Differential Effects of Military Training on Fat-Free Mass and Plasma Amino Acid Adaptations in Men and Women
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Basic Combat Training
2.3. Anthropometrics
2.4. Amino Acid Analysis
2.5. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Body Composition
Male | Female | |||
---|---|---|---|---|
Week 0 | Week 9 | Week 0 | Week 9 | |
Age (yrs) | 23 ± 5 | - | 23 ± 6 | - |
Height (cm) | 176.2 ± 7.2 | - | 163.1 ± 6.0 * | - |
Body mass (kg) | 84.0 ± 16.2 | 80.3 ± 12.4 † | 66.3 ± 8.3 * | 66.4 ± 7.4 * |
BMI (kg∙m−2) | 27.0 ± 4.3 | 25.7 ± 3.2 † | 25.0 ± 2.9 * | 25.1 ± 2.4 |
Skinfold thickness (mm) | 48.9 ± 22.4 | 39.2 ± 17.5 † | 51.7 ± 23.0 | 44.6 ± 17.0 † |
Body fat (%) | 14.3 ± 4.8 | 12.3 ± 3.5 † | 26.6 ± 5.6 * | 22.8 ± 5.1 *,† |
Fat-mass (kg) | 12.3 ± 5.7 | 10.0 ± 3.9 † | 18.1 ± 5.6 * | 15.4 ± 4.7 *,† |
Fat-free mass (kg) | 71.7 ± 11.4 | 70.3 ± 9.4 † | 48.2 ± 4.8 * | 51.0 ± 5.3 *,† |
3.3. Diet
Male | Female | |||
---|---|---|---|---|
Week 0 | Week 9 | Week 0 | Week 9 | |
Absolute (per day) | ||||
Energy (kcal) | 1975 ± 909 | 2216 ± 777 † | 1824 ± 1014 | 1789 ± 613 * |
PRO (g) | 78 ± 36 | 87 ± 33 † | 69 ± 38 | 68 ± 23 * |
CHO (g) | 240 ± 124 | 286 ± 101 † | 222 ± 125 | 240 ± 84 * |
FAT (g) | 77 ± 37 | 85 ± 35 † | 73 ± 46 | 66 ± 26 * |
Relative (per kg body mass) | ||||
Energy (kcal) | 24.5 ± 13.3 | 28.1 ± 10.7 † | 28.5 ± 17.9 | 27.2 ± 10.1 |
PRO (g) | 1.0 ± 0.5 | 1.1 ± 0.4 † | 1.1 ± 0.7 | 1.0 ± 0.4 |
CHO (g) | 3.0 ± 2.0 | 3.6 ± 1.4 † | 3.5 ± 2.2 | 3.6 ± 1.4 |
FAT (g) | 1.0 ± 0.5 | 1.1 ± 0.5 † | 1.1 ± 0.8 | 1.0 ± 0.4 |
3.4. Plasma Amino Acids
Week 0 | Week 3 | Week 6 | Week 9 | ||
---|---|---|---|---|---|
TAA | M | 3035 ± 420 a | 3153 ± 521 b | 3040 ± 360 a | 3162 ± 428 b |
F | 2522 ± 268 a | 2869 ± 316 b | 2789 ± 359 b | 2953 ± 318 c | |
NEAA | M | 2048 ± 297 a | 2179 ± 369 b | 2104 ± 264 a,b | 2155 ± 309 b |
F | 1761 ± 220 a | 2009 ± 234 b,c | 1947 ± 272 b | 2038 ± 239 c | |
EAA | M | 986 ± 153 a | 975 ± 187 a | 932 ± 124 b | 1008 ± 145 a |
F | 761 ± 90 a | 861 ± 119 b | 842 ± 118 b | 915 ± 114 b | |
BCAA | M | 500 ± 98 a | 486 ± 116 a | 465 ± 82 b | 502 ± 91 a |
F | 353 ± 57 a | 394 ± 71 b | 391 ± 69 b | 423 ± 68 c | |
LEU | M | 149 ± 26 a | 142 ± 33 a | 133 ± 21 b | 145 ± 22 a |
F | 101 ± 16 a | 106 ± 18 a,b | 107 ± 17 b | 117 ± 17 c | |
ILE | M | 76 ± 15 a | 71 ± 19 b | 69 ± 14 b | 77 ± 14 a |
F | 50 ± 10 a | 55 ± 13 a,b | 56 ± 11 a,b | 63 ± 11 c | |
VAL | M | 275 ± 61 a | 273 ± 72 a,b | 264 ± 55 b | 280 ± 60 a |
F | 202 ± 36 a | 233 ± 44 b,c | 229 ± 44 b | 243 ± 44 c |
4. Discussion
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Pasiakos, S.M.; Vislocky, L.M.; Carbone, J.W.; Altieri, N.; Konopelski, K.; Freake, H.C.; Anderson, J.M.; Ferrando, A.A.; Wolfe, R.R.; Rodriguez, N.R. Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J. Nutr. 2010, 140, 745–751. [Google Scholar] [CrossRef]
- Weinheimer, E.M.; Sands, L.P.; Campbell, W.W. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: Implications for sarcopenic obesity. Nutr. Rev. 2010, 68, 375–388. [Google Scholar] [CrossRef]
- Wolfe, R.R. Regulation of muscle protein by amino acids. J. Nutr. 2002, 132, 3219S–3224S. [Google Scholar]
- Einspahr, K.J.; Tharp, G. Influence of endurance training on plasma amino acid concentrations in humans at rest and after intense exercise. Int. J. Sports Med. 1989, 10, 233–236. [Google Scholar] [CrossRef]
- Kim, P.L.; Staron, R.S.; Phillips, S.M. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J. Physiol. 2005, 568, 283–290. [Google Scholar] [CrossRef]
- Lamont, L.S. Gender differences in amino acid use during endurance exercise. Nutr. Rev. 2005, 63, 419–422. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Gender differences in substrate metabolism during endurance exercise. Can. J. Appl. Physiol. 2000, 25, 312–327. [Google Scholar] [CrossRef]
- Etzion-Daniel, Y.; Constantini, N.; Finestone, A.S.; Shahar, D.R.; Israeli, E.; Yanovich, R.; Moran, D.S. Nutrition consumption of female combat recruits in army basic training. Med. Sci. Sports Exerc. 2008, 40, S677–S684. [Google Scholar] [CrossRef]
- Nindl, B.C.; McClung, J.P.; Miller, J.K.; Karl, J.P.; Pierce, J.R.; Scofield, D.E.; Young, A.J.; Lieberman, H.R. Bioavailable IGF-I is associated with fat-free mass gains after physical training in women. Med. Sci. Sports Exerc. 2011, 43, 793–799. [Google Scholar]
- Pasiakos, S.M.; Karl, J.P.; Lutz, L.J.; Murphy, N.E.; Margolis, L.M.; Rood, J.C.; Cable, S.J.; Williams, K.W.; Young, A.J.; McClung, J.P. Cardiometabolic risk in US Army recruits and the effects of basic combat training. PLoS One 2012, 7, e31222. [Google Scholar]
- Sharp, M.A.; Patton, J.F.; Knapik, J.J.; Hauret, K.; Mello, R.P.; Ito, M.; Frykman, P.N. Comparison of the physical fitness of men and women entering the U.S. Army: 1978–1998. Med. Sci. Sports Exerc. 2002, 34, 356–363. [Google Scholar]
- Lieberman, H.R.; Kellogg, M.D.; Bathalon, G.P. Female marine recruit training: Mood, body composition, and biochemical changes. Med. Sci. Sports Exerc. 2008, 40, S671–S676. [Google Scholar] [CrossRef]
- Williams, A.G. Effects of basic training in the British Army on regular and reserve army personnel. J. Strength. Cond. Res. 2005, 19, 254–259. [Google Scholar]
- Block, G.; Hartman, A.M.; Dresser, C.M.; Carroll, M.D.; Gannon, J.; Gardner, L. A data-based approach to diet questionnaire design and testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar]
- Block, G.; Woods, M.; Potosky, A.; Clifford, C. Validation of a self-administered diet history questionnaire using multiple diet records. J. Clin. Epidemiol. 1990, 43, 1327–1335. [Google Scholar] [CrossRef]
- Knapik, J.J.; Darakjy, S.; Hauret, K.G.; Canada, S.; Marin, R.; Jones, B.H. Ambulatory physical activity during United States Army basic combat training. Int. J. Sports Med. 2007, 28, 106–115. [Google Scholar] [CrossRef]
- Knapik, J.J.; Sharp, M.A.; Darakjy, S.; Jones, S.B.; Hauret, K.G.; Jones, B.H. Temporal changes in the physical fitness of US Army recruits. Sports Med. 2006, 36, 613–634. [Google Scholar] [CrossRef]
- AR 40-25. Nutrition Standards and Education; Department of the Army: Washington, DC, USA, 2001.
- Pamphlet 30-22. Operationg Procedures for the Army Food Program; Department of the Army: Washington, DC, USA, 2007.
- Jackson, A.S.; Pollock, M.L. Generalized equations for predicting body density of men. Br. J. Nutr. 1978, 40, 497–504. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–181. [Google Scholar]
- Drummond, M.J.; Glynn, E.L.; Fry, C.S.; Timmerman, K.L.; Volpi, E.; Rasmussen, B.B. An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E1011–E1018. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; McClung, J.P. Supplemental dietary leucine and the skeletal muscle anabolic response to essential amino acids. Nutr. Rev. 2011, 69, 550–557. [Google Scholar] [CrossRef]
- Pikosky, M.A.; Gaine, P.C.; Martin, W.F.; Grabarz, K.C.; Ferrando, A.A.; Wolfe, R.R.; Rodriguez, N.R. Aerobic exercise training increases skeletal muscle protein turnover in healthy adults at rest. J. Nutr. 2006, 136, 379–383. [Google Scholar]
- Holm, G.; Sullivan, L.; Jagenburg, R.; Bjorntorp, P. Effects of physical training and lean body mass of plasma amino acids in man. J. Appl. Physiol. 1978, 45, 177–181. [Google Scholar]
- Karl, J.P.; Lieberman, H.R.; Cable, S.J.; Williams, K.W.; Young, A.J.; McClung, J.P. Randomized, double-blind, placebo-controlled trial of an iron-fortified food product in female soldiers during military training: relations between iron status, serum hepcidin, and inflammation. Am. J. Clin. Nutr. 2010, 92, 93–100. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Staron, R.S.; Hagerman, F.C.; Hikida, R.S.; Fry, A.C.; Gordon, S.E.; Nindl, B.C.; Gothshalk, L.A.; Volek, J.S.; Marx, J.O.; Newton, R.U.; Hakkinen, K. The effects of short-term resistance training on endocrine function in men and women. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 69–76. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Sex differences in exercise metabolism and the role of 17-beta estradiol. Med. Sci. Sports Exerc. 2008, 40, 648–654. [Google Scholar] [CrossRef]
- Vislocky, L.M.; Gaine, P.C.; Pikosky, M.A.; Martin, W.F.; Rodriguez, N.R. Gender impacts the post-exercise substrate and endocrine response in trained runners. J. Int. Soc. Sports Nutr. 2008, 5, 7. [Google Scholar] [CrossRef]
- Tang, J.E.; Perco, J.G.; Moore, D.R.; Wilkinson, S.B.; Phillips, S.M. Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R172–R178. [Google Scholar]
- Calloway, D.H.; Spector, H. Nitrogen balance as related to caloric and protein intake in active young men. Am. J. Clin. Nutr. 1954, 2, 405–412. [Google Scholar]
- Friedlander, A.L.; Braun, B.; Pollack, M.; MacDonald, J.R.; Fulco, C.S.; Muza, S.R.; Rock, P.B.; Henderson, G.C.; Horning, M.A.; Brooks, G.A.; Hoffman, A.R.; Cymerman, A. Three weeks of caloric restriction alters protein metabolism in normal-weight, young men. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E446–E455. [Google Scholar] [CrossRef]
- Pikosky, M.A.; Smith, T.J.; Grediagin, A.; Castaneda-Sceppa, C.; Byerley, L.; Glickman, E.L.; Young, A.J. Increased protein maintains nitrogen balance during exercise-induced energy deficit. Med. Sci. Sports Exerc. 2008, 40, 505–512. [Google Scholar] [CrossRef]
- Tanskanen, M.; Uusitalo, A.L.; Häkkinen, K.; Nissilä, J.; Santtila, M.; Westerterp, K.R.; Kyröläinen, H. Aerobic fitness, energy balance, and body mass index are associated with training load assessed by activity energy expenditure. Scand. J. Med. Sci. Sports 2009, 19, 871–878. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Margolis, L.M.; Pasiakos, S.M.; Karl, J.P.; Rood, J.C.; Cable, S.J.; Williams, K.W.; Young, A.J.; McClung, J.P. Differential Effects of Military Training on Fat-Free Mass and Plasma Amino Acid Adaptations in Men and Women. Nutrients 2012, 4, 2035-2046. https://doi.org/10.3390/nu4122035
Margolis LM, Pasiakos SM, Karl JP, Rood JC, Cable SJ, Williams KW, Young AJ, McClung JP. Differential Effects of Military Training on Fat-Free Mass and Plasma Amino Acid Adaptations in Men and Women. Nutrients. 2012; 4(12):2035-2046. https://doi.org/10.3390/nu4122035
Chicago/Turabian StyleMargolis, Lee M., Stefan M. Pasiakos, J. Philip Karl, Jennifer C. Rood, Sonya J. Cable, Kelly W. Williams, Andrew J. Young, and James P. McClung. 2012. "Differential Effects of Military Training on Fat-Free Mass and Plasma Amino Acid Adaptations in Men and Women" Nutrients 4, no. 12: 2035-2046. https://doi.org/10.3390/nu4122035
APA StyleMargolis, L. M., Pasiakos, S. M., Karl, J. P., Rood, J. C., Cable, S. J., Williams, K. W., Young, A. J., & McClung, J. P. (2012). Differential Effects of Military Training on Fat-Free Mass and Plasma Amino Acid Adaptations in Men and Women. Nutrients, 4(12), 2035-2046. https://doi.org/10.3390/nu4122035