Low-Normal Thyroid Function and Novel Cardiometabolic Biomarkers
Abstract
:1. Introduction
1.1. Subclinical Hypothyroidism, Low-Normal Thyroid Function and Atherosclerotic Cardiovascular Disease
1.2. Changes in Plasma Lipoproteins and C-Reactive Protein Consequent to Subclinical Hypothyroidism and Low-Normal Thyroid Function
Overt hypothyroidism | Subclinical hypothyroidism | Levothyroxine treatment | |
---|---|---|---|
Total cholesterol | ↑ | ↑, ns | ↓, ns |
LDL cholesterol | ↑ | ↑, ns | ↓, ns |
HDL cholesterol | ↑ | ↓, ns | ↑,ns |
Triglycerides | ↑ | ↑, ns | ↓, ns |
Apolipoprotein B | ↑ | ↑ | ↓ |
Apolipoprotein A-I | ↑ | ns | ns |
Lp(a) | ↑ | ns | ns |
Reference | N | Analysis | Total cholesterol | LDL cholesterol | HDL cholesterol | Triglycerides | apoB | apoA-I |
---|---|---|---|---|---|---|---|---|
Asvold [24]; Year 2007 | 27,727 | Men and women separately Adjusted for age, smoking and prandial state | TSH: + | TSH: + | TSH: - | TSH: + | | |
Roos [36]; Year 2007 | 1581 | Men and women combined Crude | TSH: ns FT4: - FT3: - | TSH: ns FT4: - FT3: - | TSH: + FT4: ns FT3: ns | TSH: + FT4: - FT3: - | TSH: ns FT4: ns FT3:- | TSH: + FT4: ns FT3: ns |
Takamura [27]; Year 2009 | 643 | Men and women combined Crude | TSH: ns FT4: ns | TSH: ns FT4: ns | TSH: - FT4: ns | TSH: ns FT4: + | ||
Kim [37]; Year 2009 | 44,196 | Men and women separately Crude | FT4: + | FT4: + | FT4: + | FT4: - | ||
Park [38]; Year 2009 | 949 | Postmenopausal women Crude | TSH: + | TSH: + | TSH: ns | TSH: + | ||
Garduño-Garcia [39]; Year 2010 | 2771 | Men and women combined Adjusted for age, sex and BMI | TSH: + FT4: ns | TSH: ns FT4: ns | TSH: ns FT4: + | TSH: + FT4: ns | ||
Lee [40]; Year 2011 | 7270 | Men and women combined Adjusted for age, sex, BMI, season, menopausal status | TSH: + | TSH: + | TSH: ns | TSH: + | ||
Lu [41]; Year 2011 | 1240 | Men and women combined Crude | TSH: ns | TSH: ns | TSH: ns | TSH: ns | ||
Wang [42]; Year 2012 | 3664 | Men and women combined Crude | TSH: ns | TSH: ns | TSH: + | TSH: ns |
2. Regulation of Lipid Homeostasis and Lipoprotein Metabolism by Thyroid Hormones
2.1. Cholesterol Homeostasis
2.2. Triglyceride Homeostasis
2.3. Plasma lipoprotein metabolism
2.4. Novel Lipid Biomarkers and Low-Normal Thyroid Function
3. Subclinical Hypothyroidism, Low-Normal Thyroid Function and Metabolic Syndrome
4. Subclinical Hypothyroidism, Low-Normal Thyroid Function and Non-Alcohol Fatty Liver Disease
5. Low-Normal Thyroid Function and Bilirubin
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Klein, I.; Ojamaa, K. Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 2001, 15, 501–509. [Google Scholar]
- Cappola, A.R.; Ladenson, P.W. Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 2003, 88, 2438–2444. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; Cooper, D.S. The clinical significance of subclinical thyroid dysfunction. Endocr. Rev. 2008, 29, 76–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderpump, M.P.; Tunbridge, W.M.; French, J.M.; Appleton, D.; Bates, D.; Clark, F.; Grimley, E.J.; Hasan, D.M.; Rodgers, H.; Tunbridge, F.; et al. The incidence of thyroid disorders in the community: A twenty-year follow-up of the Whickham Survey. Clin. Endocrinol. 1995, 43, 55–68. [Google Scholar]
- Canaris, G.J.; Manowitz, N.R.; Mayor, G.; Ridgway, E.C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 2000, 160, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Belin, R.M.; Clickner, R.; Jeffries, R.; Phillips, L.; Mahaffey, K.R. Serum TSH and total T4 in the United States population and their association with participant characteristics: National Health and Nutrition Examination Survey (NHANES 1999–2002). Thyroid 2007, 17, 1211–1223. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Razvi, S.; Pearce, S.H.; Dayan, C.M. Clinical review: A review of the clinical consequences of variation in thyroid function within the reference range. J. Clin. Endocrinol. Metab. 2013, 98, 3562–3571. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.; Pedersen, K.M.; Bruun, N.H.; Laurberg, P. Narrow individual variations in serum T(4) and T(3) in normal subjects: A clue to the understanding of subclinical thyroid disease. J. Clin. Endocrinol. Metab. 2002, 87, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.P. Setpoints and susceptibility: Do small differences in thyroid function really matter? Clin. Endocrinol. 2011, 75, 158–159. [Google Scholar] [CrossRef]
- Hak, A.E.; Pols, H.A.; Visser, T.J.; Drexhage, H.A.; Hofman, A.; Witteman, J.C. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann. Intern. Med. 2000, 132, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Cappola, A.R.; Fried, L.P.; Arnold, A.M.; Danese, M.D.; Kuller, L.H.; Burke, G.L.; Tracy, R.P.; Ladenson, P.W. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA 2006, 295, 1033–1041. [Google Scholar] [CrossRef] [PubMed]
- Selmer, C.; Olesen, J.B.; Hansen, M.L.; von Kappelgaard, L.M.; Madsen, J.C.; Hansen, P.R.; Pedersen, O.D.; Faber, J.; Torp–Pedersen, C.; Gislason, G.H. Subclinical and overt thyroid dysfunction and risk of all-cause mortality and cardiovascular events: A large population study. J. Clin. Endocrinol. Metab. 2014, 99, 2372–2382. [Google Scholar] [CrossRef] [PubMed]
- Ochs, N.; Auer, R.; Bauer, D.C.; Nanchen, D.; Gussekloo, J.; Cornuz, J.; Rodondi, N. Meta-analysis: Subclinical thyroid dysfunction and the risk for coronary heart disease and mortality. Ann. Intern. Med. 2008, 148, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Razvi, S.; Shakoor, A.; Vanderpump, M.; Weaver, J.U.; Pearce, S.H. The influence of age on the relationship between subclinical hypothyroidism and ischemic heart disease: A meta-analysis. J. Clin. Endocr. Metab. 2008, 93, 2998–3007. [Google Scholar]
- Singh, S.; Duggal, J.; Molnar, J.; Maldonado, F.; Barsano, C.P.; Arora, R. Impact of subclinical thyroid disorders on coronary heart disease, cardiovascular and all-cause mortality: A meta-analysis. Int. J. Cardiol. 2008, 125, 41–48. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, D.H.; Polak, J.F.; Kronmal, R.A.; Manolio, T.A.; Burke, G.L.; Wolfson, S.K.J. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N. Engl. J. Med. 1999, 340, 14–22. [Google Scholar] [CrossRef] [PubMed]
- De Groot, E.; Hovingh, G.K.; Wiegman, A.; Duriez, P.; Smit, A.J.; Fruchart, J.C.; Kastelein, J.J. Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation 2004, 109, 33–38. [Google Scholar]
- Zhang, Y.; Guallar, E.; Qiao, Y.; Wasserman, B.A. Is carotid intima-media thickness as predictive as other noninvasive techniques for the detection of coronary artery disease? Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, T.; Inaba, M.; Henmi, Y.; Kumeda, Y.; Ueda, M.; Tahara, H.; Sugiguchi, S.; Fujiwara, S.; Emoto, M.; Ishimura, E.; et al. Decrease in carotid-intima media thickness in hypothyroid patients after normalization of thyroid function. Clin. Endocrinol. 2003, 59, 607–612. [Google Scholar]
- Völzke, H.; Robinson, D.M.; Schminke, U.; Lüdemann, J.; Rettig, R.; Felix, S.B.; Kessler, C.; John, U.; Meng, W. Thyroid function and carotid wall thickness. J. Clin. Endocrinol. Metab. 2004, 89, 2145–2149. [Google Scholar] [CrossRef] [PubMed]
- Jorde, R.; Joakimsen, O.; Stensland, E.; Mathiesen, E.B. Lack of significant association between intima-media thickness in the carotid artery and serum TSH level. Thyroid 2008, 18, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Zhang, W.; Zhang, Y.Z.; Yang, Q.; Chen, S.H. Carotid intima-media thickness in patients with subclinical hypothyroidism: A meta-analysis. Atherosclerosis 2013, 227, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Posadas-Romero, C.; Jorge-Galarza, E.; Posadas-Sánchez, R.; Acuña-Valerio, J.; Juárez-Rojas, J.G.; Kimura-Hayama, E.; Medina-Urrutia, A.; Cardoso-Saldaña, G.C. Fatty liver largely explains associations of subclinical hypothyroidism with insulin resistance, metabolic syndrome, and subclinical coronary atherosclerosis. Eur. J. Endocrinol. 2014, 171, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Asvold, B.O.; Bjøro, T.; Platou, C.; Vatten, L.J. Thyroid function and the risk of coronary heart disease: 12-year follow-up of the HUNT study in Norway. Clin. Endocrinol. 2012, 77, 911–917. [Google Scholar] [CrossRef]
- Parle, J.V.; Maisonneuve, P.; Sheppard, M.C.; Boyle, P.; Franklyn, J.A. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: A 10-year cohort study. Lancet 2001, 358, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Dullaart, R.P.F.; de Vries, R.; Roozendaal, C.; Kobold, A.C.; Sluiter, W.J. Carotid artery intima media thickness is inversely related to serum free thyroxine in euthyroid subjects. Clin. Endocrinol. 2007, 67, 668–673. [Google Scholar] [CrossRef]
- Takamura, N.; Akilzhanova, A.; Hayashida, N.; Kadota, K.; Yamasaki, H.; Usa, T.; Nakazato, M.; Maeda, T.; Ozono, Y.; Aoyagi, K. Thyroid function is associated with carotid intima-media thickness in euthyroid subjects. Atherosclerosis 2009, 204, 77–81. [Google Scholar] [CrossRef]
- Lambrinoudaki, I.; Armeni, E.; Rizos, D.; Georgiopoulos, G.; Kazani, M.; Alexandrou, A.; Deligeoroglou, E.; Livada, A.; Psychas, C.; Creatsa, M.; et al. High normal thyroid-stimulating hormone is associated with arterial stiffness in healthy postmenopausal women. J. Hypertens. 2012, 30, 592–599. [Google Scholar]
- Danese, M.D.; Ladenson, P.W.; Meinert, C.L.; Powe, N.R. Clinical review 115: Effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: A quantitative review of the literature. J. Clin. Endocrinol. Metab. 2000, 85, 2993–3001. [Google Scholar] [PubMed]
- Duntas, L.H. Thyroid disease and lipids. Thyroid 2002, 12, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H.M.; Wartofsky, L. Cardiovascular risk and subclinical hypothyroidism: Focus on lipids and new emerging risk factors. What is the evidence? Thyroid 2007, 17, 1075–1084. [Google Scholar]
- Ineck, B.A.; Ng, T.M. Effects of subclinical hypothyroidism and its treatment on serum lipids. Ann. Pharmacother. 2003, 37, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.N. Update in lipid alterations in subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 2012, 97, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Dullaart, R.P.; Hoogenberg, K.; Groener, J.E.; Dikkeschei, L.D.; Erkelens, D.W.; Doorenbos, H. The activity of cholesteryl ester transfer protein is decreased in hypothyroidism: A possible contribution to alterations in high-density lipoproteins. Eur. J. Clin. Investig. 1990, 20, 581–587. [Google Scholar] [CrossRef]
- Dullaart, R.P.; van Doormaal, J.J.; Hoogenberg, K.; Sluiter, W.J. Triiodothyronine rapidly lowers plasma lipoprotein (a) in hypothyroid subjects. Neth. J. Med. 1995, 46, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Roos, A.; Bakker, S.J.; Links, T.P.; Gans, R.O.; Wolffenbuttel, B.H. Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. J. Clin. Endocrinol. Metab. 2007, 92, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kim, T.Y.; Koh, J.M.; Kim, H.K.; Park, J.Y.; Lee, K.U.; Shong, Y.K.; Kim, W.B. Relationship between serum free T4 (FT4) levels and metabolic syndrome (MS) and its components in healthy euthyroid subjects. Clin. Endocrinol. 2009, 70, 152–160. [Google Scholar] [CrossRef]
- Park, H.T.; Cho, G.J.; Ahn, K.H.; Shin, J.H.; Hong, S.C.; Kim, T.; Hur, J.Y.; Kim, Y.T.; Lee, K.W.; Kim, S.H. Thyroid stimulating hormone is associated with metabolic syndrome in euthyroid postmenopausal women. Maturitas 2009, 62, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Garduño-Garcia, J.D.J.; Alvirde-Garcia, U.; López-Carrasco, G.; Padilla Mendoza, M.E.; Mehta, R.; Arellano-Campos, O.; Choza, R.; Sauque, L.; Garay-Sevilla, M.E.; Malacara, J.M.; et al. TSH and free thyroxine concentrations are associated with differing metabolic markers in euthyroid subjects. Eur. J. Endocrinol. 2010, 163, 273–278. [Google Scholar]
- Lee, Y.K.; Kim, J.E.; Oh, H.J.; Park, K.S.; Kim, S.K.; Park, S.W.; Kim, M.J.; Cho, Y.W. Serum TSH Serum TSH level in healthy Koreans and the association of TSH with serum lipid concentration and metabolic syndrome. Korean J. Intern. Med. 2011, 26, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wang, B.; Shan, Z.; Jiang, F.; Teng, X.; Chen, Y.; Lai, Y.; Wang, J.; Xue, H.; Wang, S.; et al. The correlation between thyrotropin and dyslipidemia in a population-based study. J. Korean Med. Sci. 2011, 26, 243–249. [Google Scholar]
- Wang, C.; Zhang, X.; Zhao, Y.; Song, X.; Zhang, B.; Guan, Q.; Xu, J.; Zhang, J.; Zhang, D.; Lin, H.; et al. Thyroid-Stimulating Hormone Levels within the Reference Range Are Associated with Serum Lipid Profiles Independent of Thyroid Hormones. J. Clin. Endocrinol. Metab. 2012, 97, 2724–2731. [Google Scholar]
- Hueston, W.J.; King, D.E.; Geesey, M.E. Serum biomarkers for cardiovascular inflammation in subclinical hypothyroidism. Clin. Endocrinol. 2005, 63, 582–587. [Google Scholar] [CrossRef]
- Hazlehurst, J.M.; Tomlinson, J.W. Non-alcoholic fatty liver disease in common endocrine disorders. Eur. J. Endocrinol. 2013, 169, 27–37. [Google Scholar] [CrossRef]
- Ness, G.C.; Dugan, R.E.; Lakshmanan, M.R.; Nepokroeff, C.M.; Porter, J.W. Stimulation of hepatic beta-hydroxy-beta-methylglutaryl coenzyme A reductase activity in hypophysectomized rats by l-triiodothyronine. Proc. Natl. Acad. Sci. USA 1973, 70, 3839–3842. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.J.; Osborne, T.F. Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J. Biol. Chem. 2003, 278, 34114–34118. [Google Scholar] [CrossRef] [PubMed]
- Bakker, O.; Hudig, F.; Meijssen, S.; Wiersinga, W.M. Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene. Biochem. Biophys. Res. Commun. 1998, 249, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G. Unravelling the functional significance of PCSK9. Curr. Opin. Lipidol. 2007, 18, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.D.; Cohen, J.C.; Hobbs, H.H. PCSK9, a convertase that coordinates LDL catabolism. J. Lipid Res. 2009, 50, 172–177. [Google Scholar] [CrossRef]
- Chan, D.C.; Lambert, G.; Barrett, P.H.; Rye, K.A.; Ooi, E.M.; Watts, G.F. Plasma proprotein convertase subtilisin/kexin type 9, a marker of LDL apolipoprotein B-100 catabolism? Clin. Chem. 2009, 55, 2049–2052. [Google Scholar] [CrossRef] [PubMed]
- Kwakernaak, A.J.; Lambert, G.; Muller Kobold, A.C.; Dullaart, R.P.F. Adiposity blunts the positive relationship of thyrotropin with proprotein convertase subtilisin-kexin type 9 levels in euthyroid subjects. Thyroid 2013, 23, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Guo, Y.L.; Xu, R.X.; Zhang, Y.; Zhu, C.G.; Sun, J.; Qing, P.; Wu, N.Q.; Li, J.J. Plasma PCSK9 levels are associated with the severity of coronary stenosis in patients with atherosclerosis. Int. J. Cardiol. 2014, 174, 863–864. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Song, Y.; Xing, M.; Zhang, W.; Ning, G.; Li, X.; Yu, C.; Qin, C.; Liu, J.; Tian, X.; et al. A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 2010, 52, 1401–1409. [Google Scholar]
- Gälman, C.; Bonde, Y.; Matasconi, M.; Angelin, B.; Rudling, M. Dramatically increased intestinal absorption of cholesterol following hypophysectomy is normalized by thyroid hormone. Gastroenterology 2008, 134, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Pucci, E.; Chiovato, L.; Pinchera, A. Thyroid and lipid metabolism. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 109–112. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Mitrou, P.; Lambadiari, V.; Boutati, E.; Maratou, E.; Panagiotakos, D.B.; Koukkou, E.; Tzanela, M.; Thalassinos, N.; Raptis, S.A. Insulin action in adipose tissue and muscle in hypothyroidism. J. Clin. Endocrinol. Metab. 2006, 91, 4930–4937. [Google Scholar] [CrossRef] [PubMed]
- Nikkilä, E.A.; Kekki, M. Plasma triglyceride metabolism in thyroid disease. J. Clin. Investig. 1972, 51, 2103–2114. [Google Scholar] [CrossRef] [PubMed]
- Heimberg, M.; Olubadewo, J.O.; Wilcox, H.G. Plasma lipoproteins and regulation of hepatic metabolism of fatty acids in altered thyroid states. Endocr. Rev. 1985, 6, 590–607. [Google Scholar] [CrossRef] [PubMed]
- Pagadala, M.R.; Zein, C.O.; Dasarathy, S.; Yerian, L.M.; Lopez, R.; McCullough, A.J. Prevalence of hypothyroidism in nonalcoholic fatty liver disease. Dig. Dis. Sci. 2012, 57, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Eshraghian, A.; Hamidian, J.A. Non-alcoholic fatty liver disease and thyroid dysfunction, a systematic review. World J. Gastroenterol. 2014, 20, 8102–8109. [Google Scholar] [CrossRef] [PubMed]
- Taskinen, M.R. Diabetic dyslipidaemia: From basic research to clinical practice. Diabetologia 2003, 46, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Adiels, M.; Taskinen, M.R.; Packard, C.; Caslake, M.J.; Soro-Paavonen, A.; Westerbacka, J.; Vehkavaara, S.; Häkkinen, A.; Olofsson, S.O.; Yki-Järvinen, H.; et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 2006, 49, 755–765. [Google Scholar]
- Adiels, M.; Olofsson, S.O.; Taskinen, M.R.; Borén, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H.; Kim, H.J.; Kim, H.M.; Choi, S.H.; Lim, S.; Park, Y.J.; Jang, H.C.; Cha, B.S. Decreased expression of hepatic low-density lipoprotein receptor-related protein 1 in hypothyroidism: A novel mechanism of atherogenic dyslipidemia in hypothyroidism. Thyroid 2013, 23, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Van Tienhoven-Wind, L.J.N.; Dullaart, R.P.F. Low normal thyroid function as a determinant of increased large very low density lipoprotein particles. Clin. Biochem. 2015, in press. [Google Scholar]
- Tzotzas, T.; Krassas, G.E.; Konstantinidis, T.; Bougoulia, M. Changes in lipoprotein(a) levels in overt and subclinical hypothyroidism before and during treatment. Thyroid 2000, 10, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Giugliano, R.P.; Sabatine, M.S.; Koren, M.J.; Langslet, G.; Bays, H.; Blom, D.; Eriksson, M.; Dent, R.; Wasserman, S.M.; et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): A pooled analysis of more than 1,300 patients in 4 phase II trials. J. Am. Coll. Cardiol. 2014, 63, 1278–1288. [Google Scholar]
- Valdemarsson, S. Plasma lipoprotein alterations in thyroid dysfunction: Roles of lipoprotein lipase, hepatic lipase and LCAT. Acta Endocrinol. Suppl. 1983, 255, 1–52. [Google Scholar]
- Kuusi, T.; Taskinen, M.R.; Nikkilä, E.A. Lipoproteins, lipolytic enzymes, and hormonal status in hypothyroid women at different levels of substitution. J. Clin. Endocrinol. Metab. 1988, 66, 51–56. [Google Scholar] [CrossRef] [PubMed]
- De Vries, R.; Borggreve, S.E.; Dullaart, R.P.F. Role of lipases, lecithin, cholesterol acyltransferase and cholesteryl ester transfer protein in abnormal high density lipoprotein metabolism in insulin resistance and type 2 diabetes mellitus. Clin. Lab. 2003, 49, 601–613. [Google Scholar] [PubMed]
- Dallinga-Thie, G.M.; Dullaart, R.P.; van Tol, A. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in type 2 diabetes: Effects of apolipoproteins. Curr. Opin. Lipidol. 2007, 18, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Dullaart, R.P.; Sluiter, W.J. Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: An updated analysis. Pharmacogenomics 2008, 9, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.C.; Shiu, S.W.; Kung, A.W. Effect of thyroid dysfunction on high-density lipoprotein subfraction metabolism: Roles of hepatic lipase and cholesteryl ester transfer protein. J. Clin. Endocrinol. Metab. 1998, 83, 2921–2924. [Google Scholar] [PubMed]
- Lewington, S.; Whitlock, G.; Clarke, R.; Sherliker, P.; Emberson, J.; Halsey, J.; Qizilbash, N.; Peto, R.; Collins, R. Blood cholesterol and vascular mortality by age, sex, and blood pressure: A meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 2007, 370, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, N.; Packard, C.J.; et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009, 302, 1993–2000. [Google Scholar]
- Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 2012, 367, 2089–2099. [Google Scholar]
- Kappelle, P.J.; van Tol, A.; Wolffenbuttel, B.H.; Dullaart, R.P. Cholesteryl ester transfer protein inhibition in cardiovascular risk management: Ongoing trials will end the confusion. Cardiovasc. Ther. 2011, 29, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T.; Tomson, J.; Wallendszus, K.; Craig, M.; Jiang, L.; Collins, R.; et al. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 2014, 371, 203–212. [Google Scholar]
- Borggreve, S.E.; Hillege, H.L.; Dallinga-Thie, G.M.; de Jong, P.E.; Wolffenbuttel, B.H.; Grobbee, D.E.; van Tol, A.; Dullaart, R.P.; PREVEND Study Group. High plasma cholesteryl ester transfer protein levels may favor reduced incidence of cardiovascular events in men with low triglycerides. Eur. Heart J. 2007, 28, 1012–1018. [Google Scholar]
- Robins, S.J.; Lyass, A.; Brocia, R.W.; Massaro, J.M.; Vasan, R.S. Plasma lipid transfer proteins and cardiovascular disease. The Framingham Heart Study. Atherosclerosis 2013, 228, 230–236. [Google Scholar]
- Dullaart, R.P.F.; Dallinga-Thie, G.M.; Wolffenbuttel, B.H.; van Tol, A. CETP inhibition in cardiovascular risk management: A critical appraisal. Eur. J. Clin. Investig. 2007, 37, 90–98. [Google Scholar] [CrossRef]
- De Vries, R.; Perton, F.G.; Dallinga-Thie, G.M.; van Roon, A.M.; Wolffenbuttel, B.H.; van Tol, A.; Dullaart, R.P.F. Plasma cholesteryl ester transfer is a determinant of intima-media thickness in type 2 diabetic and nondiabetic subjects: Role of CETP and triglycerides. Diabetes 2005, 54, 3554–3559. [Google Scholar] [CrossRef] [PubMed]
- Kappelle, P.J.; Perton, F.; Hillege, H.L.; Dallinga-Thie, G.M.; Dullaart, R.P. High plasma cholesteryl ester transfer but not CETP mass predicts incident cardiovascular disease: A nested case-control study. Atherosclerosis 2011, 217, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Zeller, M.; Masson, D.; Farnier, M.; Lorgis, L.; Deckert, V.; Pais de Barros, J.P.; Desrumaux, C.; Sicard, P.; Grober, J.; Blache, D.; et al. High serum cholesteryl ester transfer rates and small high-density lipoproteins are associated with young age in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 2007, 50, 1948–1955. [Google Scholar]
- Triolo, M.; Kwakernaak, A.J.; Perton, F.G.; de Vries, R.; Dallinga-Thie, G.M.; Dullaart, R.P. Low normal thyroid function enhances plasma cholesteryl ester transfer in Type 2 diabetes mellitus. Atherosclerosis 2013, 228, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Navab, M.; Anantharamaiah, G.M.; Reddy, S.T.; Van Lenten, B.J.; Fogelman, A.M. Hdl as a biomarker, potential therapeutic target, and therapy. Diabetes 2009, 58, 2711–2717. [Google Scholar] [CrossRef] [PubMed]
- Triolo, M.; Annema, W.; Dullaart, R.P.; Tietge, U.J. Assessing the functional properties of high-density lipoproteins: An emerging concept in cardiovascular research. Biomark. Med. 2013, 7, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Corsetti, J.P.; Gansevoort, R.T.; Sparks, C.E.; Dullaart, R.P. Inflammation reduces HDL protection against primary cardiac risk. Eur. J. Clin. Investig. 2010, 40, 483–489. [Google Scholar] [CrossRef]
- Patel, P.J.; Khera, A.V.; Jafri, K.; Wilensky, R.L.; Rader, D.J. The anti-oxidative capacity of high-density lipoprotein is reduced in acute coronary syndrome but not in stable coronary artery disease. J. Am. Coll. Cardiol. 2011, 58, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Dullaart, R.P.F.; Annema, W.; Tio, R.A.; Tietge, U.J. The HDL anti-inflammatory function is impaired in myocardial infarction and may predict new cardiac events independent of HDL cholesterol. Clin. Chim. Acta 2014, 433, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Kappelle, P.J.; de Boer, J.F.; Perton, F.G.; Annema, W.; de Vries, R.; Dullaart, R.P.F.; Tietge, U.J. Increased LCAT activity and hyperglycaemia decrease the antioxidative functionality of HDL. Eur. J. Clin. Investig. 2012, 42, 487–495. [Google Scholar] [CrossRef]
- Sundaram, V.; Hanna, A.N.; Koneru, L.; Newman, H.A.; Falko, J.M. Both hypothyroidism and hyperthyroidism enhance low density lipoprotein oxidation. J. Clin. Endocrinol. Metab. 1997, 82, 3421–3424. [Google Scholar] [PubMed]
- Diekman, T.; Demacker, P.N.; Kastelein, J.J.; Stalenhoef, A.F.; Wiersinga, W.M. Increased oxidizability of low-density lipoproteins in hypothyroidism. J. Clin. Endocrinol. Metab. 1998, 83, 1752–1755. [Google Scholar] [CrossRef] [PubMed]
- Cebeci, E.; Alibaz-Oner, F.; Usta, M.; Yurdakul, S.; Erguney, M. Evaluation of oxidative stress, the activities of paraoxonase and arylesterase in patients with subclinical hypothyroidism. J. Investig. Med. 2012, 60, 23–28. [Google Scholar] [PubMed]
- Torun, A.N.; Kulaksizoglu, S.; Kulaksizoglu, M.; Pamuk, B.O.; Isbilen, E.; Tutuncu, N.B. Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clin. Endocrinol. 2009, 70, 469–474. [Google Scholar] [CrossRef]
- Ittermann, T.; Baumeister, S.E.; Völzke, H.; Wasner, C.; Schminke, U.; Wallaschofski, H.; Nauck, M.; Lüdemann, J. Are serum TSH levels associated with oxidized low-density lipoprotein? Results from the Study of Health in Pomerania. Clin. Endocrinol. 2012, 76, 526–532. [Google Scholar]
- Nobécourt, E.; Jacqueminet, S.; Hansel, B.; Chantepie, S.; Grimaldi, A.; Chapman, M.J.; Kontush, A. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: Relationship to elevated oxidative stress and hyperglycaemia. Diabetologia 2005, 48, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Mulder, D.J.; de Boer, J.F.; Graaff, R.; de Vries, R.; Annema, W.; Lefrandt, J.D.; Smit, AJ.; Tietge, U.J.; Dullaart, R.P. Skin autofluorescence is inversely related to HDL anti-oxidative capacity in type 2 diabetes mellitus. Atherosclerosis 2011, 218, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Triolo, M.; de Boer, J.F.; Annema, W.; Kwakernaak, A.J.; Tietge, U.J.; Dullaart, R.P. Low normal free T4 confers decreased high-density lipoprotein antioxidative functionality in the context of hyperglycaemia. Clin. Endocrinol. 2013, 79, 416–423. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.J.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar]
- Waring, A.C.; Rodondi, N.; Harrison, S.; Kanaya, A.M.; Simonsick, E.M.; Miljkovic, I.; Satterfield, S.; Newman, A.B.; Bauer, D.C.; Health, Ageing, and Body Composition (Health ABC) Study. Thyroid function and prevalent and incident metabolic syndrome in older adults: The Health, Ageing and Body Composition Study. Clin. Endocrinol. 2012, 76, 911–918. [Google Scholar]
- Laurberg, P.; Knudsen, N.; Andersen, S.; Carlé, A.; Pedersen, I.B.; Karmisholt, J. Thyroid function and obesity. Eur. Thyroid J. 2012, 1, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid 2008, 18, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.; Laurberg, P.; Rasmussen, L.B.; Bülow, I.; Perrild, H.; Ovesen, L.; Jørgensen, T. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J. Clin. Endocrinol. Metab. 2005, 90, 4019–4024. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; Platz, E.A.; Ladenson, P.W.; Mondul, A.M.; Menke, A.; Berrington de González, A. Body fatness and markers of thyroid function among U.S. men and women. Body fatness and markers of thyroid function among U.S. men and women. PLoS One 2012, 7, 34979. [Google Scholar]
- Feldt-Rasmussen, U. Thyroid and leptin. Thyroid 2007, 17, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Andler, W. Thyroid hormones before and after weight loss in obesity. Arch. Dis. Child. 2002, 87, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Maratou, E.; Hadjidakis, D.J.; Kollias, A.; Tsegka, K.; Peppa, M.; Alevizaki, M.; Mitrou, P.; Lambadiari, V.; Boutati, E.; Nikzas, D.; et al. Studies of insulin resistance in patients with clinical and subclinical hypothyroidism. Eur. J. Endocrinol. 2009, 160, 785–790. [Google Scholar]
- Stanická, S.; Vondra, K.; Pelikánová, T.; Vlcek, P.; Hill, M.; Zamrazil, V. Insulin sensitivity and counter-regulatory hormones in hypothyroidism and during thyroid hormone replacement therapy. Clin. Chem. Lab. Med. 2005, 43, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Iwen, K.A.; Schröder, E.; Brabant, G. Thyroid hormones and the metabolic syndrome. Eur. Thyroid J. 2013, 2, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Handisurya, A.; Pacini, G.; Tura, A.; Gessl, A.; Kautzky-Willer, A. Effects of T4 replacement therapy on glucose metabolism in subjects with subclinical (SH) and overt hypothyroidism (OH). Clin. Endocrinol. 2008, 69, 963–969. [Google Scholar] [CrossRef]
- Cai, Y.; Ren, Y.; Shi, J. Blood pressure levels in patients with subclinical thyroid dysfunction: a meta-analysis of cross-sectional data. Hypertens. Res. 2011, 34, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.P.; Bremner, A.P.; Bulsara, M.K.; O’Leary, P.; Leedman, P.J.; Feddema, P.; Michelangeli, V. Subclinical thyroid dysfunction and blood pressure: A community-based study. Clin. Endocrinol. 2006, 65, 486–491. [Google Scholar] [CrossRef]
- Clark, J.M. The epidemiology of nonalcoholic fatty liver disease in adults. J. Clin. Gastroenterol. 2006, 40, 5–10. [Google Scholar]
- Erickson, S.K. Nonalcoholic fatty liver disease. J. Lipid Res. 2009, 50, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Pamela Nuremberg; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology 2004, 40, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Vernon, G.; Baranova, A.; Younossi, Z.M. Systematic review: The epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 2011, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Sanyal, A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, E.H.; Amini, M.; Dullaart, R.P.; Faber, K.N.; Timmer, A.; Alizadeh, B.Z.; Blokzijl, H. Nonalcoholic fatty liver disease: Epidemiology and its risk factors from the LifeLines Cohort Study. In Proceeding of First European Fatty Liver Conference, Maastricht, The Netherlands, 5–6 March 2015.
- Pagano, G.; Pacini, G.; Musso, G.; Gambino, R.; Mecca, F.; Depetris, N.; Cassader, M.; David, E.; Cavallo-Perin, P.; Rizzetto, M. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: Further evidence for an etiologic association. Hepatology 2002, 35, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Day, CP.; Bonora, E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 2010, 363, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Schindhelm, R.K.; Dekker, J.M.; Nijpels, G.; Bouter, L.M.; Stehouwer, C.D.; Heine, R.J.; Diamant, M. Alanine aminotransferase predicts coronary heart disease events: A 10-year follow-up of the Hoorn study. Atherosclerosis 2007, 191, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Dullaart, R.P.; de Vries, R.; Dallinga-Thie, G.M.; Sluiter, W.J.; van Tol, A. Phospholipid transfer protein activity is determined by type 2 diabetes mellitus and metabolic syndrome, and is positively associated with serum transaminases. Clin. Endocrinol. 2008, 68, 375–381. [Google Scholar]
- Vergeer, M.; Boekholdt, S.M.; Sandhu, M.S.; Ricketts, S.L.; Wareham, N.J.; Brown, M.J.; de Faire, U.; Leander, K.; Gigante, B.; Kavousi, M.; et al. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation 2010, 122, 470–477. [Google Scholar]
- Dullaart, R.P.F.; van Tol, A.; Dallinga-Thie, G.M. Phospholipid transfer protein, an emerging cardiometabolic risk marker: Is it time to intervene? Atherosclerosis 2013, 228, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.; Souza, L.L.; Einicker-Lamas, M.; Pazos-Moura, C.C. Non-classic thyroid hormone signalling involved in hepatic lipid metabolism. J. Endocrinol. 2013, 25, 47–57. [Google Scholar] [CrossRef]
- Cable, E.E.; Finn, P.D.; Stebbins, J.W.; Hou, J.; Ito, B.R.; van Poelje, P.D.; Linemeyer, D.L.; Erion, M.D. Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology 2009, 49, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Turer, A.T.; Browning, J.D.; Ayers, C.R.; Das, S.R.; Khera, A.; Vega, G.L.; Grundy, S.M.; Scherer, P.E. Adiponectin as an independent predictor of the presence and degree of hepatic steatosis in the Dallas Heart Study. J. Clin. Endocrinol. Metab. 2012, 97, 982–986. [Google Scholar] [CrossRef]
- Mourouzis, I.; Giagourta, I.; Galanopoulos, G.; Mantzouratou, P.; Kostakou, E.; Kokkinos, A.D.; Tentolouris, N.; Pantos, C. Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: A response associated with up-regulation of Akt/mTOR and AMPK activation. Metabolism 2013, 62, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Wree, A.; Broderick, L.; Canbay, A.; Hoffman, H.M.; Feldstein, A.E. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Portincasa, P.; Lammert, F. PNPLA3-associated steatohepatitis: Toward a gene-based classification of fatty liver disease. Semin. Liver Dis. 2013, 33, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Chung, G.E.; Kim, D.; Kim, W.; Yim, J.Y.; Park, M.J.; Kim, Y.J.; Yoon, J.H.; Lee, H.S. Non-alcoholic fatty liver disease across the spectrum of hypothyroidism. J. Hepatol. 2012, 57, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Montagnana, M.; Salvagno, G.; Moghetti, P.; Zoppini, G.; Muggeo, M.; Lippi, G. Association between serum TSH, free T4, and serum liver enzyme activities in a large cohort of unselected outpatients. Clin. Endocrinol. 2008, 68, 481–484. [Google Scholar] [CrossRef]
- Silveira, M.G.; Mendes, F.D.; Diehl, N.N.; Enders, F.T.; Lindor, K.D. Thyroid dysfunction in primary biliary cirrhosis, primary sclerosing cholangitis and non-alcoholic fatty liver disease. Liver Int. 2009, 29, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xu, L.; Yu, C.; Miao, M.; Li, Y. Association between thyroid function and nonalcoholic fatty liver disease in euthyroid elderly Chinese. Clin. Endocrinol. 2011, 75, 240–246. [Google Scholar] [CrossRef]
- Tao, Y.; Gu, H.; Wu, J.; Sui, J. Thyroid function is associated with non-alcoholic fatty liver disease in euthyroid subjects. Endocr. Res. 2014, 0, 1–5. [Google Scholar] [CrossRef]
- Ittermann, T.; Haring, R.; Wallaschofski, H.; Baumeister, S.E.; Nauck, M.; Dörr, M.; Lerch, M.M.; Schwabedissen, H.E.M.; Rosskopf, D.; Völzke, H. Inverse association between serum free thyroxine levels and hepatic steatosis: Results from the Study of Health in Pomerania. Thyroid 2012, 22, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, H.; Chen, L.; Zheng, J.; Hu, X.; Wang, S.; Chen, T. Relationship between serum TSH level with obesity and NAFLD in euthyroid subjects. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2012, 32, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Carulli, L.; Ballestri, S.; Lonardo, A.; Lami, F.; Violi, E.; Losi, L.; Bonilauri, L.; Verrone, A.M.; Odoardi, M.R.; Scaglioni, F.; Bertolotti, M.; Loria, P. Is nonalcoholic steatohepatitis associated with a high-though-normal thyroid stimulating hormone level and lower cholesterol levels? Intern. Emerg. Med. 2013, 8, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Eshraghian, A.; Dabbaghmanesh, M.H.; Eshraghian, H.; Fattahi, M.R.; Omrani, G.R. Nonalcoholic fatty liver disease in a cluster of Iranian population: Thyroid status and metabolic risk factors. Arch. Iran. Med. 2013, 16, 584–589. [Google Scholar] [PubMed]
- Dullaart, R.P.; van den Berg, E.H.; van der Klauw, MM.; Blokzijl, H. Low normal thyroid function attenuates serum alanine aminotransferase elevations in the context of metabolic syndrome and insulin resistance in white people. Clin. Biochem. 2014, 47, 1028–1032. [Google Scholar] [CrossRef] [PubMed]
- Vítek, L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol. 2012, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Bulmer, A.C.; Verkade, H.J.; Wagner, K.H. Bilirubin and beyond: A review of lipid status in Gilbert’s syndrome and its relevance to cardiovascular disease protection. Prog. Lipid Res. 2013, 52, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Kundur, A.R.; Bulmer, A.C.; Singh, I. Unconjugated bilirubin inhibits collagen induced platelet activation. Platelets 2014, 25, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Dullaart, R.P.; de Vries, R.; Lefrandt, J.D. Increased large VLDL and small LDL particles are related to lower bilirubin in Type 2 diabetes mellitus. Clin. Biochem. 2014, 47, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, G.L.; Rigato, I.; Ostrow, J.D.; Bossi, F.; Bortoluzzi, A.; Sukowati, C.H.; Tedesco, F.; Tiribelli, C. Bilirubin inhibits the TNFalpha-related induction of three endothelial adhesion molecules. Biochem. Biophys. Res. Commun. 2009, 386, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Wallner, M.; Marculescu, R.; Doberer, D.; Wolzt, M.; Wagner, O.; Vitek, L.; Bulmer, A.C.; Wagner, K.H. Protection from age-related increase in lipid biomarkers and inflammation contributes to cardiovascular protection in Gilbert’s syndrome. Clin. Sci. 2013, 125, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Abraham, N.G.; Kappas, A. Heme oxygenase and the cardiovascular-renal system. Free Radic. Biol. Med. 2005, 39, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Lee, S.W.; Kim, S.H. Relationship between bilirubin and C-reactive protein. Clin. Chem. Lab. Med. 2011, 49, 1823–1828. [Google Scholar] [PubMed]
- Dullaart, R.P.F.; Kappelle, P.J.; de Vries, R. Lower carotid intima media thickness is predicted by higher serum bilirubin in both non-diabetic and Type 2 diabetic subjects. Clin. Chim. Acta 2012, 414, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Deetman, P.E.; Bakker, S.J.; Dullaart, R.P.F. High sensitive C-reactive protein and serum amyloid A are inversely related to serum bilirubin: Effect-modification by metabolic syndrome. Cardiovasc. Diabetol. 2013, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Levy, D.; Cupples, L.A.; Evans, J.C.; D’Agostino, R.B.; Ellison, R.C. Total serum bilirubin and risk of cardiovascular disease in the Framingham offspring study. Am. J. Cardiol. 2001, 87, 1196–1200. [Google Scholar] [CrossRef] [PubMed]
- Novotný, L.; Vítek, L. Inverse relationship between serum bilirubin and atherosclerosis in men: A meta-analysis of published studies. Exp. Biol. Med. 2003, 228, 568–571. [Google Scholar]
- Ajja, R.; Lee, D.C.; Sui, X.; Church, T.S.; Steven, N.B. Usefulness of serum bilirubin and cardiorespiratory fitness as predictors of mortality in men. Am. J. Cardiol. 2011, 108, 1438–1442. [Google Scholar] [CrossRef] [PubMed]
- Vítek, L.; Novotný, L.; Sperl, M.; Holaj, R.; Spácil, J. The inverse association of elevated serum bilirubin levels with subclinical carotid atherosclerosis. Cerebrovasc. Dis. 2006, 21, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Breimer, L.H.; Wannamethee, G.; Ebrahim, S.; Shaper, A.G. Serum bilirubin and risk of ischemic heart disease in middle-aged British men. Clin. Chem. 1995, 41, 1504–1508. [Google Scholar] [PubMed]
- Dullaart, R.P.F.; Boersema, J.; Lefrandt, J.D.; Wolffenbuttel, B.H.; Bakker, S.J. The inverse association of incident cardiovascular disease with plasma bilirubin is unaffected by adiponectin. Atherosclerosis 2014, 235, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Bakker, S.J.; Gansevoort, R.T.; Chowdhury, R.; Dullaart, R.P.F. Circulating Total Bilirubin and Risk of Incident Cardiovascular Disease in the General Population. Atherosclerosis. Thromb. Vasc. Biol. 2015. [Google Scholar] [CrossRef]
- Fevery, J. Bilirubin in clinical practice: A review. Liver Int. 2008, 28, 592–605. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F. Serum bilirubin may serve as a marker for increased heme oxygenase activity and inducibility in tissues-a rationale for the versatile health protection associated with elevated plasma bilirubin. Med. Hypothesis 2013, 81, 607–610. [Google Scholar] [CrossRef]
- Smith, T.J.; Drummond, G.S. Retinoic acid can enhance the stimulation by thyroid hormone of heme oxygenase activity in the liver of thyroidectomized rats. Biochim. Biophys. Acta 1991, 1075, 119–122. [Google Scholar]
- Li, F.; Lu, S.; Zhu, R.; Zhou, Z.; Ma, L.; Cai, L.; Liu, Z. Heme oxygenase-1 is induced by thyroid hormone and involved in thyroid hormone preconditioning-induced protection against renal warm ischemia in rat. Mol. Cell. Endocrinol. 2011, 339, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Gartner, L.M.; Arias, I.M. Hormonal control of hepatic bilirubin transport and conjugation. Am. J. Physiol. 1972, 222, 1091–1099. [Google Scholar]
- Van Steenbergen, W.; Fevery, J.; De Vos, R.; Leyten, R.; Heirwegh, K.P.; De Groote, J. Thyroid hormones and the hepatic handling of bilirubin. I. Effects of hypothyroidism and hyperthyroidism on the hepatic transport of bilirubin mono- and diconjugates in the Wistar rat. Hepatology 1989, 9, 314–321. [Google Scholar]
- Deetman, P.E.; Kwakernaak, A.J.; Bakker, S.J.; Dullaart, R.P.F. Low-normal free thyroxine confers decreased serum bilirubin in type 2 diabetes mellitus. Thyroid 2013, 23, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Deetman, P.E.; Bakker, S.J.; Kwakernaak, A.J.; Navis, G.; Dullaart, R.P.F.; PREVEND Study Group. The relationship of the anti-oxidant bilirubin with free thyroxine is modified by insulin resistance in euthyroid subjects. PLoS One 2014, 9, 90886. [Google Scholar]
- Bao, W.; Song, F.; Li, X.; Rong, S.; Yang, W.; Zhang, M.; Yao, P.; Hao, L.; Yang, N.; Hu, F.B.; et al. Plasma heme oxygenase-1 concentration is elevated in individuals with type 2 diabetes mellitus. PLoS One 2010, 5, 12371. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Tienhoven-Wind, L.J.N.; Dullaart, R.P.F. Low-Normal Thyroid Function and Novel Cardiometabolic Biomarkers. Nutrients 2015, 7, 1352-1377. https://doi.org/10.3390/nu7021352
Van Tienhoven-Wind LJN, Dullaart RPF. Low-Normal Thyroid Function and Novel Cardiometabolic Biomarkers. Nutrients. 2015; 7(2):1352-1377. https://doi.org/10.3390/nu7021352
Chicago/Turabian StyleVan Tienhoven-Wind, Lynnda J.N., and Robin P.F. Dullaart. 2015. "Low-Normal Thyroid Function and Novel Cardiometabolic Biomarkers" Nutrients 7, no. 2: 1352-1377. https://doi.org/10.3390/nu7021352
APA StyleVan Tienhoven-Wind, L. J. N., & Dullaart, R. P. F. (2015). Low-Normal Thyroid Function and Novel Cardiometabolic Biomarkers. Nutrients, 7(2), 1352-1377. https://doi.org/10.3390/nu7021352