Deoxynivalenol Induces Intestinal Damage and Inflammatory Response through the Nuclear Factor-κB Signaling Pathway in Piglets
Abstract
:1. Introduction
2. Results
2.1. Morphological Changes in Intestinal Porcine Epithelial Cells
2.2. Effects of DON on ZO-1 Protein Expression Levels in Intestinal Tissues
2.3. Effects of DON on the mRNA Expression of Inflammatory Cytokines in Intestinal Tissues
2.4. Effects of DON on the Protein Expression of NF-κB Signaling Pathway-Related Molecules
2.5. Effects of DON on the mRNA Relative Expression of NF-κB Signaling Pathway-Related Molecules
3. Discussion
4. Materials and Methods
4.1. Chemical and Reagents
4.2. Method Used for Extraction DON
4.3. Preparation of DON Feed
4.4. Animal Care and Diet
4.5. Experimental Design and Sample Collection
4.6. Analysis of Ultrastructure of Intestinal Porcine Epithelial Cells
4.7. qRT-PCR
4.8. Detection of Protein Expression by Immunohistochemistry
4.9. Protein Extraction and Western Blot Analysis
4.10. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Berthiller, F.; Crews, C.; DallAsta, C.; Saeger, S.D.; Haesaert, G.; Karlovsky, P.; Oswald, I.P.; Seefelder, W.; Speijers, G.; Stroka, J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013, 57, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Fan, M.X.; Chu, X.Y.; Zhang, Y.F.; Rahman, S.U.; Jiang, Y.J.; Chen, X.F.; Zhu, D.F.; Feng, S.B.; Li, Y.; et al. Deoxynivalenol induces toxicity and apoptosis in piglet hippocampal nerve cells via the MAPK signaling pathway. Toxicon 2018, 155, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Habrowska-Górczyńska, D.E.; Kowalska, K.; Urbanek, K.A.; Domińska, K.; Sakowicz, A. Piastowska-Ciesielska, A.W. Deoxynivalenol modulates the viability, ROS production and apoptosis in prostate cancer cells. Toxins 2019, 11, 265. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.H.; Jarvis, B.B.; Chung, Y.J.; Pestka, J.J. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: Relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol. Appl. Pharmacol. 2000, 164, 149–160. [Google Scholar] [CrossRef]
- Wu, L.; Li, J.J.; Li, Y.H.; Li, T.J.; He, Q.H.; Tang, Y.L.; Liu, H.G.; Su, Y.T.; Yin, Y.L.; Liao, P. Aflatoxin B1, zearalenone and deoxynivalenol in feed ingredients and complete feed from different Province in China. J. Anim. Sci. Biotechnol. 2016, 7, 63. [Google Scholar] [CrossRef]
- Oana, S.; Juan, C.; Berrada, H.; Doina, M.; Loghin, F.; Mañes, J. Study on trichothecene and zearalenone presence in romanian wheat relative to weather conditions. Toxins 2019, 11, 163. [Google Scholar] [CrossRef]
- Park, J.; Chang, H.; Kim, D.; Chung, S.; Lee, C. Long-term occurrence of deoxynivalenol in feed and feed raw materials with a special focus on south korea. Toxins 2018, 10, 127. [Google Scholar] [CrossRef]
- Juan, C.; Ritieni, A.; Mañes, J. Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming. Food Chem. 2013, 141, 1747–1755. [Google Scholar] [CrossRef]
- Wang, X.C.; Tang, J.S.; Geng, F.F.; Zhu, L.; Chu, X.Y.; Zhang, Y.F.; Rahman, S.U.; Chen, X.F.; Jiang, Y.J.; Zhu, D.F.; et al. Effects of deoxynivalenol exposure on cerebral lipid peroxidation, neurotransmitter and calcium homeostasis of chicks in vivo. Toxicon 2018, 150, 60–65. [Google Scholar] [CrossRef]
- Wang, X.C.; Xu, W.; Fan, M.X.; Meng, T.T.; Chen, X.F.; Jiang, Y.J.; Zhu, D.F.; Hu, W.J.; Gong, J.J.; Feng, S.B.; et al. Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. Environ. Toxicol. Pharmacol. 2016, 43, 193–202. [Google Scholar] [CrossRef]
- Bianco, G.; Fontanella, B.; Severino, L.; Quaroni, A.; Autore, G.; Marzocco, S. Nivalenol and Deoxynivalenol Affect Rat Intestinal Epithelial Cells: A Concentration Related Study. PLoS ONE 2012, 7, e52051. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, K.; Awad, W.A.; Böhm, J.; Zebeli, Q. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: Poultry and swine. J. Appl. Toxicol. 2015, 35, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Akbari, P.; Braber, S.; Varasteh, S.; Alizadeh, A.; Garssen, J.; Fink-Gremmels, J. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch. Toxicol. 2017, 91, 1007–1029. [Google Scholar] [CrossRef] [PubMed]
- Diesing, A.K.; Nossol, C.; Da¨nicke, S.; Walk, N.; Post, A.; Kahlert, S.; Rothko¨tter, H.J.; Kluess, J. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS ONE 2011, 6, e17472. [Google Scholar] [CrossRef] [PubMed]
- Pinton, P.; Nougayrède, J.P.; Del Rio, J.C.; Moreno, C.; Marin, D.E.; Ferrier, L.; Bracarense, A.P.; Kolf-Clauw, M.; Oswald, I.P. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol. Appl. Pharmacol. 2009, 237, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.; Gharee, K.; Böhm, J.; Zentek, J. The toxicological impacts of the fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. Toxins 2013, 5, 912–925. [Google Scholar] [CrossRef]
- Vandenbroucke, V.; Croubels, S.; Martel, A.; Verbrugghe, E.; Goossens, J.; Deun, K.V.; Boyen, F.; Thompson, A.; Shearer, N.; Backer, P.D.; et al. The mycotoxin deoxynivalenol potentiates intestinal inflammation by salmonella typhimurium in porcine ileal loops. PLoS ONE 2011, 6, e23871. [Google Scholar] [CrossRef]
- Adesso, S.; Autore, G.; Quaroni, A.; Popolo, A.; Severino, L.; Marzocco, S. The food contaminants nivalenol and deoxynivalenol induce inflammation in intestinal epithelial cells by regulating reactive oxygen species release. Nutrients 2017, 9, 1343. [Google Scholar] [CrossRef]
- Li, W.; Peng, L.; He, L.; Ren, W.; Yin, J.; Duan, J.; Li, T. Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)-challenged growing pigs. BMC Vet. Res. 2015, 11, 144. [Google Scholar] [CrossRef]
- Chen, S.S.; Li, Y.H.; Lin, M.F. Chronic exposure to the fusarium mycotoxin deoxynivalenol: Impact on performance, immune organ, and intestinal integrity of slow-growing chickens’. Toxins 2017, 9, 334. [Google Scholar] [CrossRef]
- Reddy, K.E.; Song, J.; Lee, H.J.; Kim, M.; Kim, D.W.; Jung, H.J.; Kim, B.; Lee, Y.; Yu, D.; Kim, D.W.; et al. Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs. Toxins 2018, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Przybylska-Gornowicz, B.; Tarasiuk, M.; Lewczuk, B.; Prusik, M.; Ziółkowska, N.; Zielonka, Ł.; Gajęcki, M.; Gajęcka, M. The effects of low doses of two fusarium toxins, zearalenone and deoxynivalenol, on the pig jejunum. A light and electron microscopic study. Toxins 2015, 7, 4684–4705. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.Y.; Zhang, J.; Song, H.L.; Zheng, W.P. Bone-marrow mesenchymal stem cells reduce rat intestinal is chemia-reperfusion injury, ZO-1 downregulation and tight junction disruption via a TNF-α-regulated mechanism. World J. Gastroenterol. 2013, 19, 3583–3595. [Google Scholar] [CrossRef] [PubMed]
- Cornick, S.; Tawiah, A.; Chadee, K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 2015, 3, 982426. [Google Scholar] [CrossRef]
- Bracarense, A.P.F.L.; Lucioli, J.; Grenier, B.; Pacheco, D.G.; Moll, W.D.; Schatzmayr, G.; Oswald, I.P. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets. Br. J. Nutr. 2012, 107, 1776–1786. [Google Scholar] [CrossRef]
- Cano, P.M.; Seeboth, J.; Meurens, F.; Cognie, J.; Abrami, R.; Oswald, I.P.; Guzylack, P.L. Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: An emerging hypothesis through possible modulation of Th17-mediated response. PLoS ONE 2013, 8, e53647. [Google Scholar] [CrossRef]
- Akdis, M.; Burgler, S.; Crameri, R.; Eiwegger, T.; Fujita, H.; Gomez, E.; Klunker, S.; Meyer, N.; O’Mahony, L.; Palomares, O. Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2011, 127, 701–721. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol. 1998, 16, 457–499. [Google Scholar] [CrossRef]
- Al-Sadi, R.; Ye, D.M.; Boivin, M.; Guo, S.H.; Hashimi, M.; Ereifej, L.; Ma, T.Y. Interleukin-6 Modulation of Intestinal Epithelial Tight Junction Permeability Is Mediated by JNK Pathway Activation of Claudin-2 Gene. PLoS ONE 2014, 9, e85345. [Google Scholar] [CrossRef]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef]
- Bradley, J.R. TNF-mediated inflammatory disease. J. Pathol. 2008, 214, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.; Karin, E.; Terzic, J. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009, 15, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacqueline, V.D.W.; Alexandrine, D.; Neil, P.; Olivier, T.; Yves-Jacques, S.; Yvan, L. Physio-pathological parameters affect the activation of inflammatory pathways by deoxynivalenol in Caco-2 cells. Toxicol. In Vitro 2010, 24, 1890–1898. [Google Scholar] [CrossRef]
- Hoesel, B.; Schmid, J.A. The complexity of NF-κB signaling in inflammation and cancer. Hoesel and Schmid Molecular. Cancer 2013, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Smale, S.T. Transcriptional regulation in the innate immune system. Curr. Opin. Immunol. 2012, 24, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giridharan, S.; Srinivasan, M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 2018, 11, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Onyiah, J.C.; Colgan, S.P. Cytokine responses and epithelial function in the intestinal mucosa. Cell. Mol. Life Sci. 2016, 73, 4203–4212. [Google Scholar] [CrossRef] [Green Version]
- Van De Walle, J.; Romier, B.; Larondelle , Y.; Schneider, Y.J. Influence of deoxynivalenol on NF-κB activation and IL-8 secretion in human intestinal Caco-2 cells. Toxicol. Lett. 2008, 177, 205–214. [Google Scholar] [CrossRef]
- Benitash, S.A.; Valeròn, P.F.; Lacal, J.C. ROCK and nuclear factor-kappa B-dependent activation of cyclooxygenase-2 by Rho GTPases: Effects on tumor growth and therapeutic cinsequences. Mol. Biol. Cell 2003, 14, 3041–3054. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Li, G.; Cai, M.; Qian, Y.Y.; Wang, L.Q. Prostate cancer downregulated SIRP-alpha modulates apoptosis and proliferation through p38-MAPK/NF-kappa B/COX-2 signaling. Oncol. Lett. 2017, 13, 4995–5001. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.W.; Kim, H.; Kim, K.H. NF-kappaB, inducible nitric oxide synthase and apoptosis by Helicobacter pylori. Free Radic. Biol. Med. 2001, 31, 355. [Google Scholar] [CrossRef]
- Maresca, M. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 2013, 5, 784–820. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.J.; Xu, W.; Chen, X.F.; Zhu, D.F.; Geng, F.F.; Fan, M.X.; Gong, J.J.; Li, Y.; Feng, S.B.; Wu, J.J.; et al. Extraction, purification and concentration determination of deoxynivalenol.Chinese. J. Vet. Sci. 2017, 37, 1771–1777. [Google Scholar] [CrossRef]
- Wu, J.J.; Cao, C.M.; Ren, D.D.; Zhang, Y.; Kou, Y.N.; Ma, L.Y. Effects of soybean antigen proteins on intestinal permeability, 5-hydroxytryptamine levels and secretory iga distribution in the intestine of weaned piglets. Ital. J. Anim. Sci. 2016, 15, 174–180. [Google Scholar] [CrossRef] [Green Version]
Index | Control Group | Low Dose Group | High Dose Group |
---|---|---|---|
Duodenum | 0.1755 ± 0.0515 | 0.0927 ± 0.0434 ** | 0.0745 ± 0.0273 ** |
Jejunum | 0.2299 ± 0.0763 | 0.1377 ± 0.0347 ** | 0.1287 ± 0.0431 ** |
Ileum | 0.1748 ± 0.0753 | 0.1184 ± 0.0298 * | 0.1110 ± 0.0100 ** |
Experimental Diets | Ingredients (%) |
---|---|
Corn | 60.85 |
Soya bean meal | 25.00 |
Whey powder | 5.00 |
Fish meal | 5.00 |
Calcium hydrogen phosphate | 2.20 |
Limestone | 0.69 |
Bran | 0.37 |
NaCl | 0.25 |
Premix * | 0.49 |
Choline chloride | 0.15 |
Total | 100.00 |
Nutrient levels (%) # | |
Crude protein | 20.80 |
Calcium | 0.64 |
Phosphorus | 0.51 |
Lysine | 1.06 |
DE [MJ/Kg] (calculated) | 13.50 |
Gene | GeneBank Accession No. | Primers | Sequences (5′→3′) | Product Size (bp) |
---|---|---|---|---|
β-actin | AY550069.1 | Forward | CTGGACTTCGAGCAGGAGATGG | 168 |
Reverse | TTCGTGGATGCCGCAGGATTC | |||
IL-1β | NM_001302388.2 | Forward | TGTGATTGTGGCAAAGGA | 111 |
Reverse | TCAAGGACGATGGGCTCT | |||
IL-6 | NM_214399.1 | Forward | GGCAAAAGGGAAAGAATCCAGAC | 197 |
Reverse | CATCAATCTCAGGTGCCCCA | |||
TNF-α | X57321.1 | Forward | TGGCCCAAGGACTCAGATCA | 107 |
Reverse | GGCATACCCACTCTGCCATT | |||
NF-κB p65 | KY369935.1 | Forward | TCATCGAGCAGCCCAAGCA | 240 |
Reverse | CAGCCTCATAGAAGCCATCCC | |||
IκB-α | NM_001005150.1 | Forward | AGACTCGTTCCTGCACTTGG | 201 |
Reverse | TCTCGGAGCTCAGGATCACA | |||
iNOS | NM_001143690.1 | Forward | GGGTCAGAGCTACCATCCTC | 114 |
Reverse | CGTCCATGCAGAGAACCTTG | |||
IKKα | NM_001114279.1 | Forward | CACTCTTACAGCGACAGCAC | 145 |
Reverse | CCACCTTGGGCAGTAGATCA | |||
IKKβ | NM_001099935.1 | Forward | ACCTGGCTCCCAACGACTT | 184 |
Reverse | AGATCCCGATGGATGATTCTG | |||
COX-2 | MG837549.1 | Forward | TGCACGGCGGCAATATTAAA | 156 |
Reverse | AGTGGAAGTGTGCGACTACA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-C.; Zhang, Y.-F.; Cao, L.; Zhu, L.; Huang, Y.-Y.; Chen, X.-F.; Chu, X.-Y.; Zhu, D.-F.; Ur Rahman, S.; Feng, S.-B.; et al. Deoxynivalenol Induces Intestinal Damage and Inflammatory Response through the Nuclear Factor-κB Signaling Pathway in Piglets. Toxins 2019, 11, 663. https://doi.org/10.3390/toxins11110663
Wang X-C, Zhang Y-F, Cao L, Zhu L, Huang Y-Y, Chen X-F, Chu X-Y, Zhu D-F, Ur Rahman S, Feng S-B, et al. Deoxynivalenol Induces Intestinal Damage and Inflammatory Response through the Nuclear Factor-κB Signaling Pathway in Piglets. Toxins. 2019; 11(11):663. https://doi.org/10.3390/toxins11110663
Chicago/Turabian StyleWang, Xi-Chun, Ya-Fei Zhang, Li Cao, Lei Zhu, Ying-Ying Huang, Xiao-Fang Chen, Xiao-Yan Chu, Dian-Feng Zhu, Sajid Ur Rahman, Shi-Bin Feng, and et al. 2019. "Deoxynivalenol Induces Intestinal Damage and Inflammatory Response through the Nuclear Factor-κB Signaling Pathway in Piglets" Toxins 11, no. 11: 663. https://doi.org/10.3390/toxins11110663
APA StyleWang, X.-C., Zhang, Y.-F., Cao, L., Zhu, L., Huang, Y.-Y., Chen, X.-F., Chu, X.-Y., Zhu, D.-F., Ur Rahman, S., Feng, S.-B., Li, Y., & Wu, J.-J. (2019). Deoxynivalenol Induces Intestinal Damage and Inflammatory Response through the Nuclear Factor-κB Signaling Pathway in Piglets. Toxins, 11(11), 663. https://doi.org/10.3390/toxins11110663