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Advice on the EFSA guidance document for the safety assessment of botanicals and botanical preparations intended for use as food supplements, based on real case studies. ESCO working group on botanicals and botanical preparations. Efsa J. 2009, 7, 280. [Google Scholar]
- European Food Safety Authority (EFSA). Panel on Contaminants in the Food Chain (CONTAM) 2016, Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. Efsa J. 2016, 14, 4425. [Google Scholar]
- Ashiq, S.; Hussain, M.; Ahmad, B. Natural occurrence of mycotoxins in medicinal plants: A review. Fungal Genet. Biol. 2014, 66, 1–10. [Google Scholar] [CrossRef]
- Tripathy, V.; Basak, B.B.; Varghese, T.S.; Saha, A. Residues and contaminants in medicinal herbs—A review. Phytochem. Lett. 2015, 14, 67–78. [Google Scholar] [CrossRef]
- Zhang, J.; Wider, B.; Shang, H.; Li, X.; Ernst, E. Quality of herbal medicines: Challenges and solutions. Complement. Ther. Med. 2012, 20, 100–106. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Abbas, M. Co-Occurrence of Mycotoxins and Its Detoxification Strategies. Mycotoxins-Impact and Management Strategies. 2018, Volume 5, pp. 91–107. Available online: https://www.intechopen.com/books/mycotoxins-impact-and-management-strategies/co-occurrence-of-mycotoxins-and-its-detoxification-strategies (accessed on 20 January 2020).
Mycotoxins | Food Category | European Union, Regulation 1881/2006 [µg/kg] [33,34,35] | USA, FDA action level [µg/kg] | European Pharmacopeia 2.8.18. [µg/kg] [36] |
---|---|---|---|---|
Aflatoxin B1 (Sum of B1, B2, G1 and G2) | Herbal drugs | - | - | <2 (4) |
Ginger | 5 (10) | - | - | |
Dried figs | 6 (10) | - | - | |
Cereal-based foodstuffs | 2 (4) | 20 | - | |
Processed cereal-based foods and baby foods for infants and young children | 0,10 | - | - | |
Deoxynivalenol | Cereal-based foodstuffs | 200–750 | 1000 | - |
Ochratoxin A | Liquorice root, ingredient for herbal infusion Liquorice extracts for use in food | 20 80 | - | 20 80 |
Ginger | 15 | - | - | |
Cereal-based foodstuffs | 3–5 | - | - | |
Processed cereal-based foods and baby foods for infants and young children | 0,5 | - | ||
Patulin | Foodstuffs | 10–50 | 50 | - |
Zearalenone | Cereal-based foodstuffs | 20–100 | - | - |
Mycotoxins | Sample Type | Number of Samples | Percentage of Positive Results (%) | Range of Positive Results (µg/kg) | Percentage of “Critical”* Positive Samples (%) | Reference |
---|---|---|---|---|---|---|
AF | Liquorice root | 1 | 100 | 0.59 | 0 | [45] |
OTA | Liquorice root | 19 | 47 | n.d.–216.5 | 22 | [40] |
Liquorice sweet | 19 | 95 | n.d.–3.0 | 0 | ||
AF | Liquorice root | 10 | 40 | n.d.–0.17 | 0 | [44] |
OTA | 10 | 20 | n.d.–0.05 | 0 | ||
FB | Liquorice | 1 | 0 | n.d. | - | [43] |
OTA | Dried liquorice roots | 15 | 100 | 1.4–252.8 | 7 | [46] |
Fresh liquorice root | 8 | 100 | 3.3–14.7 | 0 | ||
Liquorice sweets | 4 | 100 | 0.5–8.2 | 0 | ||
Liquid liquorice | 2 | 100 | 14.6–17.3 | 0 | ||
Liquorice block | 1 | 100 | 39.5 | 100 | ||
FB | Liquorice | 1 | 100 | 647 | 100 | [21] |
OTA | Dried Liquorice Liquorice confectionery | 28 54 | 100 | 26.3–990.1 | 100 | [47] |
61 | <LOD–8.3 | 0 | ||||
AF | 18 | <LOD–2.4 | 20 | |||
15 | <LOD–7.7 | 12,5 | ||||
OTA | Liquorice | 1 | 100 | 0,2 | 0 | [48] |
T-2, HT-2 | 138 TCM samples including 3 samples of liquorice roots | 3 | 0 | n.d. | - | [49] |
AF | Liquorice root | 21 | 14 | <LOQ–26.11 | 33 | [50] |
OTA | 5 | <LOQ–18.73 | 0 | |||
AF | Liquorice root | 4 | 50 | n.d.–9.34 | 0 | [51] |
OTA | 75 | n.d.–13.1 | ||||
CIT DON FB1 OTA ZEN | Liquorice | 31 | 6 | 6.75–20.44 | 50 | [42] |
3 | <LOQ–11.08 | 0 | ||||
6 | <LOQ–39.34 | 0 | ||||
3 | <LOQ–3.93 | 0 | ||||
13 | 3.37–8.75 | 0 |
Mycotoxins | Sample Type | Number of Samples | Percentage of Positive Results (%) | Range of Positive Results (µg/kg) | Percentage of “Critical”* Positive Samples (%) | Reference |
---|---|---|---|---|---|---|
FB | Chamomile | 18 | 45 | 20–70 | 0 | [53] |
FB | Chamomile | 1 | 0 | - | 0 | [43] |
OTA, | Chamomile flower | 2 | 100 | 0.8–1.0 | 0 | [21] |
FBs, | 50 | <LOD–90.0 | 0 | |||
AF, | 100 | 35.8–161.0 | 100 | |||
ZEN, | 100 | 7.3–12.5 | 0 | |||
T-2, | 100 | 3.5–8.3 | 0 | |||
DON, | 100 | 123.4–191.5 | 0 | |||
CIT | 100 | 31.7–49.3 | 100 | |||
AF | Chamomile | 10 | 100 | 3.4–38.9 | 90 | [49] |
FB | 0 | - | - |
Mycotoxins | Sample Type | Number of Samples | Percentage of Positive Results (%) | Range of Positive Results (µg/kg) | Percentage of “Critical”* Positive Samples (%) | Reference |
---|---|---|---|---|---|---|
AF | Mint | 2 | 0 | - | - | [56] |
OTA | 0 | - | - | |||
ZEN | 0 | - | - | |||
FB | Mint | 1 | 0 | - | - | [57] |
OTA | 0 | - | - | |||
AF | Mint | 5 | 0 | - | - | [58] |
AF | Mint | 6 | 0 | - | - | [59] |
AF | Mint | 10 | 0 | - | - | [60] |
OTA, | Mint | 2 | 100 | 1–1.4 | 0 | [21] |
FBs, | 0 | <LOD | 0 | |||
AF, | 100 | 16.6–29.7 | 100 | |||
ZEN, | 100 | 2.1–9.3 | 0 | |||
T-2, | 100 | 3.9–4.9 | 0 | |||
DON, | 100 | 46.9–91.1 | 0 | |||
CIT | 100 | 41.0–43.3 | 100 | |||
FB1 | Mint | 2 | 50 | n.d.–0.160 | 0 | [43] |
FB2 | 0 | n.d. | - | |||
AF | Mint | 5 | 80 | 4.2–26.7 | 50 | [49] |
AF | Mint | 31 | 29 | 0.3–2.19 | 11 | [61] |
OTA | 45 | 0.38–12.32 | 0 | |||
HT-2 | 0 | - | - | |||
T-2 | 3 | 3.81 | 0 | |||
FB | 61 | <LOQ–102.32 | 0 | |||
ZEN | 84 | 0.11–44.74 | 0 |
Mycotoxins | Sample Type | Number of Samples | Percentage of Positive Results (%) | Range of Positive Results (µg/kg) | Percentage of “Critical”* Positive Samples (%) | Reference |
---|---|---|---|---|---|---|
AF | Ginseng root | 12 | 17 | 15.1–15.2 | 100 | [66] |
AF | Ginseng | 10 | 30 | <0.1 | 0 | [67] |
OTA | 40 | 0.4–1.8 | 0 | |||
AF | Ginseng | 76 | 0 | - | - | [64] |
AF | Ginseng | 2 | 0 | n.d. | - | [68] |
OTA | 100 | 3.2 | 0 | |||
OTA | Ginseng | 13 | 0 | - | - | [69] |
FB | 0 | - | - | |||
AF | Ginseng | 10 | 0 | 0 | - | [65] |
OTA | 0 | 0 | - | |||
HT-2 | 0 | 0 | - | |||
T-2 | 0 | 0 | - | |||
ZEN | 0 | 0 | - | |||
CIT | 0 | 0 | - | |||
FB | 10 | <10 | 0 | |||
AFB1 | Ginseng root | 7 | 29 | 48.8–143 | 100 | [38] |
AFB2 | 18.6–355 | 100 | ||||
OTA | - | - | ||||
AFB1 | Notoginseng radix et rhizoma | 3 | 100 | 1.29–2.1 | 0 | [70] |
AFB2 | 0 | - | - | |||
AFG1 | 0 | - | - | |||
AFG2 | 0 | - | - | |||
OTA | 0 | - | - |
Mycotoxins | Sample Type | Number of Samples | Percentage of Positive Results (%) | Range of Positive Results (µg/kg) | Percentage of “Critical”* Positive Samples (%) | Reference |
---|---|---|---|---|---|---|
OTA, | Milk thistle | 2 | 0 | <LOD, | - | [21] |
FBs, | 50 | <LOD–236.7 | 100 | |||
AF, | 100 | 10.9–11.5 | 100 | |||
ZEN, | 100 | 1.6–3.5 | 0 | |||
T-2, | 100 | 17.5–35.6 | 50 | |||
DON, | 0 | <LOD | - | |||
CIT | 0 | <LOD | - | |||
AF | Milk thistle | 83 | 16 | 0.04–2.0 | 0 | [72] |
T-2 | Milk thistle | 2 | 100 | 363.0–453.9 | 100 | [73] |
HT-2 | 2 | 100 | 826.9–943.7 | 100 | ||
ZEN | 1 | 100 | <LOD | 0 | ||
DON | Milk thistle | 32 | 3 | 2890 | 100 | [74] |
Mycotoxins | Sample Type | Number of Samples | Percentage of Positive Results (%) | Range of Positive Results (µg/kg) | Percentage of “Critical”* Positive Samples (%) | Reference |
---|---|---|---|---|---|---|
AF | Ginger | 26 | 50 | 0.12–0.85 | 0 | [78] |
OTA | 0.01–0.09 | 0 | ||||
CIT | 0.00–0.02 | 0 | ||||
ZEN | Ginger | 27 | 7 | 13.44–14.51 | 0 | [79] |
DON | 15 | 4.85–10.35 | 0 | |||
AF | Ginger | 4 | 75 | 3.8–23.1 | 67 | [49] |
AFB1 | Ginger | 30 | 17 | 0.13–1.38 | 0 | [80] |
OTA | 0.31–5.17 | 0 | ||||
AF OTA | Ginger rainy | 31 | 81 | 0.11–9.52 | 0 | [76] |
77 | 0.20–9.90 | 0 | ||||
Ginger dry | 89 | 46 | 0.20–3.57 | 0 | ||
37 | 0.17–12.02 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ałtyn, I.; Twarużek, M. Mycotoxin Contamination Concerns of Herbs and Medicinal Plants. Toxins 2020, 12, 182. https://doi.org/10.3390/toxins12030182
Ałtyn I, Twarużek M. Mycotoxin Contamination Concerns of Herbs and Medicinal Plants. Toxins. 2020; 12(3):182. https://doi.org/10.3390/toxins12030182
Chicago/Turabian StyleAłtyn, Iwona, and Magdalena Twarużek. 2020. "Mycotoxin Contamination Concerns of Herbs and Medicinal Plants" Toxins 12, no. 3: 182. https://doi.org/10.3390/toxins12030182
APA StyleAłtyn, I., & Twarużek, M. (2020). Mycotoxin Contamination Concerns of Herbs and Medicinal Plants. Toxins, 12(3), 182. https://doi.org/10.3390/toxins12030182