Comparative In Vitro Assessment of a Range of Commercial Feed Additives with Multiple Mycotoxin Binding Claims
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inorganic Additives
2.2. Organic Additives
2.3. Mixture of Additives
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Feed Additives
4.3. Multi-Mycotoxins Adsorption Experiment
4.3.1. Buffer Solution
4.3.2. In Vitro Gastrointestinal Model
4.4. LC-MS/MS Analysis of Mycotoxins
4.5. Method Performance
4.6. Quantification of Mycotoxins and Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Kovač, M.; Šubarić, D.; Bulaić, M.; Kovač, T.; Šarkanj, B. Yesterday masked, today modified; what do mycotoxins bring next? Arch. Ind. Hyg. Toxicol. 2018, 69, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Mannaa, M.; Kim, K. Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Milani, J. Ecological conditions affecting mycotoxin production in cereals: A review. Veterinární Med. 2013, 58, 405–411. [Google Scholar] [CrossRef]
- Eskola, M.; Gregor, K.; Christopher, E.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J. Toxigenic fungi: Which are important? Med. Mycol. 2000, 38, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Sobrova, P.; Adam, V.; Vasatkova, A.; Beklova, M.; Zeman, L.; Kizek, R. Deoxynivalenol and its toxicity. Interdiscip. Toxicol. 2010, 3, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Beier, R.; Shen, J.; Smet, D.; De Saeger, S. T-2 toxin, a trichothecene mycotoxin: Review of toxicity, metabolism, and analytical methods. J. Agric. Food Chem. 2011, 59, 3441–3453. [Google Scholar] [CrossRef] [PubMed]
- Frizzell, C.; Ndossi, D.; Verhaegen, S.; Dahl, E.; Eriksen, G.; Sørlie, M.; Ropstand, E.; Muller, M.; Elliott, C.; Connolly, L. Endocrine disrupting effects of zearalenone, alpha-and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis. Toxicol. Lett. 2011, 206, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Wyatt, R. The toxicity of fumonisin B1, B2, and B3, individually and in combination, in chicken embryos. Poult. Sci. 2001, 80, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Bui-Klimke, T.; Wu, F. Ochratoxin A and human health risk: A review of the evidence. Crit. Rev. Food Sci. Nutr. 2014, 55, 1860–1869. [Google Scholar] [CrossRef] [PubMed]
- Rushing, B.; Selim, M. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M.; Faria, M.; Cunha, S.; Ferreira, I. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere 2018, 202, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, H. Mycotoxicoses of domestic animals and their diagnosis. Can. J. Physiol. Pharmacol. 1990, 68, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Raters, M.; Matissek, R. Thermal stability of aflatoxin B1 and ochratoxin A. Mycotoxin Res. 2008, 24, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Calado, T.; Venâncio, A.; Abrunhosa, L. Irradiation for mold and mycotoxin control: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1049–1061. [Google Scholar] [CrossRef]
- Trombete, F.; Porto, Y.; Freitas-Silva, O.; Pereira, R.; Direito, G.; Saldanha, T.; Fraga, E. Efficacy of ozone treatment on mycotoxins and fungal reduction in artificially contaminated soft wheat grains. J. Food Process. Preserv. 2016, 41, e12927. [Google Scholar] [CrossRef]
- Gomaa, M.; Ayesh, A.; Abdel-Galil, M.; Naguib, K. Effect of high pressure ammoniation procedure on the detoxification of aflatoxins. Mycotoxin Res. 1997, 13, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Ben Taheur, F.; Kouidhi, B.; Al Qurashi, Y.; Ben Salah-Abbès, J.; Chaieb, K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019, 160, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Lyagin, I.; Efremenko, E. Enzymes for detoxification of various mycotoxins: Origins and mechanisms of catalytic action. Molecules 2019, 24, 2362. [Google Scholar] [CrossRef] [PubMed]
- De Mil, T.; Devreese, M.; De Baere, S.; Van Ranst, E.; Eeckhout, M.; De Backer, P.; Croubels, S. Characterization of 27 mycotoxin binders and the relation with in vitro zearalenone adsorption at a single concentration. Toxins 2015, 7, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, M.; Neeff, D.; Jager, A.; Corassin, C.; Carão, Á.; Albuquerque, R. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Fanelli, F.; Liuzzi, V.; Logrieco, A.; Mulè, G. Mycotoxin biotransformation by native and commercial enzymes: Present and Future Perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Kolosova, A.; Stroka, J. Evaluation of the effect of mycotoxin binders in animal feed on the analytical performance of standardised methods for the determination of mycotoxins in feed. Food Addit. Contam. Part A 2012, 29, 1959–1971. [Google Scholar] [CrossRef] [PubMed]
- Mutua, F.; Lindahl, J.; Grace, D. Availability and use of mycotoxin binders in selected urban and peri-urban areas of Kenya. Food Secur. 2019, 11, 359–369. [Google Scholar] [CrossRef]
- Boudergue, C.; Burel, C.; Dragacci, C.; Favrot, M.; Fremy, J.; Massimi, C.; Prigent, P.; Debongnie, P.; Pussemier, L.; Boudra, H.; et al. Review of mycotoxin-detoxifying agents used as feed additives: Mode of action, efficacy and feed/food safety. EFSA Support. Publ. 2009, 6, 192. [Google Scholar] [CrossRef]
- Jaynes, W.; Zartman, R.; Hudnall, W. Aflatoxin B1 adsorption by clays from water and corn meal. Appl. Clay Sci. 2007, 36, 197–205. [Google Scholar] [CrossRef]
- Tengjaroenkul, U.; Pimpukdee, K.; Tengjaroenkul, B. Adsorption study for the detoxification of aflatoxin B1 by using the different clay minerals in Thailand. Mycotoxins 2006, 2006, 240–244. [Google Scholar] [CrossRef]
- Binder, E.; Tan, L.; Chin, L.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabu, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.; Al Thani, R.; Balmas, V.; Migheli, Q.; Jaoua, S. Prevalence of fusarium fungi and their toxins in marketed feed. Food Control 2019, 104, 224–230. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatoon, A.; Khan, M.; Abidin, Z.; Bhatti, S. Effects of feeding bentonite clay upon ochratoxin A–induced immunosuppression in broiler chicks. Food Addit. Contam. Part A 2017, 35, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin contamination in the EU feed supply chain: A focus on cereal by-products. Toxins 2016, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Scientific opinion on the safety and efficacy of a preparation of bentonite-and sepiolite (Toxfin®Dry) as feed additive for all species. EFSA J. 2013, 11, 3179. [CrossRef]
- Alaniz, C.; Regil, E.; Cruz, G.; Torres, J.; Monroy, J. Composition and properties of tectosilicate-uranium layers of soil. Eur. J. Chem. 2012, 3, 32–36. [Google Scholar] [CrossRef]
- Kerr, G. Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A. J. Phys. Chem. 1966, 70, 1047–1050. [Google Scholar] [CrossRef]
- Deng, Y.; Velázquez, A.; Billes, F.; Dixon, J. Bonding mechanisms between aflatoxin B1 and smectite. Appl. Clay Sci. 2010, 50, 92–98. [Google Scholar] [CrossRef]
- Ayo, E.; Matemu, A.; Laswai, G.; Kimanya, M. An in vitro evaluation of the capacity of local tanzanian crude clay and ash-based materials in binding aflatoxins in solution. Toxins 2018, 10, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prapapanpong, J.; Udomkusonsri, P.; Mahavorasirikul, W.; Choochuay, S.; Tansakul, N. In vitro studies on gastrointestinal monogastric and avian models to evaluate the binding efficacy of mycotoxin adsorbents by liquid chromatography-tandem mass spectrometry. J. Adv. Vet. Anim. Res. 2019, 6, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Shin, S.; Kim, B. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: An in vitro approach. SpringerPlus 2014, 3, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vekiru, E.; Fruhauf, S.; Sahin, M.; Ottner, F.; Schatzmayr, G.; Krska, R. Investigation of various adsorbents for their ability to bind aflatoxin B1. Mycotoxin Res. 2007, 23, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Barrientos-Velázquez, A.; Arteaga, S.; Dixon, J.; Deng, Y. The effects of pH, pepsin, exchange cation, and vitamins on aflatoxin adsorption on smectite in simulated gastric fluids. Appl. Clay Sci. 2016, 120, 17–23. [Google Scholar] [CrossRef]
- De Paiva, L.; Morales, A.; Valenzuela Díaz, F. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Elliott, C.; Connolly, L.; Kolawole, O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joannis-Cassan, C.; Tozlovanu, M.; Hadjeba-Medjdoub, K.; Ballet, N.; Pfohl-Leszkowicz, A. Binding of zearalenone, aflatoxin B1, and ochratoxin A by yeast-based products: A method for quantification of adsorption performance. J. Food Prot. 2011, 74, 1175–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faucet-Marquis, V.; Joannis-Cassan, C.; Hadjeba-Medjdoub, K.; Ballet, N.; Pfohl-Leszkowicz, A. Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products: Case of aflatoxin B1, zearalenone and ochratoxin A. Appl. Microbiol. Biotechnol. 2014, 98, 7583–7596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firmin, S.; Morgavi, D.; Yiannikouris, A.; Boudra, H. Effectiveness of modified yeast cell wall extracts to reduce aflatoxin B1 absorption in dairy ewes. J. Dairy Sci. 2011, 94, 5611–5619. [Google Scholar] [CrossRef] [PubMed]
- Jouany, J. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Ringot, D.; Lerzy, B.; Chaplain, K.; Bonhoure, J.; Auclair, E.; Larondelle, Y. In vitro biosorption of ochratoxin A on the yeast industry by-products: Comparison of isotherm models. Bioresour. Technol. 2007, 98, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Yiannikouris, A.; André, G.; Poughon, L.; François, J.; Dussap, C.; Jeminet, G. Chemical and conformational study of the interactions involved in mycotoxin complexation with β-d-Glucans. Biomacromolecules 2006, 7, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Ralla, K.; Sohling, U.; Riechers, D.; Kasper, C.; Ruf, F.; Scheper, T. Adsorption and separation of proteins by a smectitic clay mineral. Bioprocess Biosyst. Eng. 2010, 33, 847–861. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Deng, Y. Protein interference on aflatoxin B1 adsorption by smectites in corn fermentation solution. Appl. Clay Sci. 2017, 144, 36–44. [Google Scholar] [CrossRef]
- González-Jartín, J.; de Castro Alves, L.; Alfonso, A.; Piñeiro, Y.; Vilar, S.; Gomez, M.; Vargas, Z.; María, O.; Mercedes, J.; Vieytesd, R.; et al. Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chem. 2019, 294, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Hailu, S.; Nair, B.; Redi-Abshiro, M.; Diaz, I.; Tessema, M. Preparation and characterization of cationic surfactant modified zeolite adsorbent material for adsorption of organic and inorganic industrial pollutants. J. Environ. Chem. Eng. 2017, 5, 3319–3329. [Google Scholar] [CrossRef]
- Oplatowska-Stachowiak, M.; Haughey, S.; Chevallier, O.; Galvin-King, P.; Campbell, K.; Magowan, E. Determination of the mycotoxin content in distiller’s dried grain with soluble using a multianalyte UHPLC–MS/MS method. J. Agric. Food Chem. 2015, 63, 9441–9451. [Google Scholar] [CrossRef] [PubMed]
Adsorbed Mycotoxin (%) (mean ± SD) ** | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | Product | DON | ZEN | FB1 | OTA | T-2 | AFB1 | ||||||
pH 3 | pH 7 | pH 3 | pH 7 | pH 3 | pH 7 | pH 3 | pH 7 | pH 3 | pH 7 | pH 3 | pH 7 | ||
Inorganic Additives | 1 | 58 ± 0.5 b | 50 ± 2.9 b | 52 ± 0.9 b | 49 ± 1.1 a,b | 38 ± 1.2 b,c | 47 ± 0.9 a | 40 ± 1.6 b,c | 37 ± 1.1 b | 38 ± 0.7 b | 29 ± 1.1 c | 68 ± 0.8 a | 68 ± 1.6 a |
2 | 33 ± 2.5 d | 31 ± 0.7 c | 32 ± 0.4 d | 31 ± 1.4 c | 33 ± 2.5 d | 30 ± 0.8 c | 12 ± 2.1 d | 12 ± 1.4 d | 08 ± 1.2 d | 06 ± 1.1 d | 49 ± 1.9 b | 41 ± 3.2 d | |
3 | 53 ± 1.3 c | 53 ± 1.8 b | 44 ± 1.2 c | 39 ± 2.3 c | 32 ± 3.1 d | 28 ± 0.6 c | 41 ± 1.4 b,c | 28 ± 1.6 c | 22 ± 1.5 c | 10 ± 1.2 d | 61 ± 3.4 a | 52 ± 2.7 c | |
4 | 29 ± 1.2 d | 22 ± 1.2 d | 27 ± 2.3 d | 20 ± 0.7 d | 29 ± 1.4 d | 22 ± 1.4 d | 05 ± 0.3 e | 02 ± 0.7 e | 09 ± 0.9 d | 09 ± 1.6 d | 51 ± 3.1 b | 47 ± 1.9 c,d | |
Organic Additives | 5 | 56 ± 1.9 c | 54 ± 1.5 b | 36 ± 1.4 d | 29 ± 0.9 c | 45 ± 0.9 b | 40 ± 1.9 b | 38 ± 0.8 b | 25 ± 2.3 c | 40 ± 2.2 b | 31 ± 1.1 c | 53 ± 4.2 b | 53 ± 2.1 c |
6 | 55 ± 4.7 c | 55 ± 0.5 b | 56 ± 2.2 a | 56 ± 1.5 a | 51 ± 2.9 a | 50 ± 1.6 a | 60 ± 1.4 a | 56 ± 0.8 a | 55 ± 0.7 a | 56 ± 1.3 a | 65 ± 2.2 a | 65 ± 1.9 a | |
7 | 36 ± 3.2 c | 38 ± 1.1 c | 28 ± 0.3 d | 19 ± 1.2 d | 19 ± 1.7 e | 18 ± 2.2 d | 35 ± 2.5 c | 28 ± 1.2 c | 10 ± 1.3 d | 09 ± 1.3 d | 50 ± 1.9 b | 55 ± 1.6 c | |
Mixed Additives | 8 | 52 ± 1.2 c | 50 ± 0.6 b | 46 ± 1.9 c | 40 ± 1.6 b,c | 39 ± 2.3 b | 31 ± 0.7 c | 20 ± 2.2 d | 20 ± 1.3 c,d | 43 ± 1.6 b | 40 ± 2.1 b | 61 ± 2.3 a | 56 ± 1.9 c |
9 | 72 ± 2.4 a | 71 ± 1.5 a | 55 ± 1.8 b | 52 ± 1.4 a,b | 42 ± 1.3 b | 25 ± 1.7 c | 49 ± 1.6 b | 37 ± 1.6 b | 55 ± 1.4 a | 53 ± 1.3 a | 63 ± 3.1 a | 60 ± 2.2 a,b | |
10 | 32 ± 1.6 d | 32 ± 1.4 c | 22 ± 1.2 e | 20 ± 1.1 d | 19 ± 1.9 e | 10 ± 1.7 e | 15 ± 1.4 d | 12 ± 0.9 d | 14 ± 1.6 d | 06 ± 1.9 d | 52 ± 2.5 b | 30 ± 1.6 e |
Adsorbed Mycotoxin (%) (mean ± SD) ** | |||||||
---|---|---|---|---|---|---|---|
Category | Product | DON | ZEN | FB1 | OTA | T-2 | AFB1 |
Inorganic Additives | 1 | 55 ± 3.1 b | 40 ± 2.2 b | 33 ± 3.6 c | 25 ± 2.5 c | 26 ± 1.3 c | 51 ± 2.9 b |
2 | 39 ± 1.3 d | 29 ± 2.6 d | 20 ± 1.9 d | 18 ± 3.2 d | 04 ± 1.4 d | 53 ± 2.1 b | |
3 | 41 ± 1.6 d | 12 ± 1.2 f | 21 ± 2.3 d | 00 | 00 | 38 ± 1.5 c | |
4 | 31 ± 1.7 e | 18 ± 2.2 e | 20 ± 3.1 d | 00 | 02 ± 0.4 d | 42 ± 1.2 c | |
Organic Additives | 5 | 47 ± 1.9 c | 40 ± 2.4 b | 45 ± 2.1 b | 29 ± 1.5 b | 28 ± 1.3 c | 54 ± 2.2 b |
6 | 55 ± 1.6 b | 53 ± 1.1 a | 51 ± 1.5 a | 52 ± 2.3 a | 56 ± 1.4 a | 62 ± 0.9 a | |
7 | 36 ± 2.2 e | 41 ± 2.5 b | 19 ± 0.6 d | 26 ± 0.9 c | 00 | 39 ± 1.4 c | |
Mixed Additives | 8 | 41 ± 3.3 d | 36 ± 1.7 c | 23 ± 1.4 d | 10 ± 2.1 e | 28 ± 1.6 c | 48 ± 1.9 b,c |
9 | 61 ± 2.4 a | 53 ± 1.4 a | 35 ± 2.6 c | 32 ± 1.2 b | 35 ± 0.7 b | 58 ± 3.2 a | |
10 | 22 ± 1.8 f | 08 ±1.9 f | 00 | 00 | 00 | 29 ± 0.8 d |
Category | Product | Main Composition | Mode of Action |
---|---|---|---|
Inorganic adsorbent | 1 | Modified aluminosilicates | Adsorption |
2 | Bentonite | *** | |
3 | Activated clay | Adsorption and Inactivation | |
4 | Montmorillonite | Adsorption | |
Organic adsorbent | 5 | Glucomannan | Adsorption and complexation |
6 | Modified yeast cell wall | Adsorption | |
7 | Esterified glucomannan | *** | |
Mixed adsorbent | 8 | Mixed silicates and yeast cell wall | *** |
9 | Aluminosilicate and enzyme | Adsorption and biotransformation | |
10 | Natural minerals and algae | Adsorption and degradation |
Matrix | DON | ZEN | FB1 | OTA | T-2 | AFB1 | |
---|---|---|---|---|---|---|---|
pH 3 | SSE/RSD (%) | 95/2.1 | 98/2.4 | 113/3.2 | 97/3.9 | 78/2.7 | 96/0.9 |
LOQ (ng/mL) | 2.5 | 2.5 | 5 | 0.4 | 2.5 | 0.13 | |
pH 7 | SSE/RSD (%) | 78/2.6 | 97/2.7 | 83/3.1 | 102/4.1 | 88/3.4 | 100/1.2 |
LOQ (ng/mL) | 2.5 | 2.5 | 5 | 0.4 | 2.5 | 0.13 | |
GF | SSE/RSD (%) | 89/3.2 | 92/6.8 | 123/5.7 | 103/4.9 | 79/7.4 | 87/4.6 |
LOQ (ng/mL) | 2.5 | 5 | 5 | 0.8 | 5 | 0.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolawole, O.; Meneely, J.; Greer, B.; Chevallier, O.; Jones, D.S.; Connolly, L.; Elliott, C. Comparative In Vitro Assessment of a Range of Commercial Feed Additives with Multiple Mycotoxin Binding Claims. Toxins 2019, 11, 659. https://doi.org/10.3390/toxins11110659
Kolawole O, Meneely J, Greer B, Chevallier O, Jones DS, Connolly L, Elliott C. Comparative In Vitro Assessment of a Range of Commercial Feed Additives with Multiple Mycotoxin Binding Claims. Toxins. 2019; 11(11):659. https://doi.org/10.3390/toxins11110659
Chicago/Turabian StyleKolawole, Oluwatobi, Julie Meneely, Brett Greer, Olivier Chevallier, David S. Jones, Lisa Connolly, and Christopher Elliott. 2019. "Comparative In Vitro Assessment of a Range of Commercial Feed Additives with Multiple Mycotoxin Binding Claims" Toxins 11, no. 11: 659. https://doi.org/10.3390/toxins11110659
APA StyleKolawole, O., Meneely, J., Greer, B., Chevallier, O., Jones, D. S., Connolly, L., & Elliott, C. (2019). Comparative In Vitro Assessment of a Range of Commercial Feed Additives with Multiple Mycotoxin Binding Claims. Toxins, 11(11), 659. https://doi.org/10.3390/toxins11110659