Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Processing
2.2. Reagents
2.3. Main Instruments and Equipment
2.4. Preparation of Ferrous Chelates with Hairtail Protein Hydrolysates (Fe-HPH)
2.4.1. Preparation of the Hairtail Protein Hydrolysate (HPH)
2.4.2. Separation and Fractionation of the Hydrolysate (HPH)
2.4.3. Chelation of HPH and Ferrous Ions
2.5. Determination of Fe-HPH Chelates
2.5.1. Chelating Rate
2.5.2. Amino Acid Composition
2.5.3. In Vitro Antioxidant Activity
2.5.4. Fe Content
2.6. Anti-Fatigue Animal Experiments
2.6.1. Calculation of Haemoglobin Regeneration Efficiency (HRE)
2.6.2. Determination of Exhaustive Swimming Time of Rats
2.6.3. Detection of SOD, MDA, GSH-Px and Blood Lactic Acid
2.6.4. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Amino Acid Composition and Chelating Rate
Amino Acid | Fe-HPH I | Fe-HPH II | Fe-HPH III |
---|---|---|---|
Aspartic acid | 6.147 | 6.032 | 2.788 |
Threonine | 3.007 | 1.769 | 0.983 |
Serine | 2.783 | 1.628 | 0.946 |
Glutamic acid | 10.622 | 23.585 | 15.184 |
Glycine | 12.710 | 11.702 | 6.858 |
Alanine | 7.246 | 9.741 | 6.390 |
Cysteine | 0.567 | 3.900 | 2.898 |
Valine | 2.989 | 4.979 | 3.423 |
Methionine | 1.547 | 1.864 | 1.139 |
Isoleucine | 2.121 | 3.101 | 2.109 |
Leucine | 4.181 | 5.637 | 4.345 |
Tyrosine | 0.000 | 0.000 | 0.000 |
Phenylalanine | 2.389 | 3.901 | 2.686 |
Lysine | 4.423 | 7.274 | 5.131 |
Histidine | 1.312 | 0.239 | 0.000 |
Arginine | 5.372 | 1.638 | 0.911 |
Proline | 3.648 | 2.920 | 4.234 |
3.2. In Vitro Antioxidant Activities of Fe-HPH Chelates
Sample | Antioxidant Activity (%) | ||
---|---|---|---|
Hydroxyl Radical Scavenging | DPPH Radical Scavenging | Superoxide Anion Radical Scavenging | |
Fe-HPH I | 27.23 ± 0.35 ** | 23.71 ± 0.96 ** | 18.21 ± 0.77 ** |
Fe-HPH II | 63.14 ± 1.55 | 75.88 ± 2.04 | 47.35 ± 0.96 |
Fe-HPH III | 46.63 ± 1.72 * | 55.93 ± 2.25 * | 33.12 ± 1.88 * |
GSH | 60.06 ± 2.17 | 12.37 ± 1.33 ** | 40.05 ± 1.93 * |
Kind | Fe-HPH I | Fe-HPH II | Fe-HPH III |
---|---|---|---|
Chelating rate (%) | 64.32 | 75.96 | 70.88 |
3.3. Fe-HPH II Chelate and Haemoglobin Regeneration Efficiency (HRE)
Group | Food Intake/g/rat·Day | Fe Intake in Food/mg/rat·Day | Fe Intake by Gavage/mg/kg·bw |
---|---|---|---|
A | 13.52 ± 1.20 | 0.47 ± 0.04 | 0 |
B | 15.31 ± 2.56 | 0.54 ± 0.09 | 0 |
C | 14.25 ± 1.93 | 0.50 ± 0.07 | 3.01 |
D | 15.36 ± 2.40 | 0.54 ± 0.08 | 6.01 |
E | 16.20 ± 3.88 | 0.57 ± 0.07 | 12.02 |
F | 14.40 ± 0.56 | 0.51 ± 0.02 | 0 |
G | 14.72 ± 0.37 | 0.52 ± 0.01 | 12.02 |
Group | Body Weight g | Hb Content g·L | HRE % | ||
---|---|---|---|---|---|
0 Day | 20 Day | 0 Day | 20 Day | ||
A | 160.32 ± 4.11 | 235.33 ± 7.16 | 135.24 ± 2.12 | 134.33 ± 1.92 | 58.74 ± 4.20 |
B | 158.87 ± 5.83 | 238.77 ± 6.25 | 134.76 ± 1.55 | 136.61 ± 2.02 | 59.51 ± 3.89 |
C | 163.19 ± 5.46 | 237.78 ± 4.33 | 135.33 ± 3.52 | 139.87 ± 4.26 | 60.45 ± 6.22 |
D | 160.28 ± 4.07 | 239.15 ± 5.28 | 138.12 ± 2.08 | 144.66 ± 3.13 * | 63.15 ± 6.01 * |
E | 157.65 ± 6.09 | 245.41 ± 5.16 * | 136.43 ± 3.36 | 149.72 ± 5.21 *,∆ | 76.23 ± 7.67 **,∆ |
F | 161.79 ± 5.12 | 243.88 ± 3.39 | 133.50 ± 4.28 | 134.69 ± 2.45 | 56.30 ± 4.30 |
G | 160.34 ± 5.30 | 239.52 ± 6.94 | 135.11 ± 3.01 | 142.77 ± 3.32 * | 59.22 ± 3.88 |
3.4. Fe-HPH II Chelate and Exhaustive Swimming Time
Group | Number of Animals | Exhaustive Swimming Time (Min) |
---|---|---|
A | 10 | 98.20 ± 18.62 |
B | 10 | 134.25 ± 18.93 * |
C | 10 | 109.27 ± 10.57 |
D | 10 | 130.11 ± 11.80 * |
E | 10 | 166.34 ± 23.42 **,∆ |
F | 10 | 103.27 ± 18.04 |
G | 10 | 119.15 ± 9.43 * |
3.5. Fe-HPH II Chelate and SOD Activity in Rats
Group | Animal Number | SOD Activity (U/gHb) | ||
---|---|---|---|---|
Whole Blood | Liver | Muscle | ||
A | 10 | 12976.36 ± 1904.76 | 70.38 ± 25.71 | 95.49 ± 23.73 |
B | 10 | 14864.21 ± 1891.78 * | 96.47 ± 11.32 * | 233.74 ± 32.98 ** |
C | 10 | 14002.16 ± 1212.85 | 60.74 ± 20.91 ∆ | 157.36 ± 17.39 *,∆∆ |
D | 10 | 14789.09 ± 2464.06 * | 76.29 ± 14.85 | 241.70 ± 39.54 ** |
E | 10 | 15348.32 ± 1303.76 ** | 88.23 ± 19.23 | 299.46 ± 41.07 **,∆ |
F | 10 | 13995.67 ± 865.21 | 69.14 ± 9.28 | 134.07 ± 20.02 *,∆∆ |
G | 10 | 13366.07 ± 923.20 | 72.32 ± 7.11 | 156.37 ± 16.88 *,∆ |
3.6. Fe-HPH II Chelate and MDA Content in Rats
Group | Animal Number | MDA Content (nmol/mL) | ||
---|---|---|---|---|
Whole Blood | Liver | Muscle | ||
A | 10 | 3.67 ± 0.69 | 13.13 ± 4.51 | 29.63 ± 3.52 |
B | 10 | 1.96 ± 0.24 ** | 12.02 ± 0.11 | 18.09 ± 1.38 * |
C | 10 | 2.73 ± 0.87 ∆ | 12.54 ± 1.23 | 20.37 ± 2.16 * |
D | 10 | 2.06 ± 0.31 * | 11.81 ± 0.19 * | 17.54 ± 1.83 ** |
E | 10 | 1.55 ± 0.17 ** | 10.67 ± 0.78 * | 16.03 ± 1.82 ** |
F | 10 | 3.02 ± 0.13 ∆ | 13.08 ± 0.13 | 25.33 ± 1.07 ∆ |
G | 10 | 2.89 ± 0.66 ∆ | 12.88 ± 1.02 | 25.76 ± 1.12 ∆ |
3.7. Fe-HPH II Chelate and GSH-Px Activity in Rat Livers
Group | Animal Number | GSH-PxActivity | Blood lactic Acid Content (mmol/L) |
---|---|---|---|
A | 10 | 41,138.05 ± 1193.34 | 8.01 ± 1.45 |
B | 10 | 50,287.21 ± 2107.23 * | 4.02 ± 0.33 ** |
C | 10 | 43,739 ± 1880.26 ∆ | 7.23 ± 0.98 ∆∆ |
D | 10 | 49,183.51 ± 1694.76 * | 6.25 ± 0.71 *∆ |
E | 10 | 53,177.32 ± 2350.17 ** | 4.01 ± 0.08 ** |
F | 10 | 42,267.18 ± 933.15 ∆ | 7.10 ± 0.32 ∆∆ |
G | 10 | 43,832.15 ± 1003.43 ∆ | 7.14 ± 0.80 ∆∆ |
3.8. Fe-HPH II Chelate and Blood Lactic Acid Content in Rats
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fang, Y.F.; Miao, Y.L.; Lao, Q.Y.; Chen, M.L.; Song, W.D. Three enzyme hydrolysis process optimization of long oyster meat and the anti-fatigue test of its hydrolysate. Chin. Pharm. J. 2011, 46, 579–584. [Google Scholar]
- Najafian, L.; Babji, A.S. A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides 2012, 33, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Silaa, A.; Sayaria, N.; Baltic, R.; Martinez-Alvarezd, O.; Nedjar-Arroumeb, N.; Moncefe, N.; Bougateff, A. Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 2014, 148, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Assaad, S.; Naima, N.A.; Karima, H.; Gabrielle, C.; Rafik, B.; Nasri, M.; Dhulster, P.; Bougatef, A. Antibacterial peptides from barbell muscle protein hydrolysates: Activity against some pathogenic bacteria. LWT-Food Sci. Technol. 2014, 55, 183–188. [Google Scholar]
- Huang, H.N.; Rajanbabu, V.; Pan, C.Y.; Chan, Y.L.; Wu, C.J. A cancer vaccine based on the marine antimicrobial peptide pardaxin (GE33) for control of bladder-associated tumors. Biomaterials 2013, 34, 10151–10159. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.R.; Reynolds, P.R.; Declan, B.; Gerald, F. Bioactive peptides from muscle sources: Meat and fish. Nutrients 2011, 3, 765–791. [Google Scholar]
- Zareia, M.; Forghania, B.; Ebrahimpoura, A.; Abdul-Hamida, A.; Anwarc, F.; Saaria, N. In vitro and in vivo antihypertensive activity of palm kernel cake protein hydrolysates: Sequencing and characterization of protein bioactive. Ind. Crop. Prod. 2015, 76, 112–120. [Google Scholar] [CrossRef]
- Shi, J.H.; Zhu, J.J.; Chen, W.C.; Guo, H.Y. Study on anti-fatigue effect of mackerel hydrolysis product. J. Chin. Inst. Food Sci. Technol. 2010, 10, 77–79. [Google Scholar]
- Xu, K.; Liu, Y.; Wang, Y.E.; Li, L.D.; Jiang, G.L. Experiment research on anti-fatigue and hypoxia tolerance of the Antarctic krill degreased protein peptides. Food Sci. 2011, 32, 310–313. [Google Scholar]
- Haas, J.D.; Brownlie, T. Iron deficiency and reduced work capacity: A critical review of the research to determine a causal relationship. J. Nutr. 2001, 131, 676–690. [Google Scholar]
- Viethen, T.; Gerhardt, F.; Dumitrescu, D.; Knoop-Busch, S.; ten Freyhaus, H.; Rudolph, T.K.; Baldus, S.; Rosenkranz, S. Ferric carboxymaltose improves exercise capacity and quality of life in patients with pulmonary arterial hypertension and iron deficiency: A pilot study. Int. J. Cardiol. 2014, 175, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.M.; Deng, S.G.; Huang, S.B. Antioxidant activities of ferrous-chelating peptides isolated from five types of low-value fish protein hydrolysates. J. Food Biochem. 2014, 38, 627–633. [Google Scholar] [CrossRef]
- Ian, B.O.; Phil, M.K.; Brian, A.M.; FitzGerald, R.J.; Brodkorb, A. Molecular characterization of whey protein hydrolysate fractions with ferrous chelating and enhanced iron solubility capabilities. J. Agric. Food Chem. 2015, 63, 2708–2714. [Google Scholar]
- Mishra, R.K.; Rout, P.C.; Sarangi, K.; Nathsarma, K.C. Solvent extraction of Fe(III) from the chloride leach liquor of low grade iron ore tailings using Aliquat 336. Hydrometallurgy 2011, 108, 93–99. [Google Scholar] [CrossRef]
- Huo, J.C.; Deng, S.G.; Li, J.R. Study on the improvement of iron—Deficiency anemia in rats with different components of the peptide-iron chelate. J. Fish. China 2014, 38, 2075–2082. [Google Scholar]
- Lin, H.M.; Zhang, B.; Deng, S.G.; Tang, Y.; Chen, D.J. Study on free radicals scavenging activity and anti-bacterial activity of enzymatic protein—Fe chelate of four kinds of low value fishes in Zhoushan sea area. J. Chin. Inst. Food Sci. Technol. 2012, 12, 19–23. [Google Scholar]
- Alféreza, M.J.M.; López-Aliagaa, I.; Nestaresa, T.; Díaz-Castroa, J.; Barrionuevoa, M.; Rosb, P.B.; Campos, M.S. Dietary goat milk improves iron bioavailability in rats with induced ferropenic anaemia in comparison with cow milk. Int. Dairy J. 2006, 16, 813–821. [Google Scholar] [CrossRef]
- Zhang, D.; Hendricks, D.G.; Mahoney, A.W. Bioavailability of total iron from meat, spinach (Spinacea olevacea L.) and meat-spinach mixtures by anaemic and non-anaemic rats. Br. J. Nutr. 1989, 61, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Bazzarre, T.L.; Murdoch, S.D.; Wu, S.M.; Herr, D.G.; Snider, I.P. Plasma amino acid responses of trained athletes to two successive exhaustion trials with and without interim carbohydrate feeding. J. Am. Coll. Nutr. 1992, 11, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, E.Q.; Wu, Y.H.; Chen, S.L. The anti-fatigue effect of black soybean peptide in mice. Adv. Mater. Res. 2012, 554, 1475–1482. [Google Scholar] [CrossRef]
- Sun, S.G.; Niu, H.H.; Yang, T.; Lin, Q.L.; Luo, F.J.; Ma, M.H. Antioxidant and anti-fatigue activities of egg white peptides prepared by pepsin digestion. J. Sci. Food Agric. 2014, 94, 3195–3200. [Google Scholar] [CrossRef] [PubMed]
- You, L.J.; Zhao, M.M.; Regenstein, J.M.; Ren, J.Y. In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papin digestion. Food Chem. 2011, 124, 188–194. [Google Scholar] [CrossRef]
- Grewal, H.K.; Hira, C.K.; Kawatra, B.L. Iron availability from processed and cooked wheat products using haemoglobin regeneration efficiency method. Nahrung 2000, 44, 398–402. [Google Scholar] [CrossRef]
- Pinto, T.A.; Colli, C.; Areas, J.A.G. Effect of processing on iron bioavailability of extruded bovine lung. Food Chem. 1997, 60, 459–463. [Google Scholar] [CrossRef]
- Mansuroglu, B.; Derman, S.; Yabac, A.; Kizilbey, K. Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats. Int. J. Biol. Macromol. 2015, 72, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Li, S.; Guo, H.; Yan, P. Evaluation of soybean small peptide biological function. Food Res. Dev. 2012, 33, 164–167. [Google Scholar]
- Qi, B.; Liu, L.; Zhang, H.; Zhou, G.X.; Wang, S.; Duan, X.Z.; Bai, X.Y. Anti-fatigue effects of proteins isolated from Panax quinquefolium. J. Ethnopharmacol. 2014, 153, 430–434. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Lin, H.; Deng, S.-g. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates. Nutrients 2015, 7, 9860-9871. https://doi.org/10.3390/nu7125504
Huang S, Lin H, Deng S-g. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates. Nutrients. 2015; 7(12):9860-9871. https://doi.org/10.3390/nu7125504
Chicago/Turabian StyleHuang, Saibo, Huimin Lin, and Shang-gui Deng. 2015. "Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates" Nutrients 7, no. 12: 9860-9871. https://doi.org/10.3390/nu7125504
APA StyleHuang, S., Lin, H., & Deng, S.-g. (2015). Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates. Nutrients, 7(12), 9860-9871. https://doi.org/10.3390/nu7125504