Probable Depression Is Associated with Lower BMI Among Women on ART in Kinshasa, the Democratic Republic of Congo: A Cross-Sectional Study
Abstract
1. Introduction
2. Methodology
2.1. Study Design and Setting
2.2. Participants and Sample Size
2.3. Measuring Nutrition, Food Security, and Mental Health
2.3.1. Anthropometry as the Primary Outcome
2.3.2. Household Food Insecurity (Exposure/Covariate)
2.3.3. Dietary Diversity
2.3.4. ART Adherence
2.3.5. Depressive Symptoms
2.3.6. Additional Covariates
2.4. Data Collection Procedures and Quality Control
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
3.1. Prevalence of Key Indicators Among Study Participants
3.2. Changes in Body Mass Index Between Induction and Survey Day
4. Discussion
4.1. Strengths and Limitations
4.2. Policy and Programmatic Recommendations
4.3. Suggestions for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANCOVA | Analysis of covariance |
ART | Antiretroviral therapy |
BMI | Body mass index |
CI | Confidence interval |
DRC | Democratic Republic of Congo |
FANTA | Food and Nutrition Technical Assistance |
HFIAS | Household Food Insecurity Access Scale |
HIV | Human immunodeficiency virus |
HSCL-10 | Hopkins Symptom Checklist-10 |
MDD_W | Minimum Dietary Diversity for Women |
MICE | Multiple imputation by chained equations |
PLHIV | People living with HIV |
SEP | Socioeconomic position |
SSA | Sub-Saharan Africa |
USAID | United States Agency for International Development |
VIFs | Variance inflation factors |
WHO | World Health Organization |
WLHIV | Women living with HIV |
References
- Weiser, S.D.; Young, S.L.; Cohen, C.R.; Kushel, M.B.; Tsai, A.C.; Tien, P.C.; Hatcher, A.M.; Frongillo, E.A.; Bangsberg, D.R. Conceptual framework for understanding the bidirectional links between food insecurity and HIV/AIDS. Am. J. Clin. Nutr. 2011, 94, 1729S–1739S. [Google Scholar] [CrossRef] [PubMed]
- Pence, B.W.; Miller, W.C.; Gaynes, B.N.; Eron, J.J., Jr. Psychiatric illness and virologic response in patients initiating highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 2007, 44, 159–166. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Health Sector Strategies on HIV, Hepatitis and Sexually Transmitted Infections; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Low, A.; Gummerson, E.; Schwitters, A.; Bonifacio, R.; Teferi, M.; Mutenda, N.; Ayton, S.; Juma, J.; Ahpoe, C.; Ginindza, C.; et al. Food insecurity and the risk of HIV acquisition: Findings from population-based surveys in six sub-Saharan African countries (2016–2017). BMJ Open 2022, 12, e058704. [Google Scholar] [CrossRef] [PubMed]
- Issa, M.Y.; Diagana, Y.; Khalid, E.L.K.; Coulibaly, S.M.; Gueye, A.; Dehah, R.M.H.; Vall, O.E.K.M. Dietary diversity and its determinants among women of reproductive age residing in the urban area of Nouakchott, Mauritania. BMC Public Health 2024, 24, 916. [Google Scholar] [CrossRef]
- Zewudie, B.T.; Geze, S.; Mesfin, Y.; Argaw, M.; Abebe, H.; Mekonnen, Z.; Tesfa, S.; Chekole, B.; Tadesse, B.; Aynalem, A.; et al. A Systematic Review and Meta-Analysis on Depression and Associated Factors among Adult HIV/AIDS-Positive Patients Attending ART Clinics of Ethiopia: 2021. Depress. Res. Treat. 2021, 2021, 8545934. [Google Scholar] [CrossRef]
- Musumari, P.M.; Wouters, E.; Kayembe, P.K.; Kiumbu Nzita, M.; Mbikayi, S.M.; Suguimoto, S.P.; Techasrivichien, T.; Lukhele, B.W.; El-Saaidi, C.; Piot, P.; et al. Food insecurity is associated with increased risk of non-adherence to antiretroviral therapy among HIV-infected adults in the Democratic Republic of Congo: A cross-sectional study. PLoS ONE 2014, 9, e85327. [Google Scholar] [CrossRef]
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Food Access: Indicator Guide; Food and Nutrition Technical Assistance Project; Academy for Educational Development: Washington, DC, USA, 2007. [Google Scholar]
- Martin-Prevel, Y.; Arimond, M.; Allemand, P.; Wiesmann, D.; Ballard, T.J.; Deitchler, M.; Dop, M.C.; Kennedy, G.; Lartey, A.; Lee, W.T.; et al. Development of a dichotomous indicator for population-level assessment of dietary diversity in women of reproductive age. Curr. Dev. Nutr. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Okonji, E.F.; Mukumbang, F.C.; Orth, Z.; Vickerman-Delport, S.A.; Van Wyk, B. Psychosocial support interventions for improved adherence and retention in ART care for young people living with HIV (10–24 years): A scoping review. BMC Public Health 2020, 20, 1841. [Google Scholar] [CrossRef]
- Buju, R.T.; Akilimali, P.Z.; Kamangu, E.N.; Mesia, G.K.; Kayembe, J.M.N.; Situakibanza, H.N. Incidence and Predictors of Loss to Follow Up among Patients Living with HIV under Dolutegravir in Bunia, Democratic Republic of Congo: A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 4631. [Google Scholar] [CrossRef]
- Rodríguez-Barragán, M.; Fernández-San-Martín, M.I.; Clavería, A.; Le Reste, J.Y.; Nabbe, P.; Motrico, E.; Gómez-Gómez, I.; Peguero-Rodríguez, E. Measuring depression in Primary Health Care in Spain: Psychometric properties and diagnostic accuracy of HSCL-5 and HSCL-10. Front. Med. 2023, 9, 1014340. [Google Scholar] [CrossRef]
- Haavet, O.R.; Sirpal, M.K.; Haugen, W.; Christensen, K.S. Diagnosis of depressed young people in primary health care—A validation of HSCL-10. Fam. Pract. 2011, 28, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Iii, W.W.H.; Raaijmakers, Q.A.; Muris, P.; Van Hoof, A.; Meeus, W.H. One factor or two parallel processes? Comorbidity and development of adolescent anxiety and depressive disorder symptoms. J. Child Psychol. Psychiatry 2009, 50, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Tsai, A.C.; Bangsberg, D.R.; Frongillo, E.A.; Hunt, P.W.; Muzoora, C.; Martin, J.N.; Weiser, S.D. Food Insecurity, Depression and the Modifying Role of Social Support among People Living with HIV/AIDS in Rural Uganda. Soc. Sci. Med. 2012, 74, 2012–2019. [Google Scholar] [CrossRef]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data–or tears: An application to educational enrollments in states of India. Demography 2001, 38, 115–132. [Google Scholar]
- Benzekri, N.A.; Sambou, J.; Diaw, B.; Sall, H.I.; Sall, F.; Niang, A.; Ba, S.; Guèye, N.F.N.; Diallo, M.B.; Hawes, S.E.; et al. High Prevalence of Severe Food Insecurity and Malnutrition among HIV-Infected Adults in Senegal, West Africa. PLoS ONE 2015, 10, e0141819. [Google Scholar] [CrossRef]
- Gebremichael, D.Y.; Hadush, K.T.; Kebede, E.M.; Zegeye, R.T. Food insecurity, nutritional status, and factors associated with malnutrition among people living with HIV/AIDS in West Shewa Zone, Central Ethiopia. BioMed Res. Int. 2018, 2018, 1913534. [Google Scholar] [CrossRef]
- Emerson, J.A.; Caulfield, L.E.; Kishimata, E.M.; Nzanzu, J.-P.; Doocy, S. Mental health symptoms and their relations with dietary diversity and nutritional status among mothers of young children in eastern Democratic Republic of Congo. BMC Public Health 2020, 20, 225. [Google Scholar] [CrossRef]
- FAO. Minimum Dietary Diversity for Women: A Guide to Measurement. FAO and FANTA. 2016. Available online: https://www.fao.org/3/i5486e/i5486e.pdf (accessed on 5 June 2025).
- World Health Organization. WHO Case Definitions of HIV for Surveillance and Revised Clinical Staging and Immunological Classification of HIV-Related Disease in Adults and Children. 2007. Available online: https://www.paho.org/en/documents/who-case-definitions-hiv-surveillance-and-revised-clinical-staging-and-inmunological (accessed on 5 June 2025).
- Lam, J.O.; Leyden, W.A.; Alexeeff, S.; Lea, A.N.; Hechter, R.C.; Hu, H.; Marcus, J.L.; Pitts, L.; Yuan, Q.; Towner, W.J.; et al. Changes in Body Mass Index Over Time in People with and Without HIV Infection. Open Forum Infect. Dis. 2024, 11, ofad611. [Google Scholar] [CrossRef]
- Tadesse, G.; Rtbey, G.; Tinsae, T.; Andualem, F.; Kelebie, M.; Kibralew, G.; Geremew, G.W.; Abate, A.T.; Wassie, Y.A.; Alemayehu, T.T.; et al. Depressive symptoms and its determinants among people living with HIV in Africa: Systematic review and meta-analysis. BMC Psychiatry 2025, 25, 325. [Google Scholar] [CrossRef]
- Leddy, A.M.; Zakaras, J.M.; Shieh, J.; Conroy, A.A.; Ofotokun, I.; Tien, P.C.; Weiser, S.D. Intersections of food insecurity, violence, poor mental health and substance use among US women living with and at risk for HIV: Evidence of a syndemic in need of attention. PLoS ONE 2021, 16, e0252338. [Google Scholar] [CrossRef]
- Markakis, K.; Tsachouridou, O.; Georgianou, E.; Pilalas, D.; Nanoudis, S.; Metallidis, S. Weight Gain in HIV Adults Receiving Antiretroviral Treatment: Current Knowledge and Future Perspectives. Life 2024, 14, 1367. [Google Scholar] [CrossRef] [PubMed]
- Ortego, C.; Huedo-Medina, T.B.; Llorca, J.; Sevilla, L.; Santos, P.; Rodríguez, E.; Warren, M.R.; Vejo, J. Adherence to highly active antiretroviral therapy (HAART): A meta-analysis. AIDS Behav. 2011, 15, 1381–1396. [Google Scholar] [CrossRef] [PubMed]
- Weiser, S.D.; Palar, K.; Frongillo, E.A.; Tsai, A.C.; Kumbakumba, E.; Depee, S.; Hunt, P.W.; Ragland, K.; Martin, J.; Bangsberg, D.R. Longitudinal assessment of associations between food insecurity, antiretroviral adherence and HIV treatment outcomes in rural Uganda. AIDS 2014, 28, 115–120. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Hiv. The syndemic threat of food insecurity and HIV. Lancet HIV 2020, 7, e75. [Google Scholar] [CrossRef]
- Ayano, G.; Tsegay, L.; Solomon, M. Food insecurity and the risk of depression in people living with HIV/AIDS: A systematic review and meta-analysis. AIDS Res. Ther. 2020, 17, 36. [Google Scholar] [CrossRef]
- Sié, A.; Tapsoba, C.; Dah, C.; Ouermi, L.; Zabre, P.; Bärnighausen, T.; Arzika, A.M.; Lebas, E.; Snyder, B.M.; Moe, C.; et al. Dietary diversity and nutritional status among children in rural Burkina Faso. Int. Health 2018, 10, 157–162. [Google Scholar] [CrossRef]
- Lyons, C.; Ching, J.; Tran, D.N.; Kafu, C.; Wachira, J.; Koros, H.; Venkataramani, M.; Said, J.; Pastakia, S.D.; Galárraga, O.; et al. Social, economic and food insecurity among people living with HIV in Kenya during coinciding public health and environmental emergencies: A mixed-methods study. BMJ Public Health 2024, 2, e000836. [Google Scholar] [CrossRef]
n | % | |
---|---|---|
Age (mean ± SD) | 42.3 ± 12.5 | |
Age groups | ||
18–24 | 55 | 9.6 |
25–34 | 111 | 19.4 |
35–49 | 225 | 39.4 |
50+ | 180 | 31.5 |
Level of education attained | ||
None/primary | 111 | 19.4 |
Secondary | 315 | 55.2 |
University | 145 | 25.4 |
Marital status | ||
Never married | 178 | 31.2 |
Divorced/widowed/separated | 191 | 33.5 |
Common-law/polygamous marriage | 66 | 11.6 |
Monogamous marriage | 136 | 23.8 |
Household size | ||
Less than 5 | 232 | 40.7 |
Six and above | 338 | 59.3 |
Household wealth tertile | ||
Lowest tertile | 244 | 42.8 |
Middle tertile | 136 | 23.9 |
Highest tertile | 190 | 33.3 |
Year since induction of ARV (median (Q1–Q3)) | 3.99 (1.61–7.12) | |
Alcohol consumption * | ||
No | 470 | 82.5 |
Yes | 100 | 17.5 |
Tobacco consumption * | ||
No | 529 | 93.1 |
Yes | 39 | 6.9 |
Total | 571 | 100 |
Households Experienced the Condition at Any Time During the Recall Period (%) | Households Often Experienced the Condition (%) | |||
---|---|---|---|---|
n * | % * | n * | % | |
Experienced food insecurity access-related conditions at any time during the recall period (%) | ||||
| 420 | 73.9 | 0 | 0.0 |
| 420 | 73.7 | 0 | 0.0 |
| 409 | 71.8 | 15 | 3.7 |
| 416 | 73 | 12 | 2.9 |
| 404 | 70.9 | 14 | 3.5 |
| 400 | 70.2 | 4 | 1.0 |
| 398 | 69.8 | 4 | 1.0 |
| 383 | 67.2 | 3 | 0.8 |
| 378 | 66.3 | 1 | 0.3 |
n * | % * | |
---|---|---|
Grains, white roots and tubers, and plantains | 558 | 97.7 |
Pulses (beans, peas and lentils) | 540 | 94.6 |
Nuts and seeds | 182 | 31.9 |
Dairy | 173 | 30.3 |
Meat, poultry and fish | 392 | 68.7 |
Eggs | 50 | 8.8 |
Dark green leafy vegetables | 380 | 66.5 |
Other vitamin A-rich fruits and vegetables | 132 | 23.1 |
Other vegetables | 509 | 89.1 |
Other fruits | 182 | 31.9 |
MDD_W (Mean ± SD) | 4.27 ± 1.31 | |
Dietary diversity | ||
Inadequate diversity | 329 | 57.6 |
Adequate diversity | 242 | 42.4 |
BMI at Survey | Unstandardized β | Standardized β | St. Err | t-Value | p-Value | 95% CI | |
---|---|---|---|---|---|---|---|
Centered baseline BMI | 0.479 | 2.423 | 0.053 | 9.00 | <0.001 | 0.375 | 0.585 |
ART adherence | |||||||
Adherent vs. non-adherent | −0.034 | −0.016 | 0.353 | −0.10 | 0.923 | −0.727 | 0.659 |
Depression symptoms | |||||||
Presence vs. absence | −0.987 | −0.490 | 0.373 | −2.65 | 0.008 | −1.720 | −0.255 |
Food security | |||||||
Food-insecure vs. food-secure | −0.524 | −0.230 | 0.396 | −1.32 | 0.186 | −1.302 | 0.254 |
Dietary diversity score | 0.162 | 0.210 | 0.135 | 1.21 | 0.228 | −0.102 | 0.427 |
Centered time | 0.100 | 0.427 | 0.047 | 2.13 | 0.034 | 0.008 | 0.193 |
Women’s age | 0.010 | 0.129 | 0.013 | 0.79 | 0.427 | −0.015 | 0.036 |
Wealth index | |||||||
Middle vs. first tertile | −0.119 | −0.051 | 0.409 | −0.29 | 0.769 | −0.923 | 0.683 |
Highest vs. first tertile | 0.519 | 0.245 | 0.430 | 1.21 | 0.228 | −0.325 | 1.363 |
Constant | 22.953 | - | 0.931 | 24.64 | <0.001 | 21.123 | 24.783 |
Mean dependent var | 23.384 | SD dependent var | 4.432 | ||||
R-squared | 0.354 | Number of obs. | 503 | ||||
F-test | 16.020 | Prob > F | <0.001 | ||||
Akaike crit. (AIC) | 2724.014 | Bayesian crit. (BIC) | 2766.220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavira Viranga, A.; Kalonji Kamuna, I.B.; Mwanamoke Mbokoso, P.; Mudogo, C.N.; Akilimali Zalagile, P. Probable Depression Is Associated with Lower BMI Among Women on ART in Kinshasa, the Democratic Republic of Congo: A Cross-Sectional Study. Nutrients 2025, 17, 3230. https://doi.org/10.3390/nu17203230
Kavira Viranga A, Kalonji Kamuna IB, Mwanamoke Mbokoso P, Mudogo CN, Akilimali Zalagile P. Probable Depression Is Associated with Lower BMI Among Women on ART in Kinshasa, the Democratic Republic of Congo: A Cross-Sectional Study. Nutrients. 2025; 17(20):3230. https://doi.org/10.3390/nu17203230
Chicago/Turabian StyleKavira Viranga, Annie, Ignace Balaw’a Kalonji Kamuna, Paola Mwanamoke Mbokoso, Celestin Nzanzu Mudogo, and Pierre Akilimali Zalagile. 2025. "Probable Depression Is Associated with Lower BMI Among Women on ART in Kinshasa, the Democratic Republic of Congo: A Cross-Sectional Study" Nutrients 17, no. 20: 3230. https://doi.org/10.3390/nu17203230
APA StyleKavira Viranga, A., Kalonji Kamuna, I. B., Mwanamoke Mbokoso, P., Mudogo, C. N., & Akilimali Zalagile, P. (2025). Probable Depression Is Associated with Lower BMI Among Women on ART in Kinshasa, the Democratic Republic of Congo: A Cross-Sectional Study. Nutrients, 17(20), 3230. https://doi.org/10.3390/nu17203230