Sensory Characteristics of Probiotic-Containing Foods: A Multidisciplinary Perspective on Enhancing Acceptability and Consumer Adherence
Abstract
1. Introduction
2. Search Strategy
3. Probiotics, Gut Microbiota, and the Immune Interface
4. Sensory Dimensions of Probiotic-Containing Foods
4.1. Flavor and Aroma
4.2. Texture and Mouthfeel
4.3. Appearance and Visual Attributes
5. Technological Strategies for Sensory Optimization
5.1. Strain Selection and Metabolite Profiling
5.2. Matrix Design and Microencapsulation
5.3. Sweeteners, Flavors, and Prebiotic Synergy
5.4. Shelf Life and Economic Considerations
6. Consumer Perception and Behavioral Determinants
6.1. Cultural and Contextual Factors
6.2. Expectation, Familiarity, and Trust
6.3. Cross-Modal Perception and Sensory Integration
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DC | Dendritic cell |
| DSHEA | Dietary Supplement Health and Education Act |
| EFSA | European Food Safety Authority |
| EPS | Exopolysaccharide |
| FOSHU | Foods for Specified Health Uses |
| GPR | G-protein-coupled receptor |
| IFN-γ | Interferon gamma |
| Ig | Immunoglobulin |
| IL | Interleukin |
| ISAPP | International Scientific Association for Probiotics and Prebiotics |
| NK | Natural killer |
| NOD | Nucleotide-binding oligomerization domain |
| SCFA | Short-chain fatty acid |
| TLR | Toll-like receptor |
| TNF-α | Tumor necrosis factor alpha |
References
- Stanton, C.; Gardiner, G.; Meehan, H.; Collins, K.; Fitzgerald, G.; Lynch, P.B.; Ross, R.P. Market potential for probiotics. Am. J. Clin. Nutr. 2001, 73, 476S–483S. [Google Scholar] [CrossRef] [PubMed]
- Saxelin, M. Probiotic formulations and applications, the current probiotics market, and changes in the marketplace: A European perspective. Clin. Infect. Dis. 2008, 46, S76–S79. [Google Scholar] [CrossRef]
- Liang, D.; Wu, F.; Zhou, D.; Tan, B.; Chen, T. Commercial probiotic products in public health: Current status and potential limitations. Crit. Rev. Food Sci. Nutr. 2024, 64, 6455–6476. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Kaur, H.; Ali, S.A. Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food Funct. 2022, 13, 7423–7447. [Google Scholar] [CrossRef] [PubMed]
- Prosperi, M.; Santocchi, E.; Guiducci, L.; Frinzi, J.; Morales, M.A.; Tancredi, R.; Calderoni, S. Interventions on microbiota: Where do we stand on a gut–brain link in autism? A systematic review. Nutrients 2022, 14, 462. [Google Scholar] [CrossRef]
- Yeşilyurt, N.; Yılmaz, B.; Ağagündüz, D.; Capasso, R. Involvement of probiotics and postbiotics in the immune system modulation. Biologics 2021, 1, 89–110. [Google Scholar] [CrossRef]
- Bock, P.M.; Martins, A.F.; Schaan, B.D. Understanding how pre- and probiotics affect the gut microbiome and metabolic health. Am. J. Physiol. Endocrinol. Metab. 2024, 327, E89–E102. [Google Scholar] [CrossRef]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Elinav, E. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018, 174, 1388–1405. [Google Scholar] [CrossRef]
- Lester, S.; Kleijn, M.; Cornacchia, L.; Hewson, L.; Taylor, M.A.; Fisk, I. Factors affecting adherence, intake, and perceived palatability of oral nutritional supplements: A literature review. J. Nutr. Health Aging 2022, 26, 663–674. [Google Scholar] [CrossRef]
- Karimi, R.; Sohrabvandi, S.; Mortazavian, A.M. Sensory characteristics of probiotic cheese. Compr. Rev. Food Sci. Food Saf. 2012, 11, 437–452. [Google Scholar] [CrossRef]
- Conti-Silva, A.C.; de Souza-Borges, P.K. Sensory characteristics, brand and probiotic claim on the overall liking of commercial probiotic fermented milks: Which one is more relevant? Food Res. Int. 2019, 116, 184–189. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Evans, C.A.; Baines, S.K.; Balthazar, C.F.; Cruz, A.G.; Esmerino, E.A.; Vasiljevic, T. Probiotics in goat milk products: Delivery capacity and ability to improve sensory attributes. Compr. Rev. Food Sci. Food Saf. 2019, 18, 867–882. [Google Scholar] [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Bharathi, M.; Chaiyasut, C. Nasal microbiota, olfactory health, neurological disorders and aging—A review. Microorganisms 2022, 10, 1405. [Google Scholar] [CrossRef] [PubMed]
- Bochicchio, V.; Winsler, A. The psychology of olfaction: A theoretical framework with research and clinical implications. Psychol. Rev. 2020, 127, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Caballero, R.; Paradis, C. Making sense of sensory perceptions across languages and cultures. Funct. Lang. 2015, 22, 1–19. [Google Scholar] [CrossRef]
- Kurczewska, E.; Ferensztajn-Rochowiak, E.; Rybakowski, J.; Rybakowski, F. Sensory processing sensitivity as a trait of temperament—Evolutionary, socio-cultural, biological context and relation to mental disorders. Psychiatr. Pol. 2024, 58, 249–264. [Google Scholar] [CrossRef]
- Geng, J.; Ni, Q.; Sun, W.; Li, L.; Feng, X. The links between gut microbiota and obesity and obesity related diseases. Biomed. Pharmacother. 2022, 147, 112678. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J.P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomed. Pharmacother. 2020, 130, 110625. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Chen, C.; Patil, S.; Dong, S. Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Front. Nutr. 2024, 11, 1355542. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.H.; Schrama, D.; Thor Straten, P.; Becker, J.C. Cytotoxic T cells. J. Investig. Dermatol. 2006, 126, 32–41. [Google Scholar] [CrossRef]
- Wang, W.; Mu, S.; Yan, D.; Qin, H.; Zheng, Z. Comprehending toll-like receptors: Pivotal element in the pathogenesis of sepsis and its complications. Front. Immunol. 2025, 16, 1591011. [Google Scholar] [CrossRef]
- Zhong, Y.; Kinio, A.; Saleh, M. Functions of NOD-Like Receptors in Human Diseases. Front. Immunol. 2013, 4, 333. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, M.F.; Liang, Y.J.; Xu, J.; Xu, H.M.; Nie, Y.Q.; Wang, L.S.; Yao, J.; Li, D.F. Immunology of Inflammatory Bowel Disease: Molecular Mechanisms and Therapeutics. J. Inflamm. Res. 2022, 15, 1825–1844. [Google Scholar] [CrossRef]
- Zanna, M.Y.; Yasmin, A.R.; Omar, A.R.; Arshad, S.S.; Mariatulqabtiah, A.R.; Nur-Fazila, S.H.; Mahiza, M.I.N. Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species. Int. J. Mol. Sci. 2021, 22, 8044. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, C.; Chen, S.; Zhang, X. Emerging Role of Dendritic Cell Intervention in the Treatment of Inflammatory Bowel Disease. BioMed Res. Int. 2022, 2022, 7025634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Guo, J.; Yan, W.; Xu, L. Macrophage polarization in inflammatory bowel disease. Cell Commun. Signal. 2023, 21, 367. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, M.; Spits, H.; Ros, X.R. Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis. Cold Spring Harb. Perspect. Biol. 2018, 10, a030304. [Google Scholar] [CrossRef]
- Saez, A.; Gomez-Bris, R.; Herrero-Fernandez, B.; Mingorance, C.; Rius, C.; Gonzalez-Granado, J.M. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease. Int. J. Mol. Sci. 2021, 22, 7618. [Google Scholar] [CrossRef]
- Panda, S.K.; Colonna, M. Innate Lymphoid Cells in Mucosal Immunity. Front. Immunol. 2019, 10, 861. [Google Scholar] [CrossRef]
- Poggi, A.; Benelli, R.; Venè, R.; Costa, D.; Ferrari, N.; Tosetti, F.; Zocchi, M.R. Human Gut-Associated Natural Killer Cells in Health and Disease. Front. Immunol. 2019, 10, 961. [Google Scholar] [CrossRef]
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef]
- Raphael, I.; Nalawade, S.; Eagar, T.N.; Forsthuber, T.G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015, 74, 5–17. [Google Scholar] [CrossRef]
- Jiang, P.; Zheng, C.; Xiang, Y.; Malik, S.; Su, D.; Xu, G.; Zhang, M. The involvement of TH17 cells in the pathogenesis of IBD. Cytokine Growth Factor Rev. 2023, 6, 28–42. [Google Scholar] [CrossRef]
- Fleming, A.; Castro-Dopico, T.; Clatworthy, M.R. B cell class switching in intestinal immunity in health and disease. Scand. J. Immunol. 2022, 95, e13139. [Google Scholar] [CrossRef]
- Castro-Dopico, T.; Colombel, J.F.; Mehandru, S. Targeting B cells for inflammatory bowel disease treatment: Back to the future. Curr. Opin. Pharmacol. 2020, 55, 90–98. [Google Scholar] [CrossRef]
- Liu, X.F.; Shao, J.H.; Liao, Y.T.; Wang, L.N.; Jia, Y.; Dong, P.J.; Liu, Z.Z.; He, D.D.; Li, C.; Zhang, X. Regulation of short-chain fatty acids in the immune system. Front. Immunol. 2023, 4, 1186892. [Google Scholar] [CrossRef] [PubMed]
- Hanus, M.; Parada-Venegas, D.; Landskron, G.; Wielandt, A.M.; Hurtado, C.; Alvarez, K.; Hermoso, M.A.; López-Köstner, F.; De la Fuente, M. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Front. Immunol. 2021, 12, 612826. [Google Scholar] [CrossRef]
- Thoda, C.; Touraki, M. Immunomodulatory Properties of Probiotics and Their Derived Bioactive Compounds. Appl. Sci. 2023, 13, 4726. [Google Scholar] [CrossRef]
- Wen, L.; Duffy, A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J. Nutr. 2017, 147, 1468S–1475S. [Google Scholar] [CrossRef]
- Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef]
- Correale, J.; Hohlfeld, R.; Baranzini, S.E. The role of the gut microbiota in multiple sclerosis. Nat. Rev. Neurol. 2022, 18, 544–558. [Google Scholar] [CrossRef] [PubMed]
- Logoń, K.; Świrkosz, G.; Nowak, M.; Wrześniewska, M.; Szczygieł, A.; Gomułka, K. The Role of the Microbiome in the Pathogenesis and Treatment of Asthma. Biomedicines 2023, 11, 1618. [Google Scholar] [CrossRef]
- Gorini, F.; Tonacci, A. Selenium: A Key Element in Inflammatory Bowel Disease. Antioxidants 2025, 14, 1299. [Google Scholar] [CrossRef]
- Gorini, F.; Tonacci, A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease—A Comprehensive Review. Nutrients 2024, 16, 1762. [Google Scholar] [CrossRef]
- Rossi, R.E.; Dispinzieri, G.; Elvevi, A.; Massironi, S. Interaction between Gut Microbiota and Celiac Disease: From Pathogenesis to Treatment. Cells 2023, 12, 823. [Google Scholar] [CrossRef]
- Ermencheva, P.; Kotov, G.; Shumnalieva, R.; Velikova, T.; Monov, S. Exploring the Role of the Microbiome in Rheumatoid Arthritis—A Critical Review. Microorganisms 2024, 12, 1387. [Google Scholar] [CrossRef] [PubMed]
- McBurney, M.I.; Davis, C.; Fraser, C.M.; Schneeman, B.O.; Huttenhower, C.; Verbeke, K.; Walter, J.; Latulippe, M.E. Establishing What Constitutes a Healthy Human Gut Microbiome: State of the Science, Regulatory Considerations, and Future Directions. J. Nutr. 2019, 149, 1882–1895. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Wu, C. Modulation of Gut Microbiota and Immune System by Probiotics, Prebiotics, and Postbiotics. Front. Nutr. 2022, 8, 634897. [Google Scholar] [CrossRef]
- Mack, D.R. Probiotics—Mixed messages. Can. Fam. Physician 2005, 5, 1455–1457. [Google Scholar]
- Rastogi, S.; Singh, A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front. Pharmacol. 2022, 13, 1042189. [Google Scholar] [CrossRef]
- Widyastuti, Y.; Febrisiantosa, A.; Tidona, F. Health-Promoting Properties of Lactobacilli in Fermented Dairy Products. Front. Microbiol. 2021, 12, 673890. [Google Scholar] [CrossRef]
- Sibanda, T.; Marole, T.A.; Thomashoff, U.L.; Thantsha, M.S.; Buys, E.M. Bifidobacterium species viability in dairy-based probiotic foods: Challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front. Microbiol. 2024, 15, 1327010. [Google Scholar] [CrossRef]
- Jena, R.; Choudhury, P.K. Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook. Probiotics Antimicrob. Proteins 2025, 17, 1–22. [Google Scholar] [CrossRef]
- Turnbull, P.C.B. Bacillus. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Chapter 15. Available online: https://www.ncbi.nlm.nih.gov/books/NBK7699/ (accessed on 2 November 2025).
- Matera, M. Bifidobacteria, Lactobacilli… when, how and why to use them. Glob. Pediatr. 2024, 8, 100139. [Google Scholar] [CrossRef]
- Cheng, H.; Ma, Y.; Liu, X.; Tian, C.; Zhong, X.; Zhao, L. A Systematic Review and Meta-Analysis: Lactobacillus acidophilus for Treating Acute Gastroenteritis in Children. Nutrients 2022, 14, 682. [Google Scholar] [CrossRef]
- Pedret, A.; Valls, R.M.; Calderón-Pérez, L.; Llauradó, E.; Companys, J.; Pla-Pagà, L.; Moragas, A.; Martín-Luján, F.; Ortega, Y.; Giralt, M.; et al. Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: A randomized controlled trial. Int. J. Obes. 2019, 43, 1863–1868. [Google Scholar] [CrossRef]
- Hoa, V.B.; Park, S.H.; Ha, D.H.; Son, J.H.; Lee, K.H.; Park, W.S.; Yoo, J.Y.; Bae, I.S.; Kim, H.W.; Kang, H.B.; et al. Daily Supplementation with Bifidobacterium longum KACC91563 Alleviates Allergic Contact Dermatitis in an Animal Model. Foods 2024, 13, 2190. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.; Bellmer, D.; Jadeja, R.; Muriana, P. The Potential of Bacillus Species as Probiotics in the Food Industry: A Review. Foods 2024, 13, 2444. [Google Scholar] [CrossRef]
- Konuray, G.; Erginkaya, Z. Potential Use of Bacillus coagulans in the Food Industry. Foods 2018, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Dastjerdi, Z.K.; Ghazi, S. Microencapsulation of Bacillus Mojavensis as potent probiotic strain isolated from soil of Iran and determining characterization. Microbe 2025, 8, 100425. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, M.; Zheng, J.; Gänzle, M.G. Bacillus species in food fermentations: An underappreciated group of organisms for safe use in food fermentations. Curr. Opin. Food Sci. 2023, 50, 101007. [Google Scholar] [CrossRef]
- Dang, H.T.; Tran, D.M.; Phung, T.T.B.; Bui, A.T.P.; Vu, Y.H.; Luong, M.T.; Nguyen, H.M.; Trinh, H.T.; Nguyen, T.T.; Nguyen, A.H.; et al. Promising clinical and immunological efficacy of Bacillus clausii spore probiotics for supportive treatment of persistent diarrhea in children. Sci. Rep. 2024, 14, 6422. [Google Scholar] [CrossRef]
- Youssef, M.; Ahmed, H.Y.; Zongo, A.; Korin, A.; Zhan, F.; Hady, E.; Umair, M.; Shahid Riaz Rajoka, M.; Xiong, Y.; Li, B. Probiotic Supplements: Their Strategies in the Therapeutic and Prophylactic of Human Life-Threatening Diseases. Int. J. Mol. Sci. 2021, 22, 11290. [Google Scholar] [CrossRef] [PubMed]
- Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; Chang, J.; Rudi, K.; Paulin, L.; Hertzberg, V.; Auvinen, P.; Tansey, M.G.; Scheperjans, F. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 2021, 16, 6. [Google Scholar] [CrossRef]
- Kim, C.H. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell. Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef]
- Mansuy-Aubert, V.; Ravussin, Y. Short chain fatty acids: The messengers from down below. Front. Neurosci. 2023, 17, 1197759. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.K.; Lee, C.G.; So, J.S.; Chae, C.S.; Hwang, J.S.; Sahoo, A.; Nam, J.H.; Rhee, J.H.; Hwang, K.C.; Im, S.H. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl. Acad. Sci. USA 2010, 107, 2159–2164. [Google Scholar] [CrossRef] [PubMed]
- Jacouton, E.; Michel, M.L.; Torres-Maravilla, E.; Chain, F.; Langella, P.; Bermúdez-Humarán, L.G. Elucidating the Immune-Related Mechanisms by Which Probiotic Strain Lactobacillus casei BL23 Displays Anti-tumoral Properties. Front. Microbiol. 2019, 9, 3281. [Google Scholar] [CrossRef]
- Kim, N.; Yi, E.; Lee, E.; Park, H.J.; Kim, H.S. Interleukin-2 is required for NKp30-dependent NK cell cytotoxicity by preferentially regulating NKp30 expression. Front. Immunol. 2024, 15, 1388018. [Google Scholar] [CrossRef]
- Konieczna, P.; Groeger, D.; Ziegler, M.; Frei, R.; Ferstl, R.; Shanahan, F.; Quigley, E.M.; Kiely, B.; Akdis, C.A.; O’Mahony, L. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: Potential role for myeloid and plasmacytoid dendritic cells. Gut 2012, 61, 354–366. [Google Scholar] [CrossRef]
- Prescott, S.L.; Wickens, K.; Westcott, L.; Jung, W.; Currie, H.; Black, P.N.; Stanley, T.V.; Mitchell, E.A.; Fitzharris, P.; Siebers, R.; et al. Supplementation with Lactobacillus rhamnosus or Bifidobacterium lactis probiotics in pregnancy increases cord blood interferon-γ and breast milk transforming growth factor-β and immunoglobulin A detection. Clin. Exp. Allergy 2008, 38, 1606–1614. [Google Scholar] [CrossRef]
- Wu, Y.J.; Wu, W.F.; Hung, C.W.; Ku, M.S.; Liao, P.F.; Sun, H.L.; Lu, K.H.; Sheu, J.N.; Lue, K.H. Evaluation of efficacy and safety of Lactobacillus rhamnosus in children aged 4–48 months with atopic dermatitis: An 8-week, double-blind, randomized, placebo-controlled study. J. Microbiol. Immunol. Infect. 2017, 50, 684–692. [Google Scholar] [CrossRef]
- Rodriguez-Arrastia, M.; Martinez-Ortigosa, A.; Rueda-Ruzafa, L.; Folch Ayora, A.; Ropero-Padilla, C. Probiotic supplements on oncology patients’ treatment-related side effects: A systematic review of randomized controlled trials. Int. J. Environ. Res. Public Health 2021, 18, 4265. [Google Scholar] [CrossRef]
- Falagas, M.E.; Betsi, G.I.; Tokas, T.; Athanasiou, S. Probiotics for prevention of recurrent urinary tract infections in women: A review of the evidence from microbiological and clinical studies. Drugs 2006, 66, 1253–1261. [Google Scholar] [CrossRef]
- Toh, S.L.; Lee, B.B.; Ryan, S.; Simpson, J.M.; Clezy, K.; Bossa, L.; Rice, S.A.; Marial, O.; Weber, G.H.; Kaur, J.; et al. Probiotics (LGG-BB12 or RC14-GR1) versus placebo as prophylaxis for urinary tract infection in persons with spinal cord injury (ProSCIUTTU): A randomised controlled trial. Spinal Cord 2019, 57, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.D.; Taylor, M.B.; Kibbler, C.C.; Hamilton-Miller, J.M. Lactobacillus endocarditis caused by a probiotic organism. Clin. Microbiol. Infect. 1999, 5, 290–292. [Google Scholar] [CrossRef]
- Borriello, S.P.; Hammes, W.P.; Holzapfel, W.; Marteau, P.; Schrezenmeir, J.; Vaara, M.; Valtonen, V. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin. Infect. Dis. 2003, 36, 775–780. [Google Scholar] [CrossRef]
- Cornacchiari, M.; Mudoni, A.; Liccardo, A.; Visciano, B.; Rizzo, M.A.; Cuoccio, P.; Di Toma, L.F. Lactobacillemia: A Rare Entity in Immunocompromised Patients. Description of a Clinical Case and Literature Review. G. Ital. Nefrol. 2024, 41, 2024-vol4. (In Italian) [Google Scholar] [CrossRef]
- Vahabnezhad, E.; Mochon, A.B.; Wozniak, L.J.; Ziring, D.A. Lactobacillus bacteremia associated with probiotic use in a pediatric patient with ulcerative colitis. J. Clin. Gastroenterol. 2013, 47, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Haghighat, L.; Crum-Cianflone, N.F. The potential risks of probiotics among HIV-infected persons: Bacteraemia due to Lactobacillus acidophilus and review of the literature. Int. J. STD AIDS 2016, 27, 1223–1230. [Google Scholar] [CrossRef]
- Sadowska-Krawczenko, I.; Paprzycka, M.; Korbal, P.; Wiatrzyk, A.; Krysztopa-Grzybowska, K.; Polak, M.; Czajka, U.; Lutyńska, A. Lactobacillus rhamnosus GG suspected infection in a newborn with intrauterine growth restriction. Benef. Microbes 2014, 5, 397–402. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, H.; Wong, A. Accounting for the health risk of probiotics. Heliyon 2024, 10, e27908. [Google Scholar] [CrossRef] [PubMed]
- Pruccoli, G.; Silvestro, E.; Pace Napoleone, C.; Aidala, E.; Garazzino, S.; Scolfaro, C. Are probiotics safe? Bifidobacterium bacteremia in a child with severe heart failure. Infez. Med. 2019, 27, 175–178. [Google Scholar]
- Acuna-Gonzalez, A.; Kujawska, M.; Youssif, M.; Atkinson, T.; Grundy, S.; Hutchison, A.; Tremlett, C.; Clarke, P.; Hall, L.J. Bifidobacterium bacteraemia is rare with routine probiotics use in preterm infants: A further case report with literature review. Anaerobe 2023, 80, 102713. [Google Scholar] [CrossRef]
- Sakurai, Y.; Watanabe, T.; Miura, Y.; Uchida, T.; Suda, N.; Yoshida, M.; Nawa, T. Clinical and Bacteriologic Characteristics of Six Cases of Bifidobacterium breve Bacteremia Due to Probiotic Administration in the Neonatal Intensive Care Unit. Pediatr. Infect. Dis. J. 2022, 41, 62–65. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol. 2010, 16, 2202–2222. [Google Scholar] [CrossRef] [PubMed]
- Poncelet, A.; Ruelle, L.; Konopnicki, D.; Miendje Deyi, V.Y.; Dauby, N. Saccharomyces cerevisiae fungemia: Risk factors, outcome and links with S. boulardii-containing probiotic administration. Infect. Dis. Now. 2021, 51, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Hoppu, U.; Puputti, S.; Sandell, M. Factors related to sensory properties and consumer acceptance of vegetables. Crit. Rev. Food Sci. Nutr. 2021, 61, 1751–1761. [Google Scholar] [CrossRef]
- Thomas, J.J.; Holsen, L.; Van De Water, A.L.; Becker, K.R.; Breithaupt, L.; Burton-Murray, H.; Asanza, E.; Gydus, J.; Palmer, L.P.; Stern, C.M.; et al. Neural response to food cues in avoidant/restrictive food intake disorder. JAMA Netw. Open 2025, 8, e2460101. [Google Scholar] [CrossRef]
- Viswanathan, K.; Muthusamy, S. Review on the current trends and future perspectives of postbiotics for developing healthier foods. EFood 2022, 3, e47. [Google Scholar] [CrossRef]
- Sukumar, M. Harnessing probiotic fermentation to enhance the bioavailability and health impact of dietary phytochemicals. Food Wellness 2025, 1, 100018. [Google Scholar] [CrossRef]
- Zhang, L.; Mi, S.; Liu, R.; Sang, Y.; Wang, X. Evaluation of volatile compounds in milks fermented using traditional starter cultures and probiotics based on odor activity value and chemometric techniques. Molecules 2020, 25, 1129. [Google Scholar] [CrossRef]
- Nissen, L.; Casciano, F.; Gianotti, A. Volatilome changes during probiotic fermentation of combined soy and rice drinks. Food Funct. 2021, 12, 3159–3169. [Google Scholar] [CrossRef]
- Bilgiç, İ.G.; Seyrekoğlu, F. The use of stevia (Stevia rebaudiana) as a sweetener in fruit yogurts produced with apple powder and the determination of quality parameters. J. Food Meas. Charact. 2025, 19, 6310–6330. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Probiotic fermentation of plant-based products: Possibilities and opportunities. Crit. Rev. Food Sci. Nutr. 2012, 52, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Tomar, O. The effects of probiotic cultures on the organic acid content, texture profile and sensory attributes of Tulum cheese. Int. J. Dairy Technol. 2019, 72, 218–228. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Balthazar, C.F.; Silva, R.; Rocha, R.S.; Graça, J.S.; Esmerino, E.A.; Silva, M.C.; Sant’Ana, A.S.; Duarte, M.C.; Freitas, M.Q.; et al. Impact of probiotics and prebiotics on food texture. Curr. Opin. Food Sci. 2020, 33, 38–44. [Google Scholar] [CrossRef]
- Han, X.; Yang, Z.; Jing, X.; Yu, P.; Zhang, Y.; Yi, H.; Zhang, L. Improvement of the texture of yogurt by use of exopolysaccharide-producing lactic acid bacteria. BioMed Res. Int. 2016, 2016, 7945675. [Google Scholar] [CrossRef]
- Solanki, H.K.; Pawar, D.D.; Shah, D.A.; Prajapati, V.D.; Jani, G.K.; Mulla, A.M.; Thakar, P.M. Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutic agents. BioMed Res. Int. 2013, 2013, 620719. [Google Scholar] [CrossRef]
- Oberoi, K.; Tolun, A.; Sharma, K.; Sharma, S. Microencapsulation: An overview for the survival of probiotic bacteria. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 280–287. [Google Scholar] [CrossRef]
- Gallardo-Escamilla, F.J.; Kelly, A.L.; Delahunty, C.M. Mouthfeel and flavour of fermented whey with added hydrocolloids. Int. Dairy J. 2007, 17, 308–315. [Google Scholar] [CrossRef]
- Godoi, F.C.; Ningtyas, D.W.; Geoffroy, Z.; Prakash, S. Protein-based hydrocolloids: Effect on the particle size distribution, tribo-rheological behaviour and mouthfeel characteristics of low-fat chocolate flavoured milk. Food Hydrocoll. 2021, 115, 106628. [Google Scholar] [CrossRef]
- Vlădescu, S.C.; Agurto, M.G.; Myant, C.; Boehm, M.W.; Baier, S.K.; Yakubov, G.E.; Carpenter, G.; Reddyhoff, T. Protein-induced delubrication: How plant-based and dairy proteins affect mouthfeel. Food Hydrocoll. 2023, 134, 107975. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Petersen, K.; Mansell, T.J. Unveiling the prebiotic potential of polyphenols in gut health and metabolism. Curr. Opin. Biotechnol. 2025, 95, 103338. [Google Scholar] [CrossRef]
- Edgar, S.; Hopley, B.; Genovese, L.; Sibilla, S.; Laight, D.; Shute, J. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci. Rep. 2018, 8, 10474. [Google Scholar] [CrossRef]
- Frøst, M.B.; Janhøj, T. Understanding creaminess. Int. Dairy J. 2007, 17, 1298–1311. [Google Scholar] [CrossRef]
- Wang, Q.J.; Mielby, L.A.; Junge, J.Y.; Bertelsen, A.S.; Kidmose, U.; Spence, C.; Byrne, D.V. The role of intrinsic and extrinsic sensory factors in sweetness perception of food and beverages: A review. Foods 2019, 8, 211. [Google Scholar] [CrossRef]
- Vasudha, S.; Mishra, H.N. Non-dairy probiotic beverages. Int. Food Res. J. 2013, 20, 7–15. [Google Scholar]
- Zheng, X.; Yu, Y.; Xiao, G.; Xu, Y.; Wu, J.; Tang, D.; Zhang, Y. Comparing product stability of probiotic beverages using litchi juice treated by high hydrostatic pressure and heat as substrates. Innov. Food Sci. Emerg. Technol. 2014, 23, 61–67. [Google Scholar] [CrossRef]
- Palencia-Argel, M.; Rodríguez-Villamil, H.; Bernal-Castro, C.; Díaz-Moreno, C.; Fuenmayor, C.A. Probiotics in anthocyanin-rich fruit beverages: Research and development for novel synbiotic products. Crit. Rev. Food Sci. Nutr. 2024, 64, 110–126. [Google Scholar] [CrossRef] [PubMed]
- Lumby, N.; Park, J.J. Packaging for probiotic beverages. In Probiotic Beverages; Academic Press: London, UK, 2021; pp. 339–363. [Google Scholar]
- Francis, D.V.; Dahiya, D.; Gokhale, T.; Nigam, P.S. Sustainable packaging materials for fermented probiotic dairy or non-dairy food and beverage products: Challenges and innovations. AIMS Microbiol. 2024, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Tang, L.; Gao, X.; Han, X.; Liu, C.; Song, H. Study of Aroma Characteristics and Establishment of Flavor Molecular Labels in Fermented Milks from Different Fermentation Strains. Foods 2025, 14, 2237. [Google Scholar] [CrossRef]
- Tavakoli, M.; Habibi Najafi, M.B.; Mohebbi, M. Effect of the milk fat content and starter culture selection on proteolysis and antioxidant activity of probiotic yogurt. Heliyon 2019, 5, e01204. [Google Scholar] [CrossRef]
- Madilo, F.K.; Letsyo, E.; Kortei, N.K.; Adzinyo, O.A.; Kunadu, A.P. Production and Quality Characteristics of Starter Culture Fermented Aliha, a Maize-Based Indigenous Fermented Beverage. Int. J. Food Sci. 2025, 2025, 6665795. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Ma, T.; Liang, Q.; Sun, J.; Wu, X.; Song, Y.; Nie, H.; Huang, J.; Mu, G. Fermented Dairy Products as Precision Modulators of Gut Microbiota and Host Health: Mechanistic Insights, Clinical Evidence, and Future Directions. Foods 2025, 14, 1946. [Google Scholar] [CrossRef]
- Xie, A.; Dong, Y.; Liu, Z.; Li, Z.; Shao, J.; Li, M.; Yue, X. A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies. Foods 2023, 12, 3952. [Google Scholar] [CrossRef]
- Tao, A.; Zhang, H.; Duan, J.; Xiao, Y.; Liu, Y.; Li, J.; Huang, J.; Zhong, T.; Yu, X. Mechanism and application of fermentation to remove beany flavor from plant-based meat analogs: A mini review. Front. Microbiol. 2022, 13, 1070773. [Google Scholar] [CrossRef]
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of Lactic Acid Bacteria Fermentation on Plant-Based Products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Rachtan-Janicka, J.; Gajewska, D.; Szajewska, H.; Włodarek, D.; Weker, H.; Wolnicka, K.; Wiśniewska, K.; Socha, P.; Hamulka, J. The Role of Plant-Based Beverages in Nutrition: An Expert Opinion. Nutrients 2025, 17, 1562. [Google Scholar] [CrossRef] [PubMed]
- Chen, A. Traditional Fermented Foods and Their Physicochemical, Sensory, Flavor, and Microbial Characteristics. Foods 2025, 14, 3559. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Y.; Xiao, L.; Qu, L.; Zhang, X.; Wei, Y. Advancing Insights into Probiotics during Vegetable Fermentation. Foods 2023, 12, 3789. [Google Scholar] [CrossRef] [PubMed]
- Žvirdauskienė, R.; Jonikė, V.; Bašinskienė, L.; Čižeikienė, D. Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives. Microorganisms 2025, 13, 1272. [Google Scholar] [CrossRef]
- Rahman, M.S.; Emon, D.D.; Toma, M.A.; Nupur, A.H.; Karmoker, P.; Iqbal, A.; Aziz, M.G.; Alim, M.A. Recent advances in probiotication of fruit and vegetable juices. J. Adv. Vet. Anim. Res. 2023, 10, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Grujović, M.Ž.; Semedo-Lemsaddek, T.; Marković, K.G. Application of Probiotics in Foods: A Comprehensive Review of Benefits, Challenges, and Future Perspectives. Foods 2025, 14, 3088. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Liang, H.; Li, B.; Li, J. Towards ideal plant-based yogurts: Evaluating component and processing effects on mouthfeel and stability. J. Future Foods 2025, 5, 455–469. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, B.H.; Kim, H.S.; Baik, M.Y. Optimization of pea protein and citrus fiber contents for plant based stirred soymilk yogurt using response surface methodology. Food Sci. Biotechnol. 2022, 31, 1691–1701. [Google Scholar] [CrossRef]
- Dhakal, D.; Kumar, G.; Devkota, L.; Subedi, D.; Dhital, S. The choice of probiotics affects the rheological, structural, and sensory attributes of lupin-oat-based yoghurt. Food Hydrocoll. 2024, 156, 110353. [Google Scholar] [CrossRef]
- Shu, N.; Chen, X.; Sun, X.; Cao, X.; Liu, Y.; Xu, Y.J. Metabolomics identify landscape of food sensory properties. Crit. Rev. Food Sci. Nutr. 2023, 63, 8478–8488. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Sim, J.H.; Min, T.S.; Choi, H.K. Metabolomics and lipidomics approaches in the science of probiotics: A review. J. Med. Food 2018, 21, 1086–1095. [Google Scholar] [CrossRef]
- O’Connell, T.M. The application of metabolomics to probiotic and prebiotic interventions in human clinical studies. Metabolites 2020, 10, 120. [Google Scholar] [CrossRef]
- Kwoji, I.D.; Aiyegoro, O.A.; Okpeku, M.; Adeleke, M.A. ‘Multi-omics’ data integration: Applications in probiotics studies. npj Sci. Food 2023, 7, 25. [Google Scholar] [CrossRef]
- Wen, L.; Yang, L.; Chen, C.; Li, J.; Fu, J.; Liu, G.; Kan, Q.; Ho, C.T.; Huang, Q.; Lan, Y.; et al. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit. Rev. Food Sci. Nutr. 2024, 64, 8367–8383. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Du, R.; Zhao, X.; Fang, J.; Li, C.; Liu, L.; Guo, W. Integrated flavoromics and multivariate analysis reveal mechanisms of dynamic changes in characteristic flavors during yogurt fermentation and acidification process. J. Future Foods, 2025; in press. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, C.; Li, X.; Kong, X.; Chen, Y.; Hua, Y. GC×GC-TOFMS and LC-ESI-MS/MS based flavoromics and metabolomics studies on the lactic acid bacteria fermentation of soymilks with dairy milk as the reference. Food Biosci. 2025, 74, 107821. [Google Scholar] [CrossRef]
- Li, B.; Ye, L.; Zhao, Y.; Liu, Y.; Chen, Y.; Zhang, H. A comprehensive review of probiotic yogurt: Nutritional modulation, flavor improvement, health benefits, and advances in processing techniques. Agric. Prod. Process. Storage 2025, 1, 17. [Google Scholar] [CrossRef]
- Salaün, F.; Mietton, B.; Gaucheron, F. Buffering capacity of dairy products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- Kim, M.; Oh, S.; Imm, J.Y. Buffering Capacity of Dairy Powders and Their Effect on Yoghurt Quality. Korean J. Food Sci. Animal. Res. 2018, 38, 273–281. [Google Scholar]
- Peri, S.; Sørensen, K.I.; da Fonseca, C.S.; Jensen, P.E. Unlocking the Potential of Oat Okara: A Review of Origins, Composition and Up-Cycling Opportunities in Plant-Based Foods. Future Foods 2025, 12, 100790. [Google Scholar] [CrossRef]
- Fatima, S.M.; Hekmat, S. Microbial and Sensory Analysis of Soy and Cow Milk-Based Yogurt as a Probiotic Matrix for Lactobacillus rhamnosus GR-1. Fermentation 2020, 6, 74. [Google Scholar] [CrossRef]
- Okur, H.H.; Yıldırım, H.K.; Yousefvand, A.; Saris, P.E. Production of Fermented Soy and Soy/Cow Milk Products with Probiotic Lacticaseibacillus rhamnosus GG Strain. Food Bioprocess Technol. 2025, 18, 5736–5748. [Google Scholar] [CrossRef]
- Champagne, C.P.; Raymond, Y.; Guertin, N.; Bélanger, G. Effects of storage conditions, microencapsulation and inclusion in chocolate particles on the stability of probiotic bacteria in ice cream. Int. Dairy J. 2015, 47, 109–117. [Google Scholar] [CrossRef]
- Sridhar, K.; Bouhallab, S.; Croguennec, T.; Renard, D.; Lechevalier, V. Recent trends in design of healthier plant-based alternatives: Nutritional profile, gastrointestinal digestion, and consumer perception. Crit. Rev. Food Sci. Nutr. 2023, 63, 10483–10498. [Google Scholar] [CrossRef]
- D’Almeida, A.P.; Neta, A.A.I.; de Andrade-Lima, M.; de Albuquerque, T.L. Plant-based probiotic foods: Current state and future trends. Food Sci. Biotechnol. 2024, 33, 3401–3422. [Google Scholar] [CrossRef] [PubMed]
- Sionek, B.; Szydłowska, A. Probiotics and prebiotics in the aspect of health benefits and the development of novel plant-based functional food. Appl. Sci. 2025, 15, 3137. [Google Scholar] [CrossRef]
- Shori, A.B. Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- Sbehat, M.; Mauriello, G.; Altamimi, M. Microencapsulation of probiotics for food functionalization: An update on literature reviews. Microorganisms 2022, 10, 1948. [Google Scholar] [CrossRef]
- Wang, X.; Xie, W.; Zhang, S.; Shao, Y.; Cai, J.; Cai, L.; Wang, X.; Shan, Z.; Zhou, H.; Li, J.; et al. Effect of Microencapsulation Techniques on the Stress Resistance and Biological Activity of Bovine Lactoferricin-Lactoferrampin-Encoding Lactobacillus reuteri. Foods 2022, 11, 3169. [Google Scholar] [CrossRef]
- D’Amico, V.; Cavaliere, M.; Ivone, M.; Lacassia, C.; Celano, G.; Vacca, M.; la Forgia, F.M.; Fontana, S.; De Angelis, M.; Denora, N.; et al. Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese. Pharmaceutics 2025, 17, 185. [Google Scholar] [CrossRef]
- Holkem, A.T.; Favaro-Trindade, C.S. Potential of solid lipid microparticles covered by the protein–polysaccharide complex for protection of probiotics and proanthocyanidin-rich cinnamon extract. Food Res. Int. 2020, 136, 109520. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 857–874. [Google Scholar] [CrossRef]
- Stanton, C.; Ross, R.P.; Fitzgerald, G.F.; Van Sinderen, D. Fermented functional foods based on probiotics and their biogenic metabolites. Curr. Opin. Biotechnol. 2005, 16, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.M.; Paula, M.M.; Barão, C.E.; Klososki, S.J.; Bonafé, E.G.; Visentainer, J.V.; Cruz, A.G.; Colombo Pimentel, T.C. Yoghurt added with Lactobacillus casei and sweetened with natural sweeteners and/or prebiotics: Implications on quality parameters and probiotic survival. Int. Dairy J. 2019, 97, 139–148. [Google Scholar] [CrossRef]
- Kimoto-Nira, H.; Moriya, N.; Hayakawa, S.; Kuramasu, K.; Ohmori, H.; Yamasaki, S.; Ogawa, M. Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria. J. Dairy Sci. 2017, 100, 5936–5944. [Google Scholar] [CrossRef]
- Ozcan, T.; Eroglu, E. Effect of stevia and inulin interactions on fermentation profile and short-chain fatty acid production of Lactobacillus acidophilus in milk and in vitro systems. Int. J. Dairy Technol. 2022, 75, 171–181. [Google Scholar] [CrossRef]
- Pázmándi, M.; Kovács, Z.; Maráz, A. Potential of Lactobacillus strains for the production of fermented functional beverages enriched in galacto-oligosaccharides. LWT 2021, 143, 111097. [Google Scholar] [CrossRef]
- Muñoz-Labrador, A.; Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Galindo-Iranzo, P.; Azcarate, S.M.; Kolida, S.; Kachrimanidou, V.; Garcia-Cañas, V.; Methven, L.; Rastall, R.A.; et al. Prebiotic potential of a new sweetener based on galactooligosaccharides and modified mogrosides. J. Agric. Food Chem. 2022, 70, 9048–9056. [Google Scholar] [CrossRef] [PubMed]
- Köhler, S.; Schmacht, M.; Troubounis, A.H.; Ludszuweit, M.; Rettberg, N.; Senz, M. Tradition as a stepping stone for a microbial defined water kefir fermentation process: Insights in cell growth, bioflavoring, and sensory perception. Front. Microbiol. 2021, 12, 732019. [Google Scholar] [CrossRef]
- Setiarto, R.H.B.; Octaviana, S.; Perwitasari, U.; Juanssilfero, A.B.; Suprapedi, S. Development of functional bioflavor based on Indonesian indigenous microbial fermentation products. J. Ethn. Foods 2024, 11, 28. [Google Scholar] [CrossRef]
- Yangılar, F.; Cakmakci, S. Probiotic shelf-life, mineral contents and others properties of probiotic yoghurts supplemented with corn flour. J. Agric. Sci. 2017, 23, 472–481. [Google Scholar] [CrossRef]
- Kruk, M.; Lalowski, P.; Hoffmann, M.; Trząskowska, M.; Jaworska, D. Probiotic bacteria survival and shelf life of high fibre plant snack-model study. Plant Foods Hum. Nutr. 2024, 79, 586–593. [Google Scholar] [CrossRef]
- Pimentel, G.; Burton, K.J.; von Ah, U.; Bütikofer, U.; Pralong, F.P.; Vionnet, N.; Portmann, R.; Vergères, G. Metabolic Footprinting of Fermented Milk Consumption in Serum of Healthy Men. J. Nutr. 2018, 148, 851–860. [Google Scholar] [CrossRef]
- Thapa, D.; Kumar, V.; Naik, B.; Kumar, V.; Gupta, A.K.; Mohanta, Y.K.; Mishra, B.; Rustagi, S. Harnessing probiotic foods: Managing cancer through gut health. Food Sci. Biotechnol. 2024, 33, 2141–2160. [Google Scholar] [CrossRef]
- Zolfaghari, G.; Castro-Alija, M.J.; Laguillo Diaz, M.; Ramón-Carreira, L.C.; Jiménez, J.M.; Albertos, I. The influence of Mediterranean and Western dietary patterns on sensory perception and taste sensitivity: A study among university students. Foods 2025, 14, 2827. [Google Scholar] [CrossRef]
- Holck, A.; Heir, E.; Johannessen, T.C.; Axelsson, L. Northern European products. In Handbook of Fermented Meat and Poultry; Toldrá, F., Ed.; Wiley-Blackwell: Oxford, UK, 2014; pp. 313–320. [Google Scholar]
- García-Barón, S.E.; Carmona-Escutia, R.P.; Herrera-López, E.J.; Leyva-Trinidad, D.A.; Gschaedler-Mathis, A. Consumers’ drivers of perception and preference of fermented food products and beverages: A systematic review. Foods 2025, 14, 713. [Google Scholar] [CrossRef]
- Roose, G.; Mulier, L. Healthy advertising coming to its senses: The effectiveness of sensory appeals in healthy food advertising. Foods 2020, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Tonacci, A.; Billeci, L.; Di Mambro, I.; Marangoni, R.; Sanmartin, C.; Venturi, F. Wearable sensors for assessing the role of olfactory training on the autonomic response to olfactory stimulation. Sensors 2021, 21, 770. [Google Scholar] [CrossRef]
- Billeci, L.; Sanmartin, C.; Tonacci, A.; Taglieri, I.; Bachi, L.; Ferroni, G.; Braceschi, G.P.; Odello, L.; Venturi, F. Wearable sensors to evaluate autonomic response to olfactory stimulation: The influence of short, intensive sensory training. Biosensors 2023, 13, 478. [Google Scholar] [CrossRef]
- Spence, C. Multi-sensory integration and the psychophysics of flavour perception. In Food Oral Processing: Fundamentals of Eating and Sensory Perception; Chen, J., Engelen, L., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 203–221. [Google Scholar]
- Billeci, L.; Sanmartin, C.; Tonacci, A.; Taglieri, I.; Ferroni, G.; Marangoni, R.; Venturi, F. Wearable sensors to measure the influence of sonic seasoning on wine consumers in a live context: A preliminary proof-of-concept study. J. Sci. Food Agric. 2025, 105, 1484–1495. [Google Scholar] [CrossRef]
- Bayarri, S.; Calvo, C.; Costell, E.; Durán, L. Influence of color on perception of sweetness and fruit flavor of fruit drinks. Food Sci. Technol. Int. 2001, 7, 399–404. [Google Scholar] [CrossRef]
- Wang, Q.J.; Spence, C. Sonic packaging: How packaging sounds influence multisensory product evaluation. In Multisensory Packaging: Designing New Product Experiences; Springer: Cham, Switzerland, 2018; pp. 103–125. [Google Scholar]
- Liu, S.; Gu, Y.; Zheng, R.; Sun, B.; Zhang, L.; Zhang, Y. Progress in multisensory synergistic salt reduction. Foods 2024, 13, 1659. [Google Scholar] [CrossRef] [PubMed]


| Cell Type | Branch of Immunity | Functions | Molecules Released | References |
|---|---|---|---|---|
| Dendritic cells | Innate | Immune response against pathogens; maintenance of immune homeostasis; antigen-presenting cells | AMPs, cytokines, chemokines | [31,32,33] |
| Macrophages | Innate | Antigen-presenting cells; pathogen elimination (M1 phenotype); tissue repair (M2 phenotype) | AMPs; IL-1β, IL-6, IL-12α, IL-23, TNF-α (M1 phenotype); IL-10 (M2 phenotype) | [31,34] |
| Innate lymphoid cells | Innate | Antimicrobial defense; tissue regeneration | IFN-γ (ILC-1); IL-5, IL-9, IL-13 (ILC-2); IL17, IL-23 (ILC-3) | [35,36,37] |
| Natural killer cells | Innate | Antimicrobial defense | IFN-γ | [38] |
| Th1 cells | Adaptive | Immunity to intracellular pathogens | IFN-γ, TNF-α, IL-2 | [31,33,39,40] |
| Th2 cells | Adaptive | Elimination of extracellular parasites | IL-4, IL-5, IL-13 | [34,39,40] |
| Th17 cells | Adaptive | Protection against bacteria and fungi | lL-17, IL-22, IL-23, TNF-α | [31,40,41] |
| Treg cells | Adaptive | Promotion of immune tolerance; suppression of Th17 cell-mediated responses | IL-10, TGF-β | [31,39,40] |
| Cytotoxic T cells | Adaptive | Elimination of virally infected cells and cancerous cells | IFN-γ, TNF-α, perforin, granzymes | [28] |
| Plasma cells | Adaptive | Defense against pathogenic bacteria, enhancement of immune tolerance, complement activation, cellular cytotoxicity | IgA, IgG | [42,43] |
| Probiotic Food Category | Key Sensory Attributes | Common Optimization Strategies | Bacteria Included | References |
|---|---|---|---|---|
| Fermented dairy (yogurt, kefir) | Creaminess, acidity, aroma balance | Starter culture selection; fat/protein modulation; controlled fermentation | Lactobacillus, Streptococcus thermophilus, Bifidobacterium | [123,124,125,126] |
| Plant-based fermented beverages (soy, oat, coconut) | Viscosity, vegetal notes, sweetness | Flavor masking; enzymatic treatments; stabilizers; strain selection | Lactobacillus rhamnosus, L. casei, L. plantarum | [127,128,129,130] |
| Fermented vegetables (kimchi, sauerkraut) | Crunchiness, acidity, aroma complexity | Salt concentration control; co-fermentation species; temperature modulation | Lactiplantibacillus plantarum | [131,132] |
| Probiotic juices | Freshness; sweetness–acidity balance | Microencapsulation; pH control; strain selection | Lactobacillus, Bifidobacterium | [133,134] |
| Probiotic snacks (bars, baked goods) | Texture stability, flavor integration | Post-bake inoculation; protective matrices; water activity control | Bacterial strains resistant to low water activity | [135] |
| Functional dairy alternatives (plant yogurts) | Creaminess, mouthfeel, flavor uniformity | Hydrocolloids; fermentation optimization; probiotic–fiber interactions | Lactobacillus rhamnosus, L. casei, L. plantarum | [136,137,138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tonacci, A.; Gorini, F. Sensory Characteristics of Probiotic-Containing Foods: A Multidisciplinary Perspective on Enhancing Acceptability and Consumer Adherence. Nutrients 2026, 18, 32. https://doi.org/10.3390/nu18010032
Tonacci A, Gorini F. Sensory Characteristics of Probiotic-Containing Foods: A Multidisciplinary Perspective on Enhancing Acceptability and Consumer Adherence. Nutrients. 2026; 18(1):32. https://doi.org/10.3390/nu18010032
Chicago/Turabian StyleTonacci, Alessandro, and Francesca Gorini. 2026. "Sensory Characteristics of Probiotic-Containing Foods: A Multidisciplinary Perspective on Enhancing Acceptability and Consumer Adherence" Nutrients 18, no. 1: 32. https://doi.org/10.3390/nu18010032
APA StyleTonacci, A., & Gorini, F. (2026). Sensory Characteristics of Probiotic-Containing Foods: A Multidisciplinary Perspective on Enhancing Acceptability and Consumer Adherence. Nutrients, 18(1), 32. https://doi.org/10.3390/nu18010032
