Food Is Medicine: Diet Assessment Tools in Adult Inflammatory Bowel Disease Research
Abstract
:1. Introduction
2. Methods
Search Strategy and Selection Criteria
3. Results
3.1. Diet Is Linked to IBD
3.2. Diet and Under-Represented Groups
3.3. Data Collection
3.3.1. Asking Patients About Their Diet
- Food Frequency Questionnaires (FFQs):
- 24-Hour Dietary Recalls:
- Diet History Interviews:
3.3.2. Real-Time Diet Recording
- Food Diaries:
3.4. Dietary Indices
3.4.1. Nutritional Quality Indices
- FSAm-NPS Dietary Index (FSAm-NPS-DI):
- Planetary Health Diet:
3.4.2. Dietary Patterns
- Mediterranean and Nordic Diets:
- Western Diets:
3.4.3. Food Processing and Lifestyle Interaction
- NOVA Classification System:
- Diet and Lifestyle:
3.4.4. Inflammatory Potential of Diet
- Empirical Dietary Inflammatory Pattern (EDIP):
- Dietary Inflammatory Index (DII):
3.4.5. Specific Nutrients and Food Items
3.5. Molecular Markers
3.6. Precision Nutrition
4. Discussion
4.1. Strengths, Limitations, and Gaps of Dietary Assessment Tools
4.2. Data Collection
4.3. Diet and Under-Represented Groups
4.4. Diet Interactions and Food Content Variability
4.5. Biomarkers and Multi-Omics Analysis
4.6. Causality
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hacker, K. The Burden of Chronic Disease. Mayo Clin. Proc. Innov. Qual. Outcomes 2024, 8, 112–119. [Google Scholar] [CrossRef]
- Health effects of dietary risks in 195 countries, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [CrossRef] [PubMed]
- Wang, P.; Song, M.; Eliassen, A.H.; Wang, M.; Fung, T.T.; Clinton, S.K.; Rimm, E.B.; Hu, F.B.; Willett, W.C.; Tabung, F.K.; et al. Optimal dietary patterns for prevention of chronic disease. Nat. Med. 2023, 29, 719–728. [Google Scholar] [CrossRef]
- Venkatesan, P. Food is medicine: Clinical trials show the health benefits of dietary interventions. Nat. Med. 2024, 30, 916–919. [Google Scholar] [CrossRef]
- Gros, B.; Kaplan, G.G. Ulcerative Colitis in Adults: A Review. JAMA 2023, 330, 951–965. [Google Scholar] [CrossRef]
- Roda, G.; Chien Ng, S.; Kotze, P.G.; Argollo, M.; Panaccione, R.; Spinelli, A.; Kaser, A.; Peyrin-Biroulet, L.; Danese, S. Crohn’s disease. Nat. Rev. Dis. Primers 2020, 6, 22. [Google Scholar] [CrossRef]
- Andersen, V.; Bennike, T.B.; Bang, C.; Rioux, J.D.; Hébert-Milette, I.; Sato, T.; Hansen, A.K.; Nielsen, O.H. Investigating the Crime Scene-Molecular Signatures in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2023, 24, 11217. [Google Scholar] [CrossRef]
- Magen-Rimon, R.; Day, A.S.; Shaoul, R. An Overview of Nutritional Interventions in Inflammatory Bowel Diseases. Nutrients 2024, 16, 3055. [Google Scholar] [CrossRef]
- Jatkowska, A.; White, B.; Gkikas, K.; Seenan, J.P.; MacDonald, J.; Gerasimidis, K. Partial Enteral Nutrition in the Management of Crohn’s Disease: A Systematic Review and Meta-Analysis. J. Crohn’s Colitis 2024, jjae177. [Google Scholar] [CrossRef] [PubMed]
- Halmos, E.P.; Godny, L.; Vanderstappen, J.; Sarbagili-Shabat, C.; Svolos, V. Role of diet in prevention versus treatment of Crohn’s disease and ulcerative colitis. Frontline Gastroenterol. 2024, 15, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Gleave, A.; Shah, A.; Tahir, U.; Blom, J.J.; Dong, E.; Patel, A.; Marshall, J.K.; Narula, N. Using Diet to Treat Inflammatory Bowel Disease: A Systematic Review. Am. J. Gastroenterol. 2024, 120, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Herrador-López, M.; Martín-Masot, R.; Navas-López, V.M. Dietary Interventions in Ulcerative Colitis: A Systematic Review of the Evidence with Meta-Analysis. Nutrients 2023, 15, 4194. [Google Scholar] [CrossRef] [PubMed]
- Babaei, A.; Pourmotabbed, A.; Talebi, S.; Mehrabani, S.; Bagheri, R.; Ghoreishy, S.M.; Amirian, P.; Zarpoosh, M.; Mohammadi, H.; Kermani, M.A.H.; et al. The association of ultra-processed food consumption with adult inflammatory bowel disease risk: A systematic review and dose-response meta-analysis of 4035694 participants. Nutr. Rev. 2024, 82, 861–871. [Google Scholar] [CrossRef]
- Gibson, P.R.; Yao, C.K.; Halmos, E.P. Review article: Evidence-based dietary management of inflammatory bowel disease. Aliment. Pharmacol. Ther. 2024, 60, 1215–1233. [Google Scholar] [CrossRef]
- Khademi, Z.; Pourreza, S.; Amjadifar, A.; Torkizadeh, M.; Amirkhizi, F. Dietary Patterns and Risk of Inflammatory Bowel Disease: A Systematic Review of Observational Studies. Inflamm. Bowel Dis. 2024, 30, 2205–2216. [Google Scholar] [CrossRef]
- Liu, G.X.H.; Day, A.S. Plant-based Diets for Inflammatory Bowel Disease: What Is the Evidence? Inflamm. Bowel Dis. 2024, 30, 1865–1876. [Google Scholar] [CrossRef] [PubMed]
- Vagianos, K.; Dolovich, C.; Witges, K.; Graff, L.A.; Bernstein, C.N. Ultra-Processed Food, Disease Activity, and Inflammation in Ulcerative Colitis: The Manitoba Living With IBD Study. Am. J. Gastroenterol. 2024, 119, 1102–1109. [Google Scholar] [CrossRef]
- Zhang, J.L.; Vootukuru, N.; Niewiadomski, O. The effect of solid food diet therapies on the induction and maintenance of remission in Crohn’s disease: A systematic review. BMC Gastroenterol. 2024, 24, 250. [Google Scholar] [CrossRef]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.R.; Anderson, K.R.; Fry, J.L. Sex-Specific Variation in Metabolic Responses to Diet. Nutrients 2024, 16, 2921. [Google Scholar] [CrossRef]
- Pontifex, M.G.; Vauzour, D.; Muller, M. Sexual dimorphism in the context of nutrition and health. Proc. Nutr. Soc. 2024, 83, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Andersen, V.; Pingel, J.; Søfelt, H.L.; Hikmat, Z.; Johansson, M.; Pedersen, V.S.; Bertelsen, B.; Carlsson, A.; Lindh, M.; Svavarsdóttir, E.; et al. Sex and gender in inflammatory bowel disease outcomes and research. Lancet Gastroenterol. Hepatol. 2024, 9, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- EAT-Lancet Commission 2.0: Securing a just transition to healthy, environmentally sustainable diets for all. Lancet 2023, 402, 352–354. [CrossRef]
- Studies linking diet with health must get a whole lot better. Nature 2022, 610, 231. [CrossRef] [PubMed]
- Zerouga, I.; Valeur, J.; Sommer, C.; Cvancarova Småstuen, M.; Medhus, A.W.; Lund, C.; Johansen, I.; Cetinkaya, R.B.; Bengtson, M.B.; Torp, R.; et al. Dietary intake and nutritional status in patients with newly diagnosed inflammatory bowel disease: Insights from the IBSEN III study. Scand. J. Gastroenterol. 2024, 59, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.A.; Melton, S.L.; Yao, C.K.; Gibson, P.R.; Halmos, E.P. Dietary management of adults with IBD—The emerging role of dietary therapy. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 652–669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xun, L.; Qiao, R.; Jin, S.; Zhang, B.; Luo, M.; Wan, P.; Zuo, Z.; Song, Z.; Qi, J. Advances in research on the role of high carbohydrate diet in the process of inflammatory bowel disease (IBD). Front. Immunol. 2024, 15, 1478374. [Google Scholar] [CrossRef]
- Dignass, A.; Ainsworth, C.; Hartz, S.; Dunnewind, N.; Redondo, I.; Sapin, C.; Kroep, S.; Halfpenny, N.; Arcà, E.; Hoque, S. Efficacy and Safety of Advanced Therapies in Moderately-to-Severely Active Ulcerative Colitis: A Systematic Review and Network Meta-analysis. Adv. Ther. 2024, 41, 4446–4462. [Google Scholar] [CrossRef] [PubMed]
- Limketkai, B.N.; Godoy-Brewer, G.; Parian, A.M.; Noorian, S.; Krishna, M.; Shah, N.D.; White, J.; Mullin, G.E. Dietary Interventions for the Treatment of Inflammatory Bowel Diseases: An Updated Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2023, 21, 2508–2525.e2510. [Google Scholar] [CrossRef]
- Limketkai, B.N.; Iheozor-Ejiofor, Z.; Gjuladin-Hellon, T.; Parian, A.; Matarese, L.E.; Bracewell, K.; MacDonald, J.K.; Gordon, M.; Mullin, G.E. Dietary interventions for induction and maintenance of remission in inflammatory bowel disease. Cochrane Database Syst. Rev. 2019, 2, Cd012839. [Google Scholar] [CrossRef]
- Feraco, A.; Armani, A.; Amoah, I.; Guseva, E.; Camajani, E.; Gorini, S.; Strollo, R.; Padua, E.; Caprio, M.; Lombardo, M. Assessing gender differences in food preferences and physical activity: A population-based survey. Front. Nutr. 2024, 11, 1348456. [Google Scholar] [CrossRef] [PubMed]
- Pueschel, L.; Kockelmann, F.; Kueck, M.; Tegtbur, U.; Attaran-Bandarabadi, M.; Bachmann, O.; Wedemeyer, H.; Lenzen, H.; Wiestler, M. Patients with Inflammatory Bowel Disease Show Fewer Sex-Related Differences in Their Dietary Behavior Than the General Population: A Qualitative Analysis. Nutrients 2024, 16, 2954. [Google Scholar] [CrossRef]
- Meyer, A.; Dong, C.; Chan, S.S.M.; Touvier, M.; Julia, C.; Huybrechts, I.; Nicolas, G.; Oldenburg, B.; Heath, A.K.; Tong, T.Y.N.; et al. Dietary index based on the Food Standards Agency nutrient profiling system and risk of Crohn’s disease and ulcerative colitis. Aliment. Pharmacol. Ther. 2024, 59, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Wellens, J.; Chen, J.; Fu, T.; Zhang, Y.; Kalla, R.; Satsangi, J.; Theodoratou, E.; Li, X. Dietary Inflammatory Indices Are Not Associated With Inflammatory Bowel Disease Incidence and Progression. Inflamm. Bowel Dis. 2024, 30, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef] [PubMed]
- Haskey, N.; Estaki, M.; Ye, J.; Shim, R.K.; Singh, S.; Dieleman, L.A.; Jacobson, K.; Gibson, D.L. A Mediterranean Diet Pattern Improves Intestinal Inflammation Concomitant with Reshaping of the Bacteriome in Ulcerative Colitis: A Randomised Controlled Trial. J. Crohn’s Colitis 2023, 17, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Lopes, E.W.; Chan, S.S.M.; Song, M.; Ludvigsson, J.F.; Hakansson, N.; Lochhead, P.; Clark, A.; Burke, K.E.; Ananthakrishnan, A.N.; Cross, A.J.; et al. Lifestyle factors for the prevention of inflammatory bowel disease. Gut 2022, 72, 1093–1100. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, S.; Chen, X.; Sun, J.; Kalla, R.; Yu, L.; Wang, L.; Zhou, X.; Kong, X.; Hesketh, T.; et al. The Contribution of Genetic Risk and Lifestyle Factors in the Development of Adult-Onset Inflammatory Bowel Disease: A Prospective Cohort Study. Am. J. Gastroenterol. 2023, 118, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Dan, L.; Ye, S.; Chen, X.; Fu, T.; Wang, X.; Chen, J. Higher dietary fibre intake is associated with lower risk of inflammatory bowel disease: Prospective cohort study. Aliment. Pharmacol. Ther. 2023, 58, 516–525. [Google Scholar] [CrossRef]
- Talebi, S.; Zeraattalab-Motlagh, S.; Rahimlou, M.; Naeini, F.; Ranjbar, M.; Talebi, A.; Mohammadi, H. The Association between Total Protein, Animal Protein, and Animal Protein Sources with Risk of Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis of Cohort Studies. Adv. Nutr. 2023, 14, 752–761. [Google Scholar] [CrossRef]
- Narula, N.; Chang, N.H.; Mohammad, D.; Wong, E.C.L.; Ananthakrishnan, A.N.; Chan, S.S.M.; Carbonnel, F.; Meyer, A. Food Processing and Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2023, 21, 2483–2495.e2481. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Håkansson, N.; Chan, S.S.; Chen, Y.; Lochhead, P.; Ludvigsson, J.F.; Chan, A.T.; Hart, A.R.; Olén, O.; Wolk, A. Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn’s disease: Results from two large prospective cohort studies. Gut 2020, 69, 1637–1644. [Google Scholar] [CrossRef]
- Lo, C.H.; Lochhead, P.; Khalili, H.; Song, M.; Tabung, F.K.; Burke, K.E.; Richter, J.M.; Giovannucci, E.L.; Chan, A.T.; Ananthakrishnan, A.N. Dietary Inflammatory Potential and Risk of Crohn’s Disease and Ulcerative Colitis. Gastroenterology 2020, 159, 873–883.e871. [Google Scholar] [CrossRef]
- Blomhoff, R.; Andersen, R.; Arnesen, E.K.; Christensen, J.J.; Eneroth, H.; Erkkola, M.; Gudanaviciene, I.; Halldórsson, Þ.I.; Höyer-Lund, A.; Lemming, E.W.; et al. Nordic Nutrition Recommendations 2023; Nordic Council of Ministers: Copenhagen, Denmark, 2023.
- Deschasaux, M.; Huybrechts, I.; Murphy, N.; Julia, C.; Hercberg, S.; Srour, B.; Kesse-Guyot, E.; Latino-Martel, P.; Biessy, C.; Casagrande, C.; et al. Nutritional quality of food as represented by the FSAm-NPS nutrient profiling system underlying the Nutri-Score label and cancer risk in Europe: Results from the EPIC prospective cohort study. PLoS Med. 2018, 15, e1002651. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef]
- Peters, V.; Bolte, L.; Schuttert, E.M.; Andreu-Sánchez, S.; Dijkstra, G.; Weersma, R.K.; Campmans-Kuijpers, M.J.E. Western and Carnivorous Dietary Patterns are Associated with Greater Likelihood of IBD Development in a Large Prospective Population-based Cohort. J. Crohn’s Colitis 2022, 16, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Lipworth, L.; Trichopoulos, D. Diet and overall survival in elderly people. BMJ 1995, 311, 1457–1460. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.H.; Khandpur, N.; Rossato, S.L.; Lochhead, P.; Lopes, E.W.; Burke, K.E.; Richter, J.M.; Song, M.; Ardisson Korat, A.V.; Sun, Q.; et al. Ultra-processed Foods and Risk of Crohn’s Disease and Ulcerative Colitis: A Prospective Cohort Study. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2022, 20, e1323–e1337. [Google Scholar] [CrossRef] [PubMed]
- Tabung, F.K.; Smith-Warner, S.A.; Chavarro, J.E.; Wu, K.; Fuchs, C.S.; Hu, F.B.; Chan, A.T.; Willett, W.C.; Giovannucci, E.L. Development and Validation of an Empirical Dietary Inflammatory Index. J. Nutr. 2016, 146, 1560–1570. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hebert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Young, H.J.; Guo, W.; Key, T.J. Dietary assessment in UK Biobank: An evaluation of the performance of the touchscreen dietary questionnaire. J. Nutr. Sci. 2018, 7, e6. [Google Scholar] [CrossRef] [PubMed]
- Møller, G.; Sluik, D.; Ritz, C.; Mikkilä, V.; Raitakari, O.T.; Hutri-Kähönen, N.; Dragsted, L.O.; Larsen, T.M.; Poppitt, S.D.; Silvestre, M.P.; et al. A Protein Diet Score, Including Plant and Animal Protein, Investigating the Association with HbA1c and eGFR-The PREVIEW Project. Nutrients 2017, 9, 763. [Google Scholar] [CrossRef]
- Gibson, P.R.; Shepherd, S.J. Personal view: Food for thought--western lifestyle and susceptibility to Crohn’s disease. The FODMAP hypothesis. Aliment. Pharmacol. Ther. 2005, 21, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Simões, C.D.; Maganinho, M.; Sousa, A.S. FODMAPs, inflammatory bowel disease and gut microbiota: Updated overview on the current evidence. Eur. J. Nutr. 2022, 61, 1187–1198. [Google Scholar] [CrossRef]
- Martinez-Steele, E.; Khandpur, N.; Batis, C.; Bes-Rastrollo, M.; Bonaccio, M.; Cediel, G.; Huybrechts, I.; Juul, F.; Levy, R.B.; da Costa Louzada, M.L.; et al. Best practices for applying the Nova food classification system. Nat. Food 2023, 4, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, S.H.; Sørensen, S.B.; Munk, H.L.; Nexøe, A.B.; Glerup, H.; Henriksen, R.H.; Guldmann, T.; Pedersen, N.; Saboori, S.; Hvid, L.; et al. Impact of fibre and red/processed meat intake on treatment outcomes among patients with chronic inflammatory diseases initiating biological therapy: A prospective cohort study. Front. Nutr. 2022, 9, 985732. [Google Scholar] [CrossRef]
- Gregersen, L.; Jessen, P.D.; Lund, H.W.; Overgaard, S.H.; Hikmat, Z.; Ellingsen, T.; Kjeldsen, J.; Pedersen, A.K.; Petersen, S.R.; Jawhara, M.; et al. Impact of gluten intake on clinical outcomes in patients with chronic inflammatory diseases initiating biologics: Secondary analysis of the prospective multicentre BELIEVE cohort study. Scand. J. Immunol. 2024, 100, e13409. [Google Scholar] [CrossRef]
- Zhang, H.; Kalla, R.; Chen, J.; Zhao, J.; Zhou, X.; Adams, A.; Noble, A.; Ventham, N.T.; Wellens, J.; Ho, G.T.; et al. Altered DNA methylation within DNMT3A, AHRR, LTA/TNF loci mediates the effect of smoking on inflammatory bowel disease. Nat. Commun. 2024, 15, 595. [Google Scholar] [CrossRef] [PubMed]
- Cuparencu, C.; Bulmuş-Tüccar, T.; Stanstrup, J.; La Barbera, G.; Roager, H.M.; Dragsted, L.O. Towards nutrition with precision: Unlocking biomarkers as dietary assessment tools. Nat. Metab. 2024, 6, 1438–1453. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Tinker, L.F.; Prentice, R.L.; Loftfield, E.; Hayden, K.M.; Van Horn, L.; Sampson, J.N.; Stolzenberg-Solomon, R.; Lampe, J.W.; Neuhouser, M.L.; et al. Measuring diet by metabolomics: A 14-d controlled feeding study of weighed food intake. Am. J. Clin. Nutr. 2024, 119, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Hu, F.B. Precision nutrition for prevention and management of type 2 diabetes. Lancet. Diabetes Endocrinol. 2018, 6, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, C.; Haslam, D.; Bhupathiraju, S. Utilising the precision nutrition toolkit in the path towards precision medicine. Proc. Nutr. Soc. 2023, 82, 359–369. [Google Scholar] [CrossRef]
- Ataei Kachouei, A.; Mohammadifard, N.; Haghighatdoost, F.; Hajihashemi, P.; Zarepur, E.; Nouhi, F.; Kazemi, T.; Salehi, N.; Solati, K.; Ghaffari, S.; et al. Adherence to EAT-Lancet reference diet and risk of premature coronary artery diseases: A multi-center case-control study. Eur. J. Nutr. 2024, 63, 2933–2944. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Moorthy, M.V.; Lee, I.M.; Ridker, P.M.; Manson, J.E.; Buring, J.E.; Demler, O.V.; Mora, S. Mediterranean Diet Adherence and Risk of All-Cause Mortality in Women. JAMA Netw. Open 2024, 7, e2414322. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Angelino, D.; Rosi, A.; Dall’Asta, M.; Bresciani, L.; Ferraris, C.; Guglielmetti, M.; Godos, J.; Del Bo, C.; et al. Effects of Popular Diets on Anthropometric and Cardiometabolic Parameters: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 815–833. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Jayedi, A.; Shab-Bidar, S.; Becerra-Tomás, N.; Salas-Salvadó, J. Adherence to the Mediterranean Diet in Relation to All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Montericcio, A.; Bonaccio, M.; Ghulam, A.; Di Castelnuovo, A.; Gianfagna, F.; de Gaetano, G.; Iacoviello, L. Dietary indices underpinning front-of-pack nutrition labels and health outcomes: A systematic review and meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2024, 119, 756–768. [Google Scholar] [CrossRef]
- Deschasaux, M.; Huybrechts, I.; Julia, C.; Hercberg, S.; Egnell, M.; Srour, B.; Kesse-Guyot, E.; Latino-Martel, P.; Biessy, C.; Casagrande, C.; et al. Association between nutritional profiles of foods underlying Nutri-Score front-of-pack labels and mortality: EPIC cohort study in 10 European countries. BMJ 2020, 370, m3173. [Google Scholar] [CrossRef]
- Zaragoza-Martí, A.; Cabañero-Martínez, M.J.; Hurtado-Sánchez, J.A.; Laguna-Pérez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: A systematic review. BMJ Open 2018, 8, e019033. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.M.; Nielsen, M.M.; Toubro, S.; Pedersen, O.; Astrup, A.; Sørensen, T.I.; Jess, T.; Heitmann, B.L. Past and current body size affect validity of reported energy intake among middle-aged Danish men. J. Nutr. 2009, 139, 2337–2343. [Google Scholar] [CrossRef]
- Heitmann, B.L.; Lissner, L. Dietary underreporting by obese individuals--is it specific or non-specific? BMJ 1995, 311, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Heitmann, B.L.; Lissner, L. Can adverse effects of dietary fat intake be overestimated as a consequence of dietary fat underreporting? Public Health Nutr. 2005, 8, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Höchsmann, C.; Martin, C.K. Review of the validity and feasibility of image-assisted methods for dietary assessment. Int. J. Obes. (2005) 2020, 44, 2358–2371. [Google Scholar] [CrossRef]
- Dalakleidi, K.V.; Papadelli, M.; Kapolos, I.; Papadimitriou, K. Applying Image-Based Food-Recognition Systems on Dietary Assessment: A Systematic Review. Adv. Nutr. 2022, 13, 2590–2619. [Google Scholar] [CrossRef]
- Singar, S.; Nagpal, R.; Arjmandi, B.H.; Akhavan, N.S. Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights. Nutrients 2024, 16, 2673. [Google Scholar] [CrossRef]
- Singh, V.K.; Hu, X.H.; Singh, A.K.; Solanki, M.K.; Vijayaraghavan, P.; Srivastav, R.; Joshi, N.K.; Kumari, M.; Singh, S.K.; Wang, Z.; et al. Precision nutrition-based strategy for management of human diseases and healthy aging: Current progress and challenges forward. Front. Nutr. 2024, 11, 1427608. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, H.K.; Bording-Jorgensen, M.; Santer, D.M.; Zhang, Z.; Valcheva, R.; Rieger, A.M.; Sung-Ho Kim, J.; Dijk, S.I.; Mahmood, R.; Ogungbola, O.; et al. Unfermented β-fructan Fibers Fuel Inflammation in Select Inflammatory Bowel Disease Patients. Gastroenterology 2023, 164, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, M.L.; Barkhordari, N.; Kaakeh, Y. Effects of Omeprazole on Vitamin and Mineral Absorption and Metabolism. J. Pharm. Technol. 2012, 28, 243–248. [Google Scholar] [CrossRef]
- Péneau, S.; Dauchet, L.; Vergnaud, A.C.; Estaquio, C.; Kesse-Guyot, E.; Bertrais, S.; Latino-Martel, P.; Hercberg, S.; Galan, P. Relationship between iron status and dietary fruit and vegetables based on their vitamin C and fiber content. Am. J. Clin. Nutr. 2008, 87, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J.; Razzaque, M.S.; Al-Daghri, N.M. Calcium and vitamin D in human health: Hype or real? J. Steroid Biochem. Mol. Biol. 2018, 180, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Procházková, N.; Laursen, M.F.; La Barbera, G.; Tsekitsidi, E.; Jørgensen, M.S.; Rasmussen, M.A.; Raes, J.; Licht, T.R.; Dragsted, L.O.; Roager, H.M. Gut physiology and environment explain variations in human gut microbiome composition and metabolism. Nat. Microbiol. 2024, 9, 3210–3225. [Google Scholar] [CrossRef]
- Dicken, S.J.; Qamar, S.; Batterham, R.L. Who consumes ultra-processed food? A systematic review of sociodemographic determinants of ultra-processed food consumption from nationally representative samples. Nutr. Res. Rev. 2024, 37, 416–456. [Google Scholar] [CrossRef]
Diet Assessment Tool | Use in IBD | ||
---|---|---|---|
Nutrition Quality Indices | |||
FSAm-NPS DI score, Modified UK Food Standards | 2018, Deschasaux M, PLoS Med [46] | Nutritional quality was associated with risk of CD but not UC in a prospective study of 394,255 participants. | 2024, Meyer A, APT [34] |
Planetary health diet, EAT-Lancet Commission | 2019, Willett, Lancet [23] | A diet of plant-based proteins, unsaturated fats, whole grains, and ample fruit and vegetables promoted well-being and lowered the risk of developing major chronic diseases, as did limiting meat, refined grains, and sugar intake. | |
Healthy Eating Index | 2018, Krebs-Smith SM, J Acad Nutr Diet [47] | No association with risk of CD and UC among the 125,445 participants of the LifeLines Cohort Study. | 2015, Krebs-Smith SM, Acad Nutr Diet [48] |
Dietary Patterns | |||
Mediterranean vs. Western diet pattern | 2011, Bach-Faig A, Public Health Nutr [49] | A randomised controlled trial reporting improved simple clinical colitis activity index scores and faecal calprotectin among the Mediterranean diet pattern group (15 participants) compared to the Canadian habitual diet pattern group (13 participants). | 2023, Haskey, JCC [37] |
Mediterranean diet | 2003, Trichopoulou A, NEJM [50] 1995, Trichopoulou A, BMJ [51] | Greater adherence to a Mediterranean diet was associated with lower risk of later-onset CD among 83,147 participants from the Cohort of Swedish Men and Swedish Mammography Cohort. | 2020, Khalili H, Gut [43] |
Nordic diet | 2023, Blomhoff, NNR [45] | ||
Food Processing and Lifestyle Interaction | |||
NOVA Food Classification System | 2018, Monteiro CA, Public Health Nutr [52] | Ultraprocessed food intake was associated with the risk of CD but not UC. | 2024, Lane MM, BMJ [36] 2022, Lo CH, CGH [53] 2023, Narula N, CGH [42] |
Weighted healthy lifestyle scores | 2023, Sun Y, Am J Gastroenterol [39] | Having a favourable lifestyle reduced the risk of CD and UC considerably compared with those with an unfavourable lifestyle. | 2023, Sun Y, Am J Gastroenterol [39] |
Modifiable risk scores | 2022, Lopes EW, Gut [38] | Population-attributable risks were calculated in US and European cohorts. Adherence to low modifiable risk scores (BMI, smoking, NSAID use, physical activity, intake of fruit and veg, fibre, n3:n6 PUFA, and red meat) could have prevented 4 in 10 CD and UC cases. | 2022, Lopes EW, Gut [38] |
Inflammatory Potential of Diet | |||
Empirical dietary inflammatory pattern (EDIP) | 2016, Tabung FK, J Nutr [54] | EDIP was associated with a higher risk of CD but not UC among 166,903 women and 41,931 men in the Nurses’ Health Study and Health Professionals Follow-up Study. | 2020, Lo CH, Gastroenterology [44] |
Dietary inflammatory index (DII) | 2014, Shivappa N, Public Health Nutr [55] | EDIP and DII were not associated with IBD incidence and progression among 121,472 participants from the UK Biobank. | 2024, Wellens J, IBD [35] |
Specific Nutrients and Food Items | |||
Meat | Meta-analysis suggested that each 100 g/d increment in dietary total meat consumption was associated with a 38% greater risk of IBD. | 2023, Talebi S, Adv Nutr [41] | |
Dietary fibre intake | 2018, Bradbury KE, J Nutr Sci [56] | Higher consumption of dietary fibre was associated with a lower risk of IBD and CD, but not UC among 470,669 participants of the UK Biobank study. | 2023, Deng M, APT [40] |
Plant-to-animal protein ratio | 2017, Møller G, Nutrients [57] | No association with risk of CD and UC among 125,445 participants of the LifeLines Cohort Study. | 2022, Peters V, JCC [48] |
FODMAP | 2022, Gibson PR, Eur J Nutr [58] | A low-FODMAP diet may improve clinical outcomes in the management of IBD and quality of life for patients, but concerns remain as to the adequacy of the diet. | 2022, Simões CD, E J Nutr [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, V.; Liljensøe, A.; Gregersen, L.; Darbani, B.; Halldorsson, T.I.; Heitmann, B.L. Food Is Medicine: Diet Assessment Tools in Adult Inflammatory Bowel Disease Research. Nutrients 2025, 17, 245. https://doi.org/10.3390/nu17020245
Andersen V, Liljensøe A, Gregersen L, Darbani B, Halldorsson TI, Heitmann BL. Food Is Medicine: Diet Assessment Tools in Adult Inflammatory Bowel Disease Research. Nutrients. 2025; 17(2):245. https://doi.org/10.3390/nu17020245
Chicago/Turabian StyleAndersen, Vibeke, Anette Liljensøe, Laura Gregersen, Behrooz Darbani, Thorhallur Ingi Halldorsson, and Berit Lilienthal Heitmann. 2025. "Food Is Medicine: Diet Assessment Tools in Adult Inflammatory Bowel Disease Research" Nutrients 17, no. 2: 245. https://doi.org/10.3390/nu17020245
APA StyleAndersen, V., Liljensøe, A., Gregersen, L., Darbani, B., Halldorsson, T. I., & Heitmann, B. L. (2025). Food Is Medicine: Diet Assessment Tools in Adult Inflammatory Bowel Disease Research. Nutrients, 17(2), 245. https://doi.org/10.3390/nu17020245