Next Article in Journal
Correction: Field, M. et al. AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) Neurotoxin Content and Potential Implications for Duration of Response in Patients
Previous Article in Journal
Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessReview

Developmental Toxicity of Mycotoxin Fumonisin B1 in Animal Embryogenesis: An Overview

1
Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
2
Department of Animal Science and Biotechnology, Tunghai University, Taichung 40704, Taiwan
3
Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
4
Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
5
Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
*
Authors to whom correspondence should be addressed.
Toxins 2019, 11(2), 114; https://doi.org/10.3390/toxins11020114
Received: 22 January 2019 / Revised: 2 February 2019 / Accepted: 11 February 2019 / Published: 13 February 2019
(This article belongs to the Section Mycotoxins)
  |  
PDF [1010 KB, uploaded 19 February 2019]
  |  

Abstract

A teratogenic agent or teratogen can disturb the development of an embryo or a fetus. Fumonisin B1 (FB1), produced by Fusarium verticillioides and F. proliferatum, is among the most commonly seen mycotoxins and contaminants from stale maize and other farm products. It may cause physical or functional defects in embryos or fetuses, if the pregnant animal is exposed to mycotoxin FB1. Due to its high similarity in chemical structure with lipid sphinganine (Sa) and sphingosine (So), the primary component of sphingolipids, FB1 plays a role in competitively inhibiting Sa and So, which are key enzymes in de novo ceramide synthase in the sphingolipid biosynthetic pathway. Therefore, it causes growth retardation and developmental abnormalities to the embryos of hamsters, rats, mice, and chickens. Moreover, maternal FB1 toxicity can be passed onto the embryo or fetus, leading to mortality. FB1 also disrupts folate metabolism via the high-affinity folate transporter that can then result in folate insufficiency. The deficiencies are closely linked to incidences of neural tube defects (NTDs) in mice or humans. The purpose of this review is to understand the toxicity and mechanisms of mycotoxin FB1 on the development of embryos or fetuses. View Full-Text
Keywords: Fumonisin B1; developmental toxicity; embryogenesis; NTD; teratogen Fumonisin B1; developmental toxicity; embryogenesis; NTD; teratogen
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Lumsangkul, C.; Chiang, H.-I.; Lo, N.-W.; Fan, Y.-K.; Ju, J.-C. Developmental Toxicity of Mycotoxin Fumonisin B1 in Animal Embryogenesis: An Overview. Toxins 2019, 11, 114.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top