Mycotoxins Contaminant in Kelp: A Neglected Dietary Exposure Pathway
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS/MS Analysis
2.2. Optimization of Sample Preparation
2.2.1. Optimization of Extraction Procedure
2.2.2. Optimization of Purification Procedure
2.3. Method Validation
2.3.1. Linearity
2.3.2. LOD (Limit of Detection)
2.3.3. Accuracy and Precision
2.4. Dietary Exposure of Mycotoxins in Kelp
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Apparatus
4.3. Sample Preparation
4.4. Instrumental Conditions
Author Contributions
Funding
Conflicts of Interest
References
- Oldenburg, E.; Hoppner, F.; Ellner, F.; Weinert, J. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Hojnik, N.; Cvelbar, U.; Tavcar–Kalcher, G.; Walsh, J.L.; Krizaj, I. Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus “Classic” Decontamination. Toxins (Basel) 2017, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S. Current Status of Mycotoxin Analysis: A Critical Review. J. AOAC Int. 2016, 99, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, J.N.; Wang, Y.; Zhou, L.; Zhao, Y.; Xing, F.; Dai, X.; Liu, Y. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Stefano, V.; Avellone, G.; Pitonzo, R.; Capocchiano, V.G.; Mazza, A.; Cicero, N.; Dugo, G. Natural co-occurrence of ochratoxin A, ochratoxin B and aflatoxins in Sicilian red wines. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Stefano, V.; Pitonzo, R.; Avellone, G.; Di Fiore, A.; Monte, L.; Ogorka, A.Z.T. Determination of Aflatoxins and Ochratoxins in Sicilian Sweet Wines by High-Performance Liquid Chromatography with Fluorometric Detection and Immunoaffinity Cleanup. Food Anal. Method 2015, 8, 569–577. [Google Scholar] [CrossRef]
- Alassane-Kpembi, I.; Kolf-Clauw, M.; Gauthier, T.; Abrami, R.; Abiola, F.A.; Oswald, I.P.; Puel, O. New insights into mycotoxin mixtures: The toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol. Appl. Pharmacol. 2013, 272, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Halenar, M.; Medvedova, M.; Maruniakova, N.; Kolesarova, A.J. Assessment of a potential preventive ability of amygdalin in mycotoxin-induced ovarian toxicity. Environ. Sci. Health B 2015, 50, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.; Salomaki, E.D.; Lane, C.E.; Saunders, G.W. Kelp transcriptomes provide robust support for interfamilial relationships and revision of the little known Arthrothamnaceae (Laminariales). J. Phycol. 2017, 53, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Tala, F.; Fernandez, M.; Subida, M.D. Effects of kelp phenolic compounds on the feeding—Associated mobility of the herbivore snail Tegula tridentata. Mar. Environ. Res. 2015, 112, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.N.; Skendi, A.; Papageorgiou, M.D. HPLC–DAD–FLD Method for Simultaneous Determination of Mycotoxins in Wheat Bran. J. Chromatogr. Sci. 2017, 55, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Luan, C.; Wang, L.; Wang, S.; Shao, L. Simultaneous determination of six mycotoxins in peanut by high–performance liquid chromatography with a fluorescence detector. J. Sci. Food Agric. 2017, 97, 1805–1810. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Cao, X.; Liu, M.; Wang, W. Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high–performance liquid chromatography. J. Chromatogr. A 2016, 1436, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Bartok, T.; Szecsi, A.; Juhasz, K.; Bartok, M.; Mesterhazy, A. ESI–MS and MS/MS identification of the first ceramide analogues of fumonisin B(1) mycotoxin from a Fusarium verticillioides culture following RP–HPLC separation. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013, 30, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Hovelmann, Y.; Hickert, S.; Cramer, B.; Humpf, H.U. Determination of Exposure to the Alternaria Mycotoxin Tenuazonic Acid and Its Isomer allo–Tenuazonic Acid in a German Population by Stable Isotope Dilution HPLC–MS(3). J. Agric. Food Chem. 2016, 64, 6641–6647. [Google Scholar] [CrossRef] [PubMed]
- Hickert, S.; Gerding, J.; Ncube, E.; Hubner, F.; Flett, B.; Cramer, B.; Humpf, H.U. A new approach using micro HPLC–MS/MS for multi–mycotoxin analysis in maize samples. Mycotoxin Res. 2015, 31, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Valle-Algarra, F.M.; Mateo, E.M.; Mateo, R.; Gimeno-Adelantado, J.V.; Jimenez, M. Determination of type A and type B trichothecenes in paprika and chili pepper using LC–triple quadrupole–MS and GC–ECD. Talanta 2011, 84, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Vettorazzi, A.; Gonzalez-Penas, E.; Cerain, A.L. Ochratoxin A kinetics: A review of analytical methods and studies in rat model. Food Chem. Toxicol. 2014, 72, 273–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Carrasco, Y.; Molto, J.C.; Manes, J.; Berrada, H. Development of microextraction techniques in combination with GC–MS/MS for the determination of mycotoxins and metabolites in human urine. J. Sep. Sci. 2017, 40, 1572–1582. [Google Scholar] [CrossRef] [PubMed]
- Escriva, L.; Manyes, L.; Font, G.; Berrada, H. Analysis of trichothecenes in laboratory rat feed by gas chromatography–tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Carrasco, Y.; Molto, J.C.; Manes, J.; Berrada, H. Exposure assessment approach through mycotoxin/creatinine ratio evaluation in urine by GC–MS/MS. Food Chem. Toxicol. 2014, 72, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Carrasco, Y.; Molto, J.C.; Manes, J.; Berrada, H. Development of a GC–MS/MS strategy to determine 15 mycotoxins and metabolites in human urine. Talanta 2014, 128, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Roman, B.E.; Driksna, D.; Abouzied, M.M.; Klein, F.; Rice, J. Validation of MAX Aqueous Extraction on Veratox(R) for Total Aflatoxin ELISA Test Kit. J. AOAC Int. 2017, 100, 1131–1133. [Google Scholar] [CrossRef] [PubMed]
- Righetti, L.; Galaverna, G.; Dall’Asta, C. Group detection of DON and its modified forms by an ELISA kit. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kalayu, Y.S.; Ling, S.; Yang, Y.; Yuan, J.; Wang, S. The Preparation and Identification of a Monoclonal Antibody against Citrinin and the Development of Detection via Indirect Competitive ELISA. Toxins (Basel) 2017, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.S.; Jolley, M.E. Fluorescence polarization (FP) assays for the determination of grain mycotoxins (fumonisins, DON vomitoxin and aflatoxins). Comb. Chem. High Throughput Screen 2003, 6, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Maragos, C.M. Fluorescence polarization for mycotoxin determination. Mycotoxin Res. 2006, 22, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Beloglazova, N.V.; Eremin, S.A. Rapid screening of aflatoxin B1 in beer by fluorescence polarization immunoassay. Talanta 2015, 142, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Segarra-Fas, A.; Peters, J.; Zuilhof, H.; Van Beek, M.W.; Nielen, T.A. Multiplex surface plasmon resonance biosensing and its transferability towards imaging nanoplasmonics for detection of mycotoxins in barley. Analyst 2016, 141, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Feng, M.; Zuo, L.; Zhu, Z.; Wang, F.; Chen, L.; Li, J.; Shan, G.; Luo, S.Z. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens. Bioelectron. 2015, 65, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Zuilhof, H.; Van Beek, T.A.; Nielen, M.W. Biochip Spray: Simplified Coupling of Surface Plasmon Resonance Biosensing and Mass Spectrometry. Anal. Chem. 2017, 89, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Byun, J.Y.; Mun, H.; Shim, W.B.; Shin, Y.B.; Li, T.; Kim, M.G. A regeneratable, label–free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Biosens. Bioelectron. 2014, 59, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Bienenmann-Ploum, M.; De Rijk, T.; Haasnoot, W. Development of a multiplex flow cytometric microsphere immunoassay for mycotoxins and evaluation of its application in feed. Mycotoxin Res. 2011, 27, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Xu, K.; Sun, Y.; Chen, Y.; Zheng, T.; Li, J. High sensitive immunoassay for multiplex mycotoxin detection with photonic crystal microsphere suspension array. Anal. Chem. 2013, 85, 2833–2840. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Sun, Y.; Li, W.; Xu, J.; Cao, B.; Jiang, Y.; Zheng, T.; Li, J.; Pan, D. Multiplex chemiluminescent immunoassay for screening of mycotoxins using photonic crystal microsphere suspension array. Analyst 2014, 139, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Sun, Y.; Li, Q.; Wang, F.; Teng, M.; Yang, Y.; Deng, R.; Hu, X. Colloidal gold–McAb probe–based rapid immunoassay strip for simultaneous detection of fumonisins in maize. J. Sci. Food Agric. 2017, 97, 2223–2229. [Google Scholar] [CrossRef] [PubMed]
- Shiu, C.M.; Wang, J.J.; Yu, F.Y. Sensitive enzyme–linked immunosorbent assay and rapid one–step immunochromatographic strip for fumonisin B1 in grain–based food and feed samples. J. Sci. Food Agric. 2010, 90, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Schaab, M.R.; Southwood, G.; Tor, E.R.; Aston, L.S.; Song, W.; Eitzer, B.; Majumdar, S.; Lapainis, T.; Mai, H.; et al. A Collaborative Study: Determination of Mycotoxins in Corn, Peanut Butter, and Wheat Flour Using Stable Isotope Dilution Assay (SIDA) and Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS). J. Agric. Food Chem. 2017, 65, 7138–7152. [Google Scholar] [CrossRef] [PubMed]
- Thanner, S.; Czegledi, L.; Schwartz-Zimmermann, H.E.; Berthiller, F.; Gutzwiller, A. Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs. Mycotoxin Res. 2016, 32, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Flores-Flores, M.E.; Gonzalez-Penas, E. Development and validation of a high performance liquid chromatographic–mass spectrometry method for the simultaneous quantification of 10 trichothecenes in ultra–high temperature processed cow milk. J. Chromatogr. A 2015, 1419, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Boutsiadou-Theurillat, X.; Meier, P.; Richard, C. Development and in–house Validation of a Rapid LC–MS/MS Method for the Semi–quantification of Eleven Mycotoxins in Maize Samples. Chimia 2014, 68, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Wang, Y.; Zhou, W.; Gao, H.; Zhang, S. Water–based slow injection ultrasound–assisted emulsification microextraction for the determination of deoxynivalenol and de–epoxy–deoxynivalenol in maize and pork samples. Anal. Bioanal. Chem. 2013, 405, 4307–4311. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Saeger, S.; Shi, W.; Li, C.; Zhang, S.; Cao, X.; Shen, J. Determination of deoxynivalenol in cereals by immunoaffinity clean–up and ultra–high performance liquid chromatography tandem mass spectrometry. Methods 2012, 56, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.; Ritieni, A.; Manes, J. Determination of trichothecenes and zearalenones in grain cereal, flour and bread by liquid chromatography tandem mass spectrometry. Food Chem. 2012, 134, 2389–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, Z.; Beier, R.C.; Shen, J.; Smet, D.D.; Saeger, S.; Zhang, S. T–2 toxin, a trichothecene mycotoxin: Review of toxicity, metabolism, and analytical methods. J. Agric. Food Chem. 2011, 59, 3441–3453. [Google Scholar] [CrossRef] [PubMed]
- Rubert, J.; Soler, C.; Manes, J. Evaluation of matrix solid–phase dispersion (MSPD) extraction for multi–mycotoxin determination in different flours using LC–MS/MS. Talanta 2011, 85, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhao, Z.; Wang, J.; Bai, B.; Wu, A.; Yan, L.; Song, S. A simple sample pretreatment method for multi–mycotoxin determination in eggs by liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2015, 1417, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, N.; Xian, H.; Wei, D.; Shi, L.; Feng, X. A single–step solid phase extraction for the simultaneous determination of 8 mycotoxins in fruits by ultra–high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1429, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, K.; Valenta, H.; Kersten, S.; Humpf, H.U.; Danicke, S. Determination of T–2 toxin, HT–2 toxin, and three other type A trichothecenes in layer feed by high–performance liquid chromatography–tandem mass spectrometry (LC–MS/MS)–Comparison of two sample preparation methods. Mycotoxin Res. 2016, 32, 89–97. [Google Scholar] [CrossRef] [PubMed]
Analyte | Scan Mode | Precursor Ion (m/z) | Product Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|
3AcDON/15AcDON | ESI+ | 356.2 | 339.1 | 55.99 | 20.00 |
321.2 * | 45.00 | 18.73 | |||
230.9 | 55.99 | 23.80 | |||
145.3 | 45.00 | 25.92 | |||
DON | ESI− | 294.9 | 264.6 * | −70.89 | −15.12 |
137.9 | −69.02 | −24.18 | |||
F-X | ESI+ | 372.2 | 355.0 * | 4.87 | 10.78 |
247.3 | 7.90 | 19.02 | |||
NIV | ESI− | 357.1 | 311.3 | −54.95 | −16.25 |
281.3 * | −54.95 | −12.90 | |||
T-2 | ESI+ | 489.0 | 327.0 | 20.00 | 245.00 |
245.0 * | 20.00 | 327.00 | |||
ZEA | ESI− | 316.9 | 175.0 | −80.00 | −39.82 |
130.9 * | −80.00 | −34.62 |
Condition | Parameter | Recovery | |||||
---|---|---|---|---|---|---|---|
3AcDON/15AcDON | T-2 | F-X | NIV | DON | ZEA | ||
Formic Acid (%) | 0.5 | 82% | 95% | 78% | 79% | 9% | 91% |
1 | 91% | 90% | 91% | 77% | 94% | 96% | |
1.5 | 90% | 72% | 80% | 79% | 90% | 95% | |
2 | 91% | 99% | 86% | 72% | 74% | 77% | |
Sonication (min) | 1 | 89% | 75% | 80% | 82% | 63% | 74% |
2 | 95% | 91% | 90% | 94% | 101% | 81% | |
3 | 95% | 75% | 92% | 82% | 101% | 86% | |
4 | 100% | 90% | 91% | 81% | 99% | 88% | |
Extract Volume (mL) | 10 | 91% | 80% | 90% | 68% | 80% | 93% |
15 | 98% | 102% | 80% | 70% | 84% | 77% | |
20 | 102% | 99% | 94% | 84% | 90% | 91% | |
25 | 95% | 101% | 96% | 69% | 95% | 90% |
Analyte | Liner Range (μg kg−1) | Regression Equitation | r | LOD (μg kg−1) | LOQ (μg kg−1) |
---|---|---|---|---|---|
3AcDON/15AcDON | 1.0–1000 | y = 17.55x + 5730.2 | 0.9981 | 3.02 | 10.06 |
DON | 1.0–1000 | y = 24.62x + 217.57 | 0.9994 | 2.6 | 8.68 |
F-X | 1.0–1000 | y = 19.84x + 3384.8 | 0.9902 | 5.55 | 18.5 |
NIV | 1.0–1000 | y = 2.016x + 439.40 | 0.9931 | 1.14 | 3.81 |
T-2 | 1.0–1000 | y = 46.75x + 76.992 | 0.9921 | 0.16 | 0.53 |
ZEA | 1.0–1000 | y = 399.4x + 178.21 | 0.9949 | 0.22 | 0.73 |
Analyte | Spiked Level (μg kg−1) | Day 1 | Day 2 | Day 3 | Inter-Day RSD % (n = 15) | |||
---|---|---|---|---|---|---|---|---|
Mean Recovery (%) | Intra-Day RSD % (n = 5) | Mean Recovery (%) | Intra-Day RSD % (n = 5) | Mean Recovery (%) | Intra-Day RSD % (n = 5) | |||
3AcDON/15AcDON | 50 | 90.21 ± 2.71 | 2.81 | 91.46 ± 1.04 | 1.04 | 93.13 ± 6.25 | 5.97 | 3.65 |
100 | 92.59 ± 9.26 | 9.17 | 101.5 ± 8.52 | 7.77 | 91.11 ± 8.89 | 9.21 | 9.09 | |
DON | 50 | 75.61 ± 2.05 | 2.41 | 77.08 ± 0.58 | 0.71 | 79.83 ± 3.26 | 4.07 | 3.41 |
100 | 101.1 ± 4.01 | 3.76 | 101.2 ± 7.33 | 7.08 | 104.9 ± 3.33 | 3.07 | 4.63 | |
F-X | 50 | 97.50 ± 0.83 | 0.85 | 98.61 ± 3.06 | 2.72 | 101.1 ± 1.94 | 1.71 | 2.32 |
100 | 98.50 ± 5.51 | 5.01 | 94.33 ± 5.67 | 5.44 | 93.80 ± 8.7 | 8.06 | 5.91 | |
NIV | 50 | 104.0 ± 4.63 | 3.86 | 103.0 ± 1.67 | 1.48 | 107.3 ± 5.65 | 4.82 | 3.71 |
100 | 93.97 ± 6.83 | 6.31 | 93.98 ± 7.22 | 6.68 | 99.88 ± 9.69 | 9.12 | 7.23 | |
T-2 | 50 | 91.23 ± 6.23 | 6.45 | 90.00 ± 5.01 | 4.84 | 94.37 ± 2.73 | 2.72 | 4.73 |
100 | 97.38 ± 9.76 | 9.05 | 89.52 ± 8.09 | 8.79 | 90.83 ± 9.4 | 8.98 | 8.71 | |
ZEA | 50 | 72.59 ± 0.74 | 0.88 | 74.44 ± 5.22 | 3.95 | 80.00 ± 4.44 | 4.81 | 5.47 |
100 | 86.24 ± 7.09 | 7.46 | 77.65 ± 5.68 | 6.34 | 77.51 ± 3.26 | 3.82 | 7.59 |
No. | 3AcDON/15AcDON (μg kg−1) | Other Mycotoxins (μg kg−1) | No. | 3AcDON/15AcDON (μg kg−1) | Other Mycotoxins (μg kg−1) | No. | 3AcDON/15AcDON (μg kg−1) | Other Mycotoxins (μg kg−1) | No. | 3AcDON/15AcDON (μg kg−1) | Other Mycotoxins (μg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 100 | ND | 14 | 25.6 | ND | 27 | 15.3 | ND | 40 | 54.8 | ND |
2 | 87.5 | ND | 15 | ND | ND | 28 | 19 | ND | 41 | 36.1 | ND |
3 | 57.5 | ND | 16 | ND | ND | 29 | ND | ND | 42 | ND | ND |
4 | 75 | ND | 17 | 35.9 | ND | 30 | 39.3 | ND | 43 | 27.4 | ND |
5 | 137.5 | ND | 18 | 41.2 | ND | 31 | 42.1 | ND | 44 | 58 | ND |
6 | 78.75 | ND | 19 | 31.9 | ND | 32 | ND | ND | 45 | 37.5 | ND |
7 | 106.25 | ND | 20 | 28.5 | ND | 33 | 21.6 | ND | 46 | 55.3 | ND |
8 | 77.5 | ND | 21 | 22.5 | ND | 34 | 33.9 | ND | 47 | 46.7 | ND |
9 | 162.5 | ND | 22 | ND | ND | 35 | 58.9 | ND | 48 | 43.1 | ND |
10 | 87.5 | ND | 23 | 43.8 | ND | 36 | 68.3 | ND | 49 | 28.9 | ND |
11 | 118.75 | ND | 24 | 56.7 | ND | 37 | 17.3 | ND | 50 | 36.2 | ND |
12 | 96.3 | ND | 25 | 55.2 | ND | 38 | 22.8 | ND | |||
13 | 33.2 | ND | 26 | 21.6 | ND | 39 | ND | ND |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Sun, M.; Mao, X.; You, Y.; Gao, Y.; Yang, J.; Wu, Y. Mycotoxins Contaminant in Kelp: A Neglected Dietary Exposure Pathway. Toxins 2018, 10, 481. https://doi.org/10.3390/toxins10110481
Li Y, Sun M, Mao X, You Y, Gao Y, Yang J, Wu Y. Mycotoxins Contaminant in Kelp: A Neglected Dietary Exposure Pathway. Toxins. 2018; 10(11):481. https://doi.org/10.3390/toxins10110481
Chicago/Turabian StyleLi, Yanshen, Mingxue Sun, Xin Mao, Yanli You, Yonglin Gao, Jianrong Yang, and Yongning Wu. 2018. "Mycotoxins Contaminant in Kelp: A Neglected Dietary Exposure Pathway" Toxins 10, no. 11: 481. https://doi.org/10.3390/toxins10110481
APA StyleLi, Y., Sun, M., Mao, X., You, Y., Gao, Y., Yang, J., & Wu, Y. (2018). Mycotoxins Contaminant in Kelp: A Neglected Dietary Exposure Pathway. Toxins, 10(11), 481. https://doi.org/10.3390/toxins10110481