Effect of Moderately High-Dose Vitamin D3 Supplementation on Mortality in Patients Hospitalized for COVID-19 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Study Criteria for Vitamin D3 Supplementation
2.3. Laboratory Measurements
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Subgroup Analysis of the 30 Randomly Selected Patients in Dept1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Hypertension: The diagnosis was in the patient’s anamnesis. The patient’s blood pressure was permanently above 130/80 mmHg. In all cases, the patients participated in long-term drug therapy. The etiology of hypertension was not considered [43].
- Type 1 diabetes (T1DM): The diagnosis was documented in the patient’s anamnesis, which was confirmed by the presence of elevated blood sugar concentrations, possible ketoacidosis, elevated HBA1C (>6.5%), and anti-pancreatic antibodies detectable by blood test. Patients in this case receive insulin therapy only [44].
- Type 2 diabetes (T2DM): The diagnosis was made according to recommendations: HBA1C 6.5% or higher, fasting plasma glucose of 7 mmol/L (126 mg/dL) or higher, oral glucose tolerance test plasma glucose of 11.1 mmol/L or higher (>200 mg/dL), or the randomly measured glucose concentration of 11.1 mmol/L or higher [45]. Other types of diabetes were not taken into account during the study.
- ST-elevation myocardial infarction (STEMI): ST-elevation myocardial infarction (>1 mm, 0.1 mV) was detected on the ECG, which was accompanied by an increase in necroenzyme (TroponinT) [46].
- Non-ST-elevation myocardial infarction (NSTEMI): Increased cardiac enzyme concentration was detected during blood examination, and there was no ST elevation on EKG [47].
- Stroke: Diagnosis was based on clinical symptoms and neuroimaging. The ischemic, intracerebral hemorrhage, or subarachnoid hemorrhage was not separated in this study [48].
- Chronic obstructive pulmonary disease (COPD): The diagnosis was based on the symptoms of the patients (e.g., cough, frequent airway infections, diminished physical reserve, and dyspnoea) and abnormal pulmonary function and tests [49].
- Chronic heart disease (CHD): Patients who had symptomatic or advanced heart failure based on their medical history were classified into this category. Based on these, their functional classification was also carried out based on their physical activity according to the New York Heart Association [50].
- Chronic kidney disease (CKD): According to the definition of CKD, the presence of an abnormality in kidney structure or function that persists for more than 3 months. This includes one or more of the following: 1. GFR less than 60 mL/min/1.73 m2; 2. albuminuria (i.e., urine albumin ≥ 30 mg per 24 h or urine albumin-to-creatinine ratio (ACR) ≥ 30 mg/g); 3. abnormalities in urine sediment, histology, or imaging suggestive of kidney damage; 4. renal tubular disorders; or 5. history of kidney transplantation [51]. Currently, in our study, we took into account point (1) with an eGFR value of 60 mL/min/1.73 m2.
Chronic Diseases | Dept1 N (%) | Dept2 N (%) | p-Value |
---|---|---|---|
Hypertension | 55 (72%) | 53 (74%) | 0.97 |
Diabetes type 1 and type 2 (T1DM and T2DM) | 25 (33%) | 28 (39%) | 0.45 |
Non-ST-elevation myocardial infarction (NSTEMI) | 11 (14%) | 8 (11%) | 0.54 |
ST-elevation myocardial infarction (STEMI) | 2 (2.6%) | 0 (0%) | |
Stroke | 8 (10%) | 6 (8.3%) | 0.65 |
Chronic obstructive pulmonary disease (COPD) | 4 (5.2%) | 8 (11%) | 0.19 |
Chronic heart disease (CHD) | 27 (35%) | 11 (15%) | <0.01 |
Chronic kidney disease (CKD) | 57 (75%) | 22 (31%) | <0.01 |
Some kind of malignant disease | 13 (17%) | 17 (24%) | 0.32 |
Chronic Diseases N (%) | |
---|---|
Hypertension | 19 (63%) |
Diabetes mellitus type 1 and type 2 (T1DM and T2DM) | 8 (27%) |
ST-elevation myocardial infarction (STEMI) | 0 (0%) |
Non-ST-elevation myocardial infarction (NSTEMI) | 1 (3.3%) |
Stroke | 3 (10%) |
Chronic obstructive pulmonary disease (COPD) | 1 (3.3%) |
Chronic heart disease (CHD) | 11 (37%) |
Chronic kidney disease (CKD) | 24 (80%) |
Some kind of malignant disease | 2 (6.7%) |
1,25(OH)2D Concentration on Day 0 (pg/mL (±SD)) | 1,25(OH)2D Concentration on Day 4 (pg/mL (±SD)) | 1,25(OH)2D Concentration on Day 8 (pg/mL (±SD)) | |
---|---|---|---|
9 patients who received 12,000 IU of vitamin D3 for 7 days | 40 (±24) | 70 (±39) | 43 (±25) |
21 patients who received 30,000 IU of vitamin D3 for 3 days | 48 (±31) | 49 (±28) | 48 (±25) |
2 patients with vitamin D deficiency (25(OH)D < 20 ng/mL) who received 12,000 IU of vitamin D3 | 23 (±18) | 50 (±33) | 32 (±21) |
7 non-vitamin D-deficient (25(OH)D ≥ 20 ng/mL) patients who received 12,000 IU of vitamin D3 | 51 (±15) | 74 (±25) | 52 (±41) |
8 patients with vitamin D deficiency (25(OH)D < 20 ng/mL) who received 30,000 IU of vitamin D3 | 47 (±27) | 61 (±33) | 58 (±28) |
13 non-vitamin D-deficient (25(OH)D ≥ 20 ng/mL) patients who received 30,000 IU of vitamin D3 | 52 (±35) | 44 (±24) | 46 (±27) |
References
- Monkawa, T.; Yoshida, T.; Hayashi, M.; Saruta, T. Identification of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression in macrophages. Kidney Int. 2000, 58, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, J.; Mondal, K.; Ehrnsperger, A.; Andreesen, R.; Kreutz, M. Regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3 by human dendritic cells. Blood 2003, 102, 3314–3316. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, Z.; Patonai, A.; Simon-Szabo, L.; Takacs, I. Interplay of Vitamin D and SIRT1 in Tissue-Specific Metabolism-Potential Roles in Prevention and Treatment of Non-Communicable Diseases Including Cancer. Int. J. Mol. Sci. 2023, 24, 6154. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M.; Freeman, L.; Hughes, S.V.; Evans, K.N.; Bland, R.; Eliopoulos, A.G.; Kilby, M.D.; Moss, P.A.; Chakraverty, R. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J. Immunol. 2003, 170, 5382–5390. [Google Scholar] [CrossRef]
- Mahon, B.D.; Wittke, A.; Weaver, V.; Cantorna, M.T. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J. Cell Biochem. 2003, 89, 922–932. [Google Scholar] [CrossRef]
- Campbell, G.R.; Spector, S.A. Hormonally active vitamin D3 (1alpha,25-dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. J. Biol. Chem. 2011, 286, 18890–18902. [Google Scholar] [CrossRef]
- Huang, J.F.; Ko, Y.M.; Huang, C.F.; Yeh, M.L.; Dai, C.Y.; Hsieh, M.H.; Huang, C.I.; Yang, H.L.; Wang, S.C.; Lin, Z.Y.; et al. 25-Hydroxy vitamin D suppresses hepatitis C virus replication and contributes to rapid virological response of treatment efficacy. Hepatol. Res. 2017, 47, 1383–1389. [Google Scholar] [CrossRef]
- Bucak, I.H.; Ozturk, A.B.; Almis, H.; Cevik, M.O.; Tekin, M.; Konca, C.; Turgut, M.; Bulbul, M. Is there a relationship between low vitamin D and rotaviral diarrhea? Pediatr. Int. 2016, 58, 270–273. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, V.; Hutchings, N.; et al. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. Eur. J. Endocrinol. 2020, 183, R133–R147. [Google Scholar] [CrossRef]
- Pizzini, A.; Aichner, M.; Sahanic, S.; Bohm, A.; Egger, A.; Hoermann, G.; Kurz, K.; Widmann, G.; Bellmann-Weiler, R.; Weiss, G.; et al. Impact of Vitamin D Deficiency on COVID-19-A Prospective Analysis from the CovILD Registry. Nutrients 2020, 12, 2775. [Google Scholar] [CrossRef]
- Smolders, J.; van den Ouweland, J.; Geven, C.; Pickkers, P.; Kox, M. Letter to the Editor: Vitamin D deficiency in COVID-19: Mixing up cause and consequence. Metabolism 2021, 115, 154434. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, M.; Priyanka; Choudhary, O.P. Immunomodulatory and therapeutic implications of vitamin D in the management of COVID-19. Hum. Vaccin. Immunother. 2022, 18, 2025734. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, G.; Corvaisier, M.; Gautier, J.; Dubee, V.; Legrand, E.; Sacco, G.; Annweiler, C. Vitamin D Supplementation Associated to Better Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Quasi-Experimental Study. Nutrients 2020, 12, 3377. [Google Scholar] [CrossRef] [PubMed]
- Entrenas Castillo, M.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcala Diaz, J.F.; Lopez Miranda, J.; Bouillon, R.; Quesada Gomez, J.M. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid. Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef]
- Alcala-Diaz, J.F.; Limia-Perez, L.; Gomez-Huelgas, R.; Martin-Escalante, M.D.; Cortes-Rodriguez, B.; Zambrana-Garcia, J.L.; Entrenas-Castillo, M.; Perez-Caballero, A.I.; Lopez-Carmona, M.D.; Garcia-Alegria, J.; et al. Calcifediol Treatment and Hospital Mortality Due to COVID-19: A Cohort Study. Nutrients 2021, 13, 1760. [Google Scholar] [CrossRef]
- Jetter, A.; Egli, A.; Dawson-Hughes, B.; Staehelin, H.B.; Stoecklin, E.; Goessl, R.; Henschkowski, J.; Bischoff-Ferrari, H.A. Pharmacokinetics of oral vitamin D(3) and calcifediol. Bone 2014, 59, 14–19. [Google Scholar] [CrossRef]
- Nogues, X.; Ovejero, D.; Pineda-Moncusi, M.; Bouillon, R.; Arenas, D.; Pascual, J.; Ribes, A.; Guerri-Fernandez, R.; Villar-Garcia, J.; Rial, A.; et al. Calcifediol Treatment and COVID-19-Related Outcomes. J. Clin. Endocrinol. Metab. 2021, 106, e4017–e4027. [Google Scholar] [CrossRef]
- Rastogi, A.; Bhansali, A.; Khare, N.; Suri, V.; Yaddanapudi, N.; Sachdeva, N.; Puri, G.D.; Malhotra, P. Short term, high-dose vitamin D supplementation for COVID-19 disease: A randomised, placebo-controlled, study (SHADE study). Postgrad. Med. J. 2022, 98, 87–90. [Google Scholar] [CrossRef]
- Sanchez-Zuno, G.A.; Gonzalez-Estevez, G.; Matuz-Flores, M.G.; Macedo-Ojeda, G.; Hernandez-Bello, J.; Mora-Mora, J.C.; Perez-Guerrero, E.E.; Garcia-Chagollan, M.; Vega-Magana, N.; Turrubiates-Hernandez, F.J.; et al. Vitamin D Levels in COVID-19 Outpatients from Western Mexico: Clinical Correlation and Effect of Its Supplementation. J. Clin. Med. 2021, 10, 2378. [Google Scholar] [CrossRef]
- Shah, K.; Saxena, D.; Mavalankar, D. Vitamin D supplementation, COVID-19 and disease severity: A meta-analysis. QJM 2021, 114, 175–181. [Google Scholar] [CrossRef]
- Rawat, D.; Roy, A.; Maitra, S.; Shankar, V.; Khanna, P.; Baidya, D.K. “Vitamin D supplementation and COVID-19 treatment: A systematic review and meta-analysis”. Diabetes Metab. Syndr. 2021, 15, 102189. [Google Scholar] [CrossRef] [PubMed]
- Toscano, G.; de Araújo, I.I.; de Souza, T.A.; Barbosa Mirabal, I.R.; de Vasconcelos Torres, G. Vitamin C and D supplementation and the severity of COVID-19: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e26427. [Google Scholar] [CrossRef] [PubMed]
- Kummel, L.S.; Krumbein, H.; Fragkou, P.C.; Hunerbein, B.L.; Reiter, R.; Papathanasiou, K.A.; Tholken, C.; Weiss, S.T.; Renz, H.; Skevaki, C. Vitamin D supplementation for the treatment of COVID-19: A systematic review and meta-analysis of randomized controlled trials. Front. Immunol. 2022, 13, 1023903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, J.; Dong, H.; Shang, N.; Li, Y.; Zhang, Y.; Guo, S.; Mei, X. The impact of supplementing vitamin D through different methods on the prognosis of COVID-19 patients: A systematic review and meta-analysis. Front. Nutr. 2024, 11, 1441847. [Google Scholar] [CrossRef]
- Tentolouris, N.; Samakidou, G.; Eleftheriadou, I.; Tentolouris, A.; Jude, E.B. The effect of vitamin D supplementation on mortality and intensive care unit admission of COVID-19 patients. A systematic review, meta-analysis and meta-regression. Diabetes Metab. Res. Rev. 2022, 38, e3517. [Google Scholar] [CrossRef]
- Pal, R.; Banerjee, M.; Bhadada, S.K.; Shetty, A.J.; Singh, B.; Vyas, A. Vitamin D supplementation and clinical outcomes in COVID-19: A systematic review and meta-analysis. J. Endocrinol. Investig. 2022, 45, 53–68. [Google Scholar] [CrossRef]
- Williams, B. The National Early Warning Score: From concept to NHS implementation. Clin. Med. 2022, 22, 499–505. [Google Scholar] [CrossRef]
- Takacs, I.; Bakos, B.; Nemeth, Z.; Toth, B.E.; Szili, B.; Lakatos, P. Controlled randomized open label clinical study comparing the safety and efficacy of loading schedules in vitamin D deficient patients. J. Steroid. Biochem. Mol. Biol. 2023, 231, 106330. [Google Scholar] [CrossRef]
- Overbergh, L.; Decallonne, B.; Valckx, D.; Verstuyf, A.; Depovere, J.; Laureys, J.; Rutgeerts, O.; Saint-Arnaud, R.; Bouillon, R.; Mathieu, C. Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin. Exp. Immunol. 2000, 120, 139–146. [Google Scholar] [CrossRef]
- Liu, P.T.; Stenger, S.; Li, H.; Wenzel, L.; Tan, B.H.; Krutzik, S.R.; Ochoa, M.T.; Schauber, J.; Wu, K.; Meinken, C.; et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006, 311, 1770–1773. [Google Scholar] [CrossRef]
- Kamen, D.L.; Tangpricha, V. Vitamin D and molecular actions on the immune system: Modulation of innate and autoimmunity. J. Mol. Med. 2010, 88, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Charan, J.; Goyal, J.P.; Saxena, D.; Yadav, P. Vitamin D for prevention of respiratory tract infections: A systematic review and meta-analysis. J. Pharmacol. Pharmacother. 2012, 3, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Brosnahan, S.B.; Jonkman, A.H.; Kugler, M.C.; Munger, J.S.; Kaufman, D.A. COVID-19 and Respiratory System Disorders: Current Knowledge, Future Clinical and Translational Research Questions. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2586–2597. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Wichmann, D.; Sperhake, J.P.; Lutgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schroder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann. Intern. Med. 2020, 173, 268–277. [Google Scholar] [CrossRef]
- Mohandas, S.; Jagannathan, P.; Henrich, T.J.; Sherif, Z.A.; Bime, C.; Quinlan, E.; Portman, M.A.; Gennaro, M.; Rehman, J.; Force, R.M.P.T. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023, 12, e86014. [Google Scholar] [CrossRef]
- Nielsen, N.M.; Junker, T.G.; Boelt, S.G.; Cohen, A.S.; Munger, K.L.; Stenager, E.; Ascherio, A.; Boding, L.; Hviid, A. Vitamin D status and severity of COVID-19. Sci. Rep. 2022, 12, 19823. [Google Scholar] [CrossRef]
- Annweiler, C.; Hanotte, B.; Grandin de l’Eprevier, C.; Sabatier, J.M.; Lafaie, L.; Celarier, T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J. Steroid. Biochem. Mol. Biol. 2020, 204, 105771. [Google Scholar] [CrossRef]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef]
- Griffin, G.; Hewison, M.; Hopkin, J.; Kenny, R.A.; Quinton, R.; Rhodes, J.; Subramanian, S.; Thickett, D. Perspective: Vitamin D supplementation prevents rickets and acute respiratory infections when given as daily maintenance but not as intermittent bolus: Implications for COVID-19. Clin. Med. 2021, 21, e144–e149. [Google Scholar] [CrossRef]
- Martineau, A.R.; Cantorna, M.T. Vitamin D for COVID-19: Where are we now? Nat. Rev. Immunol. 2022, 22, 529–530. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.F.; Broad, E.; Murphy, R.; Pappachan, J.M.; Pardesi-Newton, S.; Kong, M.F.; Jude, E.B. High-Dose Cholecalciferol Booster Therapy is Associated with a Reduced Risk of Mortality in Patients with COVID-19: A Cross-Sectional Multi-Centre Observational Study. Nutrients 2020, 12, 3799. [Google Scholar] [CrossRef] [PubMed]
- Correction to: 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, e136–e139. [CrossRef]
- Lucier, J.; Mathias, P.M. Type 1 Diabetes. [Updated 2024 Oct 5]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, January 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507713/ (accessed on 7 October 2024).
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 diabetes mellitus in adults: Pathogenesis, prevention and therapy. Signal Transduct. Target Ther. 2024, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.S.; Macfarlane, P.; Wellens, H.; Josephson, M.; Gorgels, A.; Mirvis, D.M.; Pahlm, O.; Surawicz, B.; Kligfield, P.; Childers, R.; et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part VI: Acute ischemia/infarction: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 2009, 53, 1003–1011. [Google Scholar] [CrossRef]
- Basit, H.; Malik, A.; Huecker, M.R. Non–ST-Segment Elevation Myocardial Infarction. [Updated 2023 Jul 10]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, January 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513228/ (accessed on 26 August 2024).
- Yew, K.S.; Cheng, E. Acute stroke diagnosis. Am. Fam. Physician. 2009, 80, 33–40. [Google Scholar]
- Burkhardt, R.; Pankow, W. The diagnosis of chronic obstructive pulmonary disease. Dtsch. Arztebl. Int. 2014, 111, 834–846. [Google Scholar] [CrossRef]
- Zimerman, A.; da Silveira, A.D.; Solomon, S.D.; Rohde, L.E. NYHA classification for decision-making in heart failure: Time to reassess? Eur. J. Heart Fail. 2023, 25, 929–932. [Google Scholar] [CrossRef]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef]
Dept1 (Patients Received Vitamin D3 Supplementation) | Dept2 (Patients Did Not Receive Vitamin D3 Supplementation) | p-Value | |
---|---|---|---|
Gender (All) (N (%)) | 76 (100%) | 72 (100%) | |
Male (N (%)) | 43 (57%) | 39 (54%) | |
Female (N (%)) | 33 (43%) | 33 (46%) | |
Mean Age (Year (±SD)) | 69 (±16) | 66 (±14) | |
NEWScore 2 at the hospitalization | Patients in Dept1 | Patients in Dept2 | p-value |
Aggregate score 0–4 (low risk) (N (%)) | 36 (47%) | 39 (54%) | 0.41 |
Aggregate score 5–6 (medium risk) (N (%)) | 12 (16%) | 12 (17%) | 0.88 |
Aggregate score 7 or more (high risk) (N (%)) | 28 (37%) | 21 (29%) | 0.32 |
Patients at hospital admission | |||
25(OH)D-deficient (<20 ng/mL) (all) (N (%)) | 24 (32%) | 30 (42%) | 0.20 a |
25(OH)D-non-deficient (≥20 ng/mL) (all) (N (%)) | 52 (68%) | 42 (58%) | |
25(OH)D-deficient died in hospital (N (%)) | 5 (6.6%) | 14 (19%) | 0.048 |
25(OH)D-non-deficient died in hospital (N (%)) | 5 (6.6%) | 15 (21%) | <0.01 |
25(OH)D concentration at hospital admission | |||
All (mean ± SD) (ng/mL) | 29 (±17) | 29 (±33) | not significant |
25(OH)D-deficient (<20 ng/mL) (mean ± SD) (ng/mL) | 11 (±4.6) | 12 (±4.7) | not significant |
25(OH)D-non-deficient (≥20 ng/mL) (mean ± SD) (ng/mL) | 37 (±15) | 41 (±38) | not significant |
Gender (All) | 30 Patients (100%) |
Male | 18 patients (60%) |
Female | 12 patients (40%) |
Mean age (years (±SD)) | 70 (±17) |
Average number of days spent in hospital (±SD) | 13 (±5.4) |
Vitamin D3 supplementation | |
25(OH)D dose—12,000 IU (7 days) | 9 patients (30%) |
25(OH)D dose—30,000 IU (3 days) | 21 patients (70%) |
Safety Measures of Vitamin D3 Supplementation | Day 0 Mean (±SD) | Day 4 Mean (±SD) | Day 8 Mean (±SD) |
---|---|---|---|
25(OH)D concentration (ng/mL) | |||
All | 29 (±16) | 37 (±20) | 39 (±18) |
Deficient (<20 ng/mL) at hospitalization | 11 (±4.7) | 22 (±10) | 27 (±12) |
Non-deficient (≥20 ng/mL) at hospitalization | 37 (±13) | 44 (±20) | 45 (±17) |
Ca concentration (mmol/L) | |||
All | 2.1 (±0.1) | NA | 2.1 (±0.3) |
25(OH)D-deficient (<20 ng/mL) at hospitalization | 2.1 (±0.1) | NA | 2.2 (±0.2) |
25(OH)D-non-deficient (≥20 ng/mL) at hospitalization | 2.1 (±0.2) | NA | 2.0 (±0.3) |
Phosphate concentration (mmol/L) | |||
All | 1.0 (±0.2) | NA | 1.1 (±0.3) |
25(OH)D-deficient (<20 ng/mL) at hospitalization | 0.9 (±0.3) | NA | 1.1 (±0.3) |
25(OH)D-non-deficient (≥20 ng/mL) at hospitalization | 1.1 (±0.2) | NA | 1.1 (±0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sümegi, L.D.; Varga, M.; Kadocsa, V.; Szili, B.; Stempler, M.; Lakatos, P.A.; Németh, Z.; Takács, I. Effect of Moderately High-Dose Vitamin D3 Supplementation on Mortality in Patients Hospitalized for COVID-19 Infection. Nutrients 2025, 17, 507. https://doi.org/10.3390/nu17030507
Sümegi LD, Varga M, Kadocsa V, Szili B, Stempler M, Lakatos PA, Németh Z, Takács I. Effect of Moderately High-Dose Vitamin D3 Supplementation on Mortality in Patients Hospitalized for COVID-19 Infection. Nutrients. 2025; 17(3):507. https://doi.org/10.3390/nu17030507
Chicago/Turabian StyleSümegi, Liza Dalma, Marina Varga, Veronika Kadocsa, Balázs Szili, Márk Stempler, Péter András Lakatos, Zsuzsanna Németh, and István Takács. 2025. "Effect of Moderately High-Dose Vitamin D3 Supplementation on Mortality in Patients Hospitalized for COVID-19 Infection" Nutrients 17, no. 3: 507. https://doi.org/10.3390/nu17030507
APA StyleSümegi, L. D., Varga, M., Kadocsa, V., Szili, B., Stempler, M., Lakatos, P. A., Németh, Z., & Takács, I. (2025). Effect of Moderately High-Dose Vitamin D3 Supplementation on Mortality in Patients Hospitalized for COVID-19 Infection. Nutrients, 17(3), 507. https://doi.org/10.3390/nu17030507