High Intensity Exercise: Can It Protect You from A Fast Food Diet?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rosenheck, R. Fast food consumption and increased caloric intake: A systematic review of a trajectory towards weight gain and obesity risk. Obes. Rev. 2008, 9, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.M.; Nguyen, B.T.; Han, E. Energy intake from restaurants: Demographics and socioeconomics, 2003–2008. Am. J. Prev. Med. 2012, 43, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Jaworowska, A.; Blackham, T.; Davies, I.G.; Stevenson, L. Nutritional challenges and health implications of takeaway and fast food. Nutr. Rev. 2013, 71, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Fryar, C.D.; Ervin, R.B. Caloric Intake from Fast Food among Adults: United States, 2007–2010. NCHS Data Brief No. 114; National Center for Health Statistic: Hyattsville, MD, USA, 2013. Available online: https://www.cdc.gov/nchs/data/databriefs/db114.htm (accessed on 25 August 2017).
- Bowman, S.A.; Vinyard, B.T. Fast food consumption of U.S. Adults: Impact on energy and nutrient intakes and overweight status. J. Am. Coll. Nutr. 2004, 23, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Duffey, K.J.; Gordon-Larsen, P.; Jacobs, D.R., Jr.; Williams, O.D.; Popkin, B.M. Differential associations of fast food and restaurant food consumption with 3-y change in body mass index: The coronary artery risk development in young adults study. Am. J. Clin. Nutr. 2007, 85, 201–208. [Google Scholar] [PubMed]
- Pereira, M.A.; Kartashov, A.I.; Ebbeling, C.B.; Van Horn, L.; Slattery, M.L.; Jacobs, D.R., Jr.; Ludwig, D.S. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 2005, 365, 36–42. [Google Scholar] [CrossRef]
- Duffey, K.J.; Gordon-Larsen, P.; Steffen, L.M.; Jacobs, D.R., Jr.; Popkin, B.M. Regular consumption from fast food establishments relative to other restaurants is differentially associated with metabolic outcomes in young adults. J. Nutr. 2009, 139, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Alheritiere, A.; Montois, S.; Galinski, M.; Tazarourte, K.; Lapostolle, F. Worldwide relation between the number of McDonald’s restaurants and the prevalence of obesity. J. Intern. Med. 2013, 274, 610–611. [Google Scholar] [CrossRef] [PubMed]
- Walhin, J.P.; Richardson, J.D.; Betts, J.A.; Thompson, D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J. Physiol. 2013, 591, 6231–6243. [Google Scholar] [CrossRef] [PubMed]
- Kessler, H.S.; Sisson, S.B.; Short, K.R. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012, 42, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Jelleyman, C.; Yates, T.; O’Donovan, G.; Gray, L.J.; King, J.A.; Khunti, K.; Davies, M.J. The effects of high-intensity interval training on glucose regulation and insulin resistance: A meta-analysis. Obes. Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Bruce, R.A.; Kusumi, F.; Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart. J. 1973, 85, 546–562. [Google Scholar] [CrossRef]
- Foster, C.; Jackson, A.S.; Pollock, M.L.; Taylor, M.M.; Hare, J.; Sennett, S.M.; Rod, J.L.; Sarwar, M.; Schmidt, D.H. Generalized equations for predicting functional capacity from treadmill performance. Am. Heart J. 1984, 107, 1229–1234. [Google Scholar] [CrossRef]
- Boden, G.; Homko, C.; Barrero, C.A.; Stein, T.P.; Chen, X.; Cheung, P.; Fecchio, C.; Koller, S.; Merali, S. Excessive caloric intake acutely causes oxidative stress, glut4 carbonylation, and insulin resistance in healthy men. Sci. Transl. Med. 2015, 7, 304re307. [Google Scholar] [CrossRef]
- Gregersen, S.; Samocha-Bonet, D.; Heilbronn, L.K.; Campbell, L.V. Inflammatory and oxidative stress responses to high-carbohydrate and high-fat meals in healthy humans. J. Nutr. MeTable 2012, 2012, 238056. [Google Scholar] [CrossRef]
- Hagobian, T.A.; Braun, B. Interactions between energy surplus and short-term exercise on glucose and insulin responses in healthy people with induced, mild insulin insensitivity. Metabolism 2006, 55, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Fuller, K.N.Z.; Summers, C.M.; Valentine, R.J. Effect of a single bout of aerobic exercise on high-fat meal-induced inflammation. Metabolism 2017, 71, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Hood, M.S.; Little, J.P.; Tarnopolsky, M.A.; Myslik, F.; Gibala, M.J. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med. Sci. Sports Exerc. 2011, 43, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Drenowatz, C.; Eisenmann, J.C. Validation of the SenseWear Armband at high intensity exercise. Eur. J. Appl. Physiol. 2011, 111, 883–887. [Google Scholar] [CrossRef]
- St-Onge, M.; Mignault, D.; Allison, D.B.; Rabasa-Lhoret, R. Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am. J. Clin. Nutr. 2007, 85, 742–749. [Google Scholar] [PubMed]
- Ryan, J.; Gormley, J. An evaluation of energy expenditure estimation by three activity monitors. Eur. J. Sport Sci. 2013, 13, 681–688. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Intern. Med. 2003, 139, 802–809. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, T.; Reaven, G.; Abbasi, F.; Lamendola, C.; Saad, M.; Waters, D.; Simon, J.; Krauss, R.M. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 2005, 96, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Karelis, A.D.; Pasternyk, S.M.; Messier, L.; St-Pierre, D.H.; Lavoie, J.M.; Garrel, D.; Rabasa-Lhoret, R. Relationship between insulin sensitivity and the triglyceride-HDL-C ratio in overweight and obese postmenopausal women: A MONET study. Appl. Physiol. Nutr. MeTable 2007, 32, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.; Predazzi, I.M.; Williams, S.M.; Bush, W.S.; Kim, Y.; Havas, S.; Toth, P.P.; Fazio, S.; Miller, M. Is isolated low high-density lipoprotein cholesterol a cardiovascular disease risk factor? New insights from the Framingham offspring study. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 206–212. [Google Scholar] [CrossRef]
- Gauthier, M.S.; Couturier, K.; Latour, J.G.; Lavoie, J.M. Concurrent exercise prevents high-fat-diet-induced macrovesicular hepatic steatosis. J. Appl. Physiol. (1985) 2003, 94, 2127–2134. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, M.S.; Couturier, K.; Charbonneau, A.; Lavoie, J.M. Effects of introducing physical training in the course of a 16-week high-fat diet regimen on hepatic steatosis, adipose tissue fat accumulation, and plasma lipid profile. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, M.; Bringhenti, I.; Souza-Mello, V.; Dos Santos Mendes, I.K.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. High-intensity interval training beneficial effects on body mass, blood pressure, and oxidative stress in diet-induced obesity in ovariectomized mice. Life Sci. 2015, 139, 75–82. [Google Scholar] [CrossRef] [PubMed]
- French, S.A.; Harnack, L.; Jeffery, R.W. Fast food restaurant use among women in the pound of prevention study: Dietary, behavioral and demographic correlates. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
Variables | Mean ± SD |
---|---|
Total energy intake (kcal/day) | 3441 ± 337 |
Protein (g/day) | 100.5 ± 9.5 |
Protein (%) | 11.7 ± 0.7 |
Carbohydrate (g/day) | 421.8 ± 46.5 |
Carbohydrate (%) | 49.1 ± 2.2 |
Fat (g/day) | 150.3 ± 15.6 |
Fat (%) | 39.3 ± 1.7 |
Saturated fat (g/day) | 40.8 ± 4.6 |
Trans fat (g/day) | 2.6 ± 0.4 |
Sodium (mg/day) | 4724 ± 405 |
Total energy expenditure (kcal/day) | 3504 ± 373 |
Physical activity energy expenditure (kcal/day) | 1588 ± 371 |
Energy expenditure during HIIT (kcal/day) | 413.5 ± 29.8 |
Variables | Pre | Post | P value | Effect size |
---|---|---|---|---|
Age (years) | 23.8 ± 2.8 | - | - | - |
Height (m) | 1.79 ± 4.8 | - | - | - |
Total body weight (kg) | 75.8 ± 7.7 | 75.9 ± 7.7 | 0.61 | 0.13 |
Body mass index (kg/m2) | 23.4 ± 2.2 | 23.4 ± 2.2 | 0.33 | 0.25 |
Waist circumference (cm) | 81.4 ± 5.7 | 81.7 ± 5.1 | 0.52 | 0.18 |
Body fat (%) | 13.5 ± 3.5 | 13.1 ± 3.6 | 0.02 | 0.70 |
Fat mass (kg) | 10.4 ± 3.6 | 10.2 ± 3.6 | 0.05 | 0.54 |
Lean body mass (kg) | 62.0 ± 4.9 | 62.4 ± 5.0 | 0.03 | 0.59 |
Estimated VO2 max (mL/kg/min) | 55.8 ± 8.3 | 57.5 ± 7.1 | 0.03 | 0.67 |
Variables | Pre | Post | p Value | Effect Size |
---|---|---|---|---|
Systolic blood pressure (mmHg) | 116.7 ± 9.7 | 115.5 ± 9.4 | 0.62 | 0.13 |
Diastolic blood pressure (mmHg) | 68.6 ± 4.7 | 70.8 ± 4.7 | 0.10 | 0.44 |
HbA1c (%) | 5.0 ± 0.3 | 5.0 ± 0.2 | 0.19 | 0.34 |
Fasting glucose (mmol/L) | 4.63 ± 0.3 | 4.39 ± 0.3 | 0.007 | 0.81 |
Fasting insulin (pmol/L) | 53.3 ± 34 | 46.6 ± 22 | 0.45 | 0.22 |
HOMA index | 1.83 ± 1.2 | 1.54 ± 0.7 | 0.35 | 0.27 |
Total cholesterol (mmol/L) | 4.10 ± 0.62 | 3.83 ± 0.64 | 0.06 | 0.52 |
LDL-cholesterol (mmol/L) | 2.26 ± 0.58 | 2.10 ± 0.54 | 0.13 | 0.41 |
HDL-cholesterol (mmol/L) | 1.48 ± 0.2 | 1.35 ± 0.2 | 0.002 | 0.96 |
Triglycerides (mmol/L) | 0.80 ± 0.3 | 0.84 ± 0.2 | 0.67 | 0.11 |
Triglycerides/HDL-cholesterol | 0.56 ± 0.3 | 0.63 ± 0.2 | 0.22 | 0.33 |
ApoB (g/L) | 0.69 ± 0.1 | 0.64 ± 0.1 | 0.11 | 0.46 |
Lp(a) (g/L) | 0.14 ± 0.1 | 0.12 ± 0.1 | 0.04 | 0.63 |
hsC-reactive protein (mg/L) | 1.13 ± 1.4 | 0.32 ± 0.1 | 0.047 | 0.59 |
Alanine aminotransferase (U/L) | 23.3 ± 14.5 | 20.7 ± 3.3 | 0.50 | 0.18 |
Aspartate aminotransferase (U/L) | 32.5 ± 15.6 | 24.6 ± 5.0 | 0.08 | 0.5 |
γ-glutamyltransferase (U/L) | 16.8 ± 6.5 | 15.9 ± 5.1 | 0.32 | 0.28 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duval, C.; Rouillier, M.-A.; Rabasa-Lhoret, R.; Karelis, A.D. High Intensity Exercise: Can It Protect You from A Fast Food Diet? Nutrients 2017, 9, 943. https://doi.org/10.3390/nu9090943
Duval C, Rouillier M-A, Rabasa-Lhoret R, Karelis AD. High Intensity Exercise: Can It Protect You from A Fast Food Diet? Nutrients. 2017; 9(9):943. https://doi.org/10.3390/nu9090943
Chicago/Turabian StyleDuval, Christian, Marc-Antoine Rouillier, Rémi Rabasa-Lhoret, and Antony D. Karelis. 2017. "High Intensity Exercise: Can It Protect You from A Fast Food Diet?" Nutrients 9, no. 9: 943. https://doi.org/10.3390/nu9090943
APA StyleDuval, C., Rouillier, M. -A., Rabasa-Lhoret, R., & Karelis, A. D. (2017). High Intensity Exercise: Can It Protect You from A Fast Food Diet? Nutrients, 9(9), 943. https://doi.org/10.3390/nu9090943