At-Risk Serum Cholesterol Profile at Both Ends of the Nutrition Spectrum in West African Adults? The Benin Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects and Study Design
2.2. Biological and Biochemical Variables
2.3. Socio-Economic and Demographic Variables
2.4. Dietary Quality
2.5. Alcohol Consumption and Smoking
2.6. Physical Activity
2.7. Statistical Analyses
3. Results
3.1. Socio-Economic Characteristics
(n) | Low HDL-C (%) | Normal HDL-C (%) | p 1 | |
---|---|---|---|---|
Gender | <0.01 | |||
Women | (270) | 32.6 | 67.4 | |
Men | (271) | 22.5 | 77.5 | |
All | (541) | 27.5 | 72.5 | |
Age category | 0.78 | |||
25–34 years | (209) | 27.8 | 72.2 | |
35–44 years | (225) | 26.2 | 73.8 | |
45 years+ | (107) | 29.9 | 70.1 | |
Residence area | <0.001 | |||
Rural | (170) | 25.3 | 74.7 | |
Semi-urban | (171) | 18.1 | 81.9 | |
Urban (Cotonou) | (200) | 37.5 | 62.5 | |
Education | 0.39 | |||
None | (138) | 28.3 | 71.7 | |
Primary school | (187) | 24.1 | 75.9 | |
High school | (216) | 30.1 | 69.9 | |
SES score tertile | 0.25 | |||
Low | (186) | 23.1 | 76.9 | |
Middle | (195) | 29.7 | 70.3 | |
High | (160) | 30.0 | 70.0 |
3.2. Serum Lipid and Body Composition
3.3. Nutritional (Anthropometric) Status, Diet Quality and Lifestyle
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
All (n = 271) | Low HDL-C (n = 61) | Normal HDL-C (n = 210) | p 1 | All (n = 270) | Low HDL-C (n = 88) | Normal HDL-C (n = 182) | p | |
Ratio TC/HDL-C | 3.37 ± 1.26 | 4.46 ± 1.53 | 3.05 ± 0.96 | <0.001 | 3.21 ± 1.06 | 4.13 ± 1.10 | 2.76 ± 0.69 | <0.001 |
LDL-C | 2.53 ± 0.98 | 2.52 ± 1.01 | 2.53 ± 0.98 | 0.91 | 2.64 ± 0.91 | 2.78 ± 0.88 | 2.57 ± 0.93 | 0.085 |
Triglycerides mmol/L | 0.81 ± 0.46 | 0.89 ± 0.42 | 0.79 ± 0.46 | 0.14 | 0.69 ± 0.33 | 0.82 ± 0.34 | 0.63 ± 0.30 | 0.001 |
Body Mass Index | 22.3 ± 3.8 | 23.4 ± 4.2 | 21.9 ± 3.6 | 0.008 | 26.0 ± 6.1 | 28.2 ± 7.2 | 25.0 ± 5.2 | <0.001 |
Waist circumference | 82.2 ± 10.4 | 84.9 ± 11.3 | 81.4 ± 10.1 | 0.022 | 88.0 ± 13.7 | 92.6 ± 15.2 | 85.7 ± 12.3 | <0.001 |
Fat-free mass kg | 55.6 ± 7.7 | 56.7 ± 8.6 | 55.2 ± 7.4 | 0.18 | 44.6 ± 6.3 | 47.0 ± 7.3 | 43.5 ± 5.4 | <0.001 |
Fat mass kg | 11.4 ± 6.6 | 12.6 ± 6.7 | 11.1 ± 6.6 | 0.11 | 22.2 ± 11.7 | 26.0 ± 13.8 | 20.4 ± 10.0 | <0.001 |
Women | Men | ||||||||
---|---|---|---|---|---|---|---|---|---|
(n) | Low HDL-C (%) | Normal HDL-C (%) | p 1 | (n) | Low HDL-C (%) | Normal HDL-C (%) | p | ||
BMI status 2 | < 0.001 | <0.001 | |||||||
Underweight | (27) | 33.3 | 66.7 | (34) | 29.4 | 70.6 | |||
Normal weight | (106) | 18.9 | 81.1 | (183) | 16.4 | 83.6 | |||
Overweight/ obese | (137) | 43.1 | 56.9 | (54) | 38.9 | 61.1 | |||
WC status 3 | 0.023 | 0.045 | |||||||
Abdominal obesity | (187) | 36.9 | 63.1 | (37) | 35.1 | 64.9 | |||
Normal WC | (83) | 22.9 | 77.1 | (234) | 20.5 | 79.5 | |||
Micronutrient intake adequacy | 0.10 | 0.04 | |||||||
1st tertile | (113) | 34.5 | 65.5 | (83) | 31.3 | 68.7 | |||
2nd tertile | (93) | 37.6 | 62.4 | (76) | 22.4 | 77.6 | |||
3rd tertile | (64) | 21.9 | 78.1 | (112) | 16.1 | 83.9 | |||
Preventive diet score | 0.35 | 0.95 | |||||||
1st tertile | (75) | 37.3 | 62.7 | (74) | 23.0 | 77.0 | |||
2nd tertile | (133) | 33.1 | 66.9 | (126) | 23.0 | 77.0 | |||
3rd tertile | (62) | 25.8 | 74.2 | (71) | 21.1 | 78.9 | |||
Physical activity 4 | < 0.001 | 0.65 | |||||||
Inactive | (69) | 50.7 | 49.3 | (27) | 25.9 | 74.1 | |||
Active | (201) | 26.4 | 73.6 | (244) | 22.1 | 77.9 | |||
Alcohol consumption | 0.08 | 0.67 | |||||||
None | (171) | 31.0 | 69.0 | (93) | 21.5 | 78.5 | |||
Moderate | (72) | 29.2 | 70.8 | (97) | 20.6 | 79.4 | |||
High | (27) | 51.9 | 48.1 | (81) | 25.9 | 74.1 |
All | Low HDL-C | Normal HDL-C | p 1 | |
---|---|---|---|---|
Vitamin A | 99.5 ± 4.3 | 98.8 ± 6.9 | 99.7 ± 2.7 | 0.019 |
Vitamin E | 73.3 ± 22.5 | 72.6 ± 23.2 | 73.6 ± 22.1 | 0.640 |
Vitamin C | 99.8 ± 2.3 | 99.6 ± 3.3 | 99.9 ± 1.7 | 0.203 |
Thiamine | 99.0 ± 4.3 | 98.5 ± 5.2 | 99.2 ± 3.9 | 0.099 |
Riboflavin | 95.2 ± 10.6 | 94.4 ± 11.3 | 95.4 ± 10.3 | 0.319 |
Niacin | 97.6 ± 7.5 | 96.3 ± 9.2 | 98.0 ± 6.7 | 0.017 |
Vitamin B12 | 66.4 ± 26.6 | 61.7 ± 25.6 | 68.2 ± 26.7 | 0.011 |
Vitamin B6 | 99.8 ± 1.8 | 99.9 ± 1.8 | 99.8 ± 1.9 | 0.808 |
Folate | 94.6 ± 11.8 | 94.0 ± 12.1 | 94.8 ± 11.7 | 0.497 |
Pantothenic acid | 95.8 ± 9.5 | 94.9 ± 10.1 | 96.1 ± 9.2 | 0.193 |
Magnesium | 100 ± 0.29 | 100 ± 0.0 | 100 ± 0.34 | 0.538 |
Zinc | 87.6 ± 15.8 | 84.3 ± 16.5 | 88.8 ± 15.4 | 0.003 |
Iron | 86.4 ± 20.2 | 83.9 ± 21.7 | 87.3 ± 19.6 | 0.084 |
Calcium | 84.5 ± 22.4 | 79.4 ± 24.3 | 86.4 ± 21.4 | 0.001 |
Micronutrient adequacy score (maximum 14) | 10.0 ± 2.7 | 9.4 ± 2.7 | 10.2 ± 2.6 | 0.001 |
3.4. Diet and Lifestyle Determinants of HDL-C
HDL-C | ||
---|---|---|
β (standardized) | p | |
Sex (0 = M; 1 = F) | 0.18 | 0.015 |
Age years | 0.12 | 0.01 |
Zone (0 = rural; 1 = semi-urban; 2 = urban) | −0.145 | 0.025 |
Education (0 = none; 1 = primary; 2 = secondary+) | 0.045 | 0.37 |
Household amenity score tertile | −0.041 | 0.37 |
Alcohol consumption (g/day) | 0.025 | 0.57 |
Physical activity (0 = None; 1 ≥ 30 min/day) | 0.086 | 0.08 |
Micronutrient intake adequacy score (0–14) | 0.125 | 0.01 |
Preventive diet score (0–8) | −0.004 | 0.91 |
BMI | −0.009 | 0.70 |
Waist circumference | −0.165 | 0.10 |
Interaction sex by zone | 0.046 | 0.59 |
R2 of model | 0.130 | <0.001 |
3.5. Association of HDL-C with Other Cardiometabolic Risk Factors
Men | Women | |||||
---|---|---|---|---|---|---|
Low HDL-C (%) | Normal HDL-C (%) | OR (95% CI) 1 | Low HDL-C (%) | Normal HDL-C (%) | OR (95% CI) 1 | |
High blood pressure | 14.8 | 25.7 | 0.50 (0.23–1.08) | 23.9 | 25.8 | 0.90 (0.50–1.63) |
Insulin resistance | 21.3 | 15.2 | 1.51 (0.73–3.09) | 46.6 | 27.5 | 2.30 (1.36–3.91) |
Hyperhomocysteinaemia | 44.3 | 54.6 | 0.66 (0.37–1.17) | 27.6 | 23.3 | 1.25 (0.70–2.24) |
Elevated fasting glycaemia | 8.2 | 10.0 | 0.80 (0.29–2.23) | 8.0 | 9.3 | 0.84 (0.33–2.10) |
High ratio TC/HDL-C | 26.2 | 4.8 | 7.11 (3.03–16.70) 2 | 52.3 | 4.4 | 23.82 (10.5–54.2) |
High triglyceride concentration | 3.3 | 3.3 | 0.98 (0.20–4.86) | 2.3 | 0.0 | 3 |
Abdominal obesity | 21.3 | 11.4 | 2.10 (0.996–4.42) | 78.4 | 64.8 | 1.97 (1.09–3.56) |
MetS 4 | 9.8 | 1.4 | 2.4 (0.94–5.98) | 28.4 | 3.3 | 3.8 (1.85–7.84) |
≥2 MetS components other than low HDL-C | 14.8 | 10.5 | 1.48 (0.64–3.41) | 28.4 | 25.3 | 1.17 (0.66–2.08) |
4. Discussion
4.1. Low HDL-C at Both Ends of the BMI Continuum?
4.2. Micronutrient Intake Independently Associated with HDL-C
4.3. Low HDL-C and High TC/HDL-C as Markers of at-Risk Lipid Profile in Sub-Saharan Africans
4.4. Strengths and Limitations
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Popkin, B.M. The nutrition transition: an overview of world patterns of change. Nutr. Rev. 2004, 6, S140–S143. [Google Scholar]
- Food and Agriculture Organization, The Double Burden of Malnutrition: Case Studies in Six Countries. FAO: Rome, Italy, 2006.
- World Health Organization, Preventing Chronic Diseases: A Vital Investment; WHO: Geneva, Switzerland, 2005.
- Beaglehole, R.; Bonita, R.; Horton, R.; Adams, C.; Alleyne, G.; Asaria, P.; Baugh, V.; Bekedam, H.; Billo, N.; Casswell, S.; et al. Priority actions for the non-communicable disease crisis. Lancet 2011, 377, 1438–1447. [Google Scholar] [CrossRef]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (The Interheart Study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Toth, P.P. Pharmacomodulation of High-Density Lipoprotein metabolism as a therapeutic intervention for atherosclerotic disease. Curr. Cardiol. Rep. 2010, 12, 481–487. [Google Scholar] [CrossRef]
- Mineo, C.; Deguchi, H.; Griffin, J.H.; Shaul, P.W. Endothelial and antithrombotic actions of HDL. Circ. Res. 2006, 98, 1352–1364. [Google Scholar] [CrossRef]
- Morton, J.; Zoungas, S.; Li, Q.; Patel, A.A.; Chalmers, J.; Woodward, M.; Celermajer, D.S.; Beulens, J.W.; Stolk, R.P.; Glasziou, P.; et al. Low HDL-Cholesterol and the risk of diabetic nephropathy and retinopathy. Diabetes Care 2012, 35, 2201–2206. [Google Scholar] [CrossRef]
- Windler, E.; Schöffauer, M.; Zyriax, B.C. The significance of low HDL-cholesterol levels in an ageing society at increased risk for cardiovascular disease. Diabetes Vasc. Dis. Res. 2007, 4, 136–142. [Google Scholar]
- Njelekela, M.A.; Mpembeni, R.; Muhihi, A.; Mligiliche, N.L.; Spiegelman, D.; Hertzmark, E.; Liu, E.; Finkelstein, J.L.; Fawzi, W.W.; et al. Gender-related differences in the prevalence of cardiovascular disease risk factors and their correlates in urban Tanzania. BMC Cardiovasc. Disord. 2009, 30. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Salinas, C.A.; Olaiz, G.; Valles, V.; Torres, J.M.; Gómez Pérez, F.J.; Rull, J.A.; Rojas, R.; Franco, A.; Sepulveda, J. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J. Lipid Res. 2001, 42, 1298–1307. [Google Scholar]
- Bhopal, R.; Unwin, N.; White, M.; Yallop, J.; Walker, L.; Alberti, K.G.M.M.; Harland, J.; Patel, S.; Ahmad, N.; Turner, C.; et al. Heterogeneity of coronary heart disease risk factors in Indian, Pakistani, Bangladeshi, and European origin populations: Cross-sectional study. Br. Med. J. 1999, 319, 215–220. [Google Scholar] [CrossRef]
- Steyn, K.; Damasceno, A. Lifestyle and Related Risk Factors for Chronic Diseases. In Disease and Mortality in Sub-Saharan Africa, 2nd; Jamison, D.T., Feacham, R.G., Makgoba, M.W., Bos, E.R., Baingana, F.K., Hofman, K.J., Rogo, K.O., Eds.; World Bank: Washington, DC, USA, 2006; pp. 247–265. [Google Scholar]
- Agyemang, C.; Addo, J.; Bhopal, R.; Aikins Ade, G.; Stronks, K. Cardiovascular disease, diabetes and established risk factors among populations of sub-Saharan African descent in Europe: A literature review. Global Health 2009, 5. [Google Scholar] [CrossRef]
- Schutte, A.E.; Schutte, R.; Huisman, H.W.; Rooyen, J.M.; Malan, L.; Olckers, A.; Malan, N.T. Classifying Africans with the metabolic syndrome. Horm. Metab. Res. 2009, 41, 79–85. [Google Scholar] [CrossRef]
- Sumner, A.E.; Zhou, J.; Doumatey, A.; Imoisili, O.E.; Amoah, A.; Acheampong, J.; Oli, J.; Johnson, T.; Adebamowo, C.; Rotimi, C.N. Low HDL-cholesterol with normal triglyceride levels is the most common lipid pattern in West Africans and African Americans with metabolic syndrome: Implications for cardiovascular disease prevention. CVD Prev. Control 2010, 5, 75–80. [Google Scholar] [CrossRef]
- Ellison, R.C.; Zhang, Y.; Qureshi, M.M.; Knox, S.; Arnett, D.K.; Province, M.A. Investigators of the NHLBI Family Heart Study. Lifestyle determinants of high-density lipoprotein cholesterol: The National Heart, Lung and Blood Institute Family Heart Study. Am. Heart J. 2004, 147, 529–535. [Google Scholar] [CrossRef]
- Ntandou, G.; Delisle, H.; Agueh, V.; Fayomi, B. Abdominal obesity explains the positive rural-urban gradient in the prevalence of the metabolic syndrome in Benin, West Africa. Nutr. Res. 2009, 29, 180–189. [Google Scholar] [CrossRef]
- Delisle, H.; Ntandou, G.; Agueh, V.; Sodjinou, R.; Fayomi, B. Urbanisation, nutrition transition and cardiometabolic risk: The Benin Study. Br. J. Nutr. 2011, 107, 1534–1544. [Google Scholar]
- Zeba, A.; Delisle, H.; Renier, G.; Savadogo, B.; Baya, B. The double burden of malnutrition and cardio-metabolic risk widens the gender and socioeconomic health gap: A study among adults in Burkina Faso (West Africa). Public Health Nutr. 2012, 15, 2210–2219. [Google Scholar] [CrossRef]
- Delisle, H.; Receveur, O. Les “dysnutritions” dans les pays en développement (“Dysnutrition” in developing countries). Can. Med. Assoc. J. 2007, 176. [Google Scholar] [CrossRef]
- Sodjinou, R.; Agueh, V.; Fayomi, B.; Delisle, H. Obesity and cardio-metabolic risk factors in urban adults of Benin: relationship with socio-economic status, urbanisation, and lifestyle patterns. BMC Public Health 2008, 8. [Google Scholar] [CrossRef]
- Ntandou, G.; Delisle, H.; Agueh, V.; Fayomi, B. Physical activity and socioeconomic status explain rural-differences in obesity: A cross-sectional study in Benin (West Africa). Ecol. Food Nutr. 2008, 47, 1–25. [Google Scholar] [CrossRef]
- Sodjinou, R.; Agueh, V.; Fayomi, B.; Delisle, H. Dietary patterns of urban adults in Benin: Relationship with overall diet quality and socio-demographic characteristics. Eur. J. Clin. Nutr. 2009, 63, 222–228. [Google Scholar] [CrossRef]
- World Health Organization, Obesity: Preventing and Managing the Global Epidemic. WHO Expert Consultation; Technical Report Series No. 894; WHO: Geneva, Switzerland, 2000.
- Després, J.P.; Lemieux, I.; Prud’homme, D. Treatment of obesity: Need to focus on high risk abdominally obese patients. Br. Med. J. 2001 322, 716–720.
- Sun, S.S.; Chumlea, W.C.; Heymsfield, S.B.; Lukaski, H.C.; Schoeller, D.; Friedl, K.; Kuczmarski, R.J.; Flegal, K.M.; Johnson, C.L.; Hubbard, V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 2003, 77, 331–340. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and B-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute (NHLBI), Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). National Institutes of Health: Bethesda, MD, USA, 2001.
- Guéant, J.L.; Elia, M.; Romano, A. Association between folate, vitamin B12, homocysteine and pathologies related to aging: The need to consider complex nutrient and gene-nutrient interactions and the functional and socio-economic determinants in population-based studies. Clin. Chem. Lab. Med. 2007, 45, 127–129. [Google Scholar]
- WHO/FAO Expert Consultation, Vitamin and Mineral Requirements in Human Nutrition, 2nd edWorld Health Organization: Geneva, Switzerland, 2005.
- WHO/FAO Expert Consultation, Recommendations for Preventing Cardiovascular Diseases. In Diet, Nutrition and the Prevention of Chronic Diseases. WHO/FAO Expert Consultation; WHO Technical Report Series No. 916; World Health Organization: Geneva, Switzerland, 2003.
- World Health Organization. Stepwise Approach to Surveillance of Noncommunicable Diseases (Steps). STEPS Instruments for NCD Risk Factors (Core and Expanded Version 1.4). Available online: http://www.who.int/chp/steps/en/ (accessed on 10 September 2010).
- Chirovsky, D.R.; Fedirko, V.; Cui, Y.; Sazonov, V.; Barter, P. Prospective studies on the relationship between high-density lipoprotein cholesterol and cardiovascular risk: A systematic review. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 404–423. [Google Scholar] [CrossRef]
- Veiga, G.R.; Ferreira, H.S.; Sawaya, A.L.; Calado, J.; Florêncio, T.M.M.T. Dyslipidaemia and undernutrition in children from impoverished areas of Maceió, State of Alagoas, Brazil. Int. J. Environ. Public Health 2010, 7, 4139–4151. [Google Scholar] [CrossRef]
- Kamel, M.; Barkia, A.; Chaabouni, M.; Aouadi, R.; Srairi, R.; Zouari, B.; Aouidet, A. Profil biologique d’une population de nourrissons tunisiens (0–2 ans), malnutritions (in French). Tunis. Méd. 2009, 87, 22–27. [Google Scholar]
- Jehn, M.; Brewis, A. Paradoxical malnutrition in mother–child pairs: Untangling the phenomenon of over- and under-nutrition in underdeveloped economies. Econ. Hum. Biol. 2009, 7, 28–35. [Google Scholar] [CrossRef]
- Eckhardt, C.L. Micronutrient Malnutrition, Obesity, and Chronic Disease in Countries undergoing the Nutrition Transition: Potential Links and Program/Policy Implications; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2006. [Google Scholar]
- Florêncio, T.T.; Ferreira, H.S.; Cavalcante, J.C.; Sawaya, A.L. Short stature, obesity and arterial hypertension in a very low income population of North-eastern Brazil. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 26–33. [Google Scholar] [CrossRef]
- Barker, D.J.P. Mothers, Babies and Health in Later Life, 2nd ed; Churchill Livingstone: Edunburgh, Germany, 1998. [Google Scholar]
- Delisle, H. Poverty: The double burden of malnutrition in mothers and the intergenerational impact. Ann. N. Y. Acad. Sci. 2008, 1136, 172–184. [Google Scholar] [CrossRef]
- Mbalilaki, J.A.; Hellènius, M.L.; Masesa, Z.; Høstmark, A.T.; Sundquist, J.; Strømme, S.B. Physical activity and blood lipids in rural and urban Tanzanians. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 344–348. [Google Scholar] [CrossRef]
- Conway, J.M.; Ingwersen, L.A.; Moshfegh, A.J. Accuracy of dietary recall using the USDA five-step multiple- pass method in men: An observational validation study. J. Am. Diet. Assoc. 2004, 104, 595–603. [Google Scholar] [CrossRef]
- Eckhardt, C.; Torheim, L.; Monterrubio, E.; Barquera, S.; Ruel, M.T. The overlap of overweight and anemia among women in three countries undergoing the nutrition transition. Eur. J. Clin. Nutr. 2008, 62, 238–246. [Google Scholar] [CrossRef]
- Rafnsson, S.B.; Saravanan, P.; Bhopal, R.S.; Yajnik, C.S. Is a low blood level of vitamin B12 a cardiovascular and diabetes risk factor? A systematic review of cohort studies. Eur. J. Nutr. 2011, 50, 97–106. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. Hyperhomocysteinemia in health and disease: Where we are now, and where do we go from here? Clin. Chem. Lab. Med. 2012, 50, 2075–2080. [Google Scholar]
- Miao, X.; Sun, W.; Fu, Y.; Miao, L.; Cai, L. Zinc homeostasis in the metabolic syndrome and diabetes. Front. Med. 2013, 7, 31–52. [Google Scholar] [CrossRef]
- Zeba, A.; Delisle, H.; Renier, G. Dietary patterns and physical inactivity, two contributing factors to the double burden of malnutrition among adults in Burkina Faso (West Africa). J. Nutr. Sci. 2013, in press. [Google Scholar]
- Pinelli, N.; Jaber, L.A.; Brown, M.B.; Herman, W.H. Serum 25-hydroxy vitamin D and insulin resistance, metabolic syndrome, and glucose intolerance among arab american. Diabetes Care 2010, 33, 1373–1375. [Google Scholar] [CrossRef]
- Ames, B.N. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc. N. Y. Acad. Sci. 2006, 103, 17589–17594. [Google Scholar] [CrossRef]
- Kohler, I.V.; Soldo, B.J.; Anglewicz, P.; Kohler, H.P. Inflammation, chronic diseases and aging in a developing country context: Evidence from a biomarker data collection in Malawi. Available online: http://paa2009.princeton.edu/download.aspx?submissionId=91381 (accessed on 12 October 2011).
- El Mabchour, A.; Delisle, H.; Agueh, V. Homocystéinémie: Déterminants et relation avec les facteurs de risque cardiométabolique au Bénin (in French). Presse Méd. 2010, 39, e238–e246. [Google Scholar] [CrossRef]
- Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. The cholesterol efflux capacity of macrophages is a measure of functionality of HDL, Independent of HDL-C levels. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef]
- Besler, C.; Luscher, T.F.; Landmesser, U. Molecular mechanisms of vascular effects of high-density lipoprotein: Alterations in cardiovascular disease. EMBO Mol. Med. 2012, 4, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Bersot, T.P.; Pépin, G.M.; Mahley, R.W. Risk determination of dyslipidemia in populations characterized by low levels of high-density lipoprotein cholesterol. Am. Heart J. 2003, 146, 1052–1060. [Google Scholar] [CrossRef]
- Jou, M.; Philipps, A.; Lönnerdal, B. Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J. Nutr. 2010, 140, 1621–1627. [Google Scholar] [CrossRef]
- Motala, A.A.; Pirie, F.J.; Esterhuizen, T.; Omar, M.A.K. The prevalence of metabolic syndrome and determination of the optimal waist circumference cut-off points in a rural South-African community. Diabetes Care 2011, 34, 1032–1037. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Delisle, H.; Ntandou, G.; Sodjinou, R.; Couillard, C.; Després, J.-P. At-Risk Serum Cholesterol Profile at Both Ends of the Nutrition Spectrum in West African Adults? The Benin Study. Nutrients 2013, 5, 1366-1383. https://doi.org/10.3390/nu5041366
Delisle H, Ntandou G, Sodjinou R, Couillard C, Després J-P. At-Risk Serum Cholesterol Profile at Both Ends of the Nutrition Spectrum in West African Adults? The Benin Study. Nutrients. 2013; 5(4):1366-1383. https://doi.org/10.3390/nu5041366
Chicago/Turabian StyleDelisle, Hélène, Gervais Ntandou, Roger Sodjinou, Charles Couillard, and Jean-Pierre Després. 2013. "At-Risk Serum Cholesterol Profile at Both Ends of the Nutrition Spectrum in West African Adults? The Benin Study" Nutrients 5, no. 4: 1366-1383. https://doi.org/10.3390/nu5041366
APA StyleDelisle, H., Ntandou, G., Sodjinou, R., Couillard, C., & Després, J. -P. (2013). At-Risk Serum Cholesterol Profile at Both Ends of the Nutrition Spectrum in West African Adults? The Benin Study. Nutrients, 5(4), 1366-1383. https://doi.org/10.3390/nu5041366