Associations Between Circulating Spexin, Obesity, and Insulin Resistance in Korean Children and Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Anthropometric and Laboratory Measurements
2.2. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Subjects
3.2. Association Between Plasma Spexin with Categorical Variables
3.3. Correlations Between Plasma Spexin and Continuous Variables
3.4. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Daniels, S.R. Complications of obesity in children and adolescents. Int. J. Obes. 2009, 33 (Suppl. S1), S60–S65. [Google Scholar] [CrossRef]
- Caprio, S.; Santoro, N.; Weiss, R. Childhood obesity and the associated rise in cardiometabolic complications. Nat. Metab. 2020, 2, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Rankin, J.; Matthews, L.; Cobley, S.; Han, A.; Sanders, R.; Wiltshire, H.D.; Baker, J.S. Psychological consequences of childhood obesity: Psychiatric comorbidity and prevention. Adolesc. Health Med. Ther. 2016, 7, 125–146. [Google Scholar] [CrossRef]
- Greenberg, A.S.; Obin, M.S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 2006, 83, 461S–465S. [Google Scholar] [CrossRef]
- Unamuno, X.; Gomez-Ambrosi, J.; Rodriguez, A.; Becerril, S.; Fruhbeck, G.; Catalan, V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018, 48, e12997. [Google Scholar] [CrossRef]
- Mirabeau, O.; Perlas, E.; Severini, C.; Audero, E.; Gascuel, O.; Possenti, R.; Birney, E.; Rosenthal, N.; Gross, C. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res. 2007, 17, 320–327. [Google Scholar] [CrossRef]
- Wong, M.K.; Sze, K.H.; Chen, T.; Cho, C.K.; Law, H.C.; Chu, I.K.; Wong, A.O. Goldfish spexin: Solution structure and novel function as a satiety factor in feeding control. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E348–E366. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Ma, Y.; Gu, M.; Zhang, Y.; Yan, S.; Li, N.; Wang, Y.; Ding, X.; Yin, J.; Fan, N.; et al. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes. Peptides 2015, 71, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Porzionato, A.; Rucinski, M.; Macchi, V.; Stecco, C.; Malendowicz, L.K.; De Caro, R. Spexin expression in normal rat tissues. J. Histochem. Cytochem. 2010, 58, 825–837. [Google Scholar] [CrossRef]
- Chen, Y.; He, M.; Lei, M.M.L.; Ko, W.K.W.; Lin, C.; Bian, Z.; Wong, A.O.L. Mouse Spexin: (III) Differential Regulation by Glucose and Insulin in Glandular Stomach and Functional Implication in Feeding Control. Front. Endocrinol. 2021, 12, 681648. [Google Scholar] [CrossRef]
- Wong, M.K.H.; He, M.; Sze, K.H.; Huang, T.; Ko, W.K.W.; Bian, Z.X.; Wong, A.O.L. Mouse Spexin: (I) NMR Solution Structure, Docking Models for Receptor Binding, and Histological Expression at Tissue Level. Front. Endocrinol. 2021, 12, 681646. [Google Scholar] [CrossRef]
- Kim, D.K.; Yun, S.; Son, G.H.; Hwang, J.I.; Park, C.R.; Kim, J.I.; Kim, K.; Vaudry, H.; Seong, J.Y. Coevolution of the spexin/galanin/kisspeptin family: Spexin activates galanin receptor type II and III. Endocrinology 2014, 155, 1864–1873. [Google Scholar] [CrossRef]
- Lin, C.Y.; Zhang, M.; Huang, T.; Yang, L.L.; Fu, H.B.; Zhao, L.; Zhong, L.L.; Mu, H.X.; Shi, X.K.; Leung, C.F.; et al. Spexin Enhances Bowel Movement through Activating L-type Voltage-dependent Calcium Channel via Galanin Receptor 2 in Mice. Sci. Rep. 2015, 5, 12095. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Alcaraz, A.; Lee, Y.N.; Son, G.H.; Kim, N.H.; Kim, D.K.; Yun, S.; Kim, D.H.; Hwang, J.I.; Seong, J.Y. Development of Spexin-based Human Galanin Receptor Type II-Specific Agonists with Increased Stability in Serum and Anxiolytic Effect in Mice. Sci. Rep. 2016, 6, 21453. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Ju, M.; Fang, P.; Zhang, Z. Emerging central and peripheral actions of spexin in feeding behavior, leptin resistance and obesity. Biochem. Pharmacol. 2022, 202, 115121. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.Y.; Zhou, Y.C.; Zhang, X.M.; Chen, W.D.; Wang, Y.D. Emerging Roles of NPQ/Spexin in Physiology and Pathology. Front. Pharmacol. 2019, 10, 457. [Google Scholar] [CrossRef]
- Kumar, S.; Mankowski, R.T.; Anton, S.D.; Babu Balagopal, P. Novel insights on the role of spexin as a biomarker of obesity and related cardiometabolic disease. Int. J. Obes. 2021, 45, 2169–2178. [Google Scholar] [CrossRef]
- Walewski, J.L.; Ge, F.; Lobdell, H.t.; Levin, N.; Schwartz, G.J.; Vasselli, J.R.; Pomp, A.; Dakin, G.; Berk, P.D. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity 2014, 22, 1643–1652. [Google Scholar] [CrossRef]
- Kolodziejski, P.A.; Pruszynska-Oszmalek, E.; Korek, E.; Sassek, M.; Szczepankiewicz, D.; Kaczmarek, P.; Nogowski, L.; Mackowiak, P.; Nowak, K.W.; Krauss, H.; et al. Serum levels of spexin and kisspeptin negatively correlate with obesity and insulin resistance in women. Physiol. Res. 2018, 67, 45–56. [Google Scholar] [CrossRef]
- Lin, C.Y.; Huang, T.; Zhao, L.; Zhong, L.L.D.; Lam, W.C.; Fan, B.M.; Bian, Z.X. Circulating Spexin Levels Negatively Correlate With Age, BMI, Fasting Glucose, and Triglycerides in Healthy Adult Women. J. Endocr. Soc. 2018, 2, 409–419. [Google Scholar] [CrossRef]
- Gu, L.; Yan, S.; Huang, Y.; Yang, J.; Peng, Y.; Wang, Y. Serum spexin differed in newly diagnosed type 2 diabetes patients according to body mass index and increased with the improvement of metabolic status. Front. Endocrinol. 2022, 13, 1086497. [Google Scholar] [CrossRef]
- Karaca, A.; Bakar-Ates, F.; Ersoz-Gulcelik, N. Decreased Spexin Levels in Patients with Type 1 and Type 2 Diabetes. Med. Princ. Pract. 2018, 27, 549–554. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Alenad, A.; Al-Hazmi, H.; Amer, O.E.; Hussain, S.D.; Alokail, M.S. Spexin Levels Are Associated with Metabolic Syndrome Components. Dis. Markers 2018, 2018, 1679690. [Google Scholar] [CrossRef]
- Zhang, L.; Li, G.; She, Y.; Zhang, Z. Low levels of spexin and adiponectin may predict insulin resistance in patients with non-alcoholic fatty liver. Pract. Lab. Med. 2021, 24, e00207. [Google Scholar] [CrossRef]
- Khadir, A.; Kavalakatt, S.; Madhu, D.; Devarajan, S.; Abubaker, J.; Al-Mulla, F.; Tiss, A. Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Sci. Rep. 2020, 10, 10635. [Google Scholar] [CrossRef]
- Behrooz, M.; Vaghef-Mehrabany, E.; Ostadrahimi, A. Different spexin level in obese vs normal weight children and its relationship with obesity related risk factors. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 674–682. [Google Scholar] [CrossRef]
- Kumar, S.; Hossain, J.; Nader, N.; Aguirre, R.; Sriram, S.; Balagopal, P.B. Decreased Circulating Levels of Spexin in Obese Children. J. Clin. Endocrinol. Metab. 2016, 101, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, F.; Chu, Z.; Sun, L.; Lv, H.; Zhou, W.; Shen, J.; Chen, L.; Hou, M. Circulating Spexin Decreased and Negatively Correlated with Systemic Insulin Sensitivity and Pancreatic beta Cell Function in Obese Children. Ann. Nutr. Metab. 2019, 74, 125–131. [Google Scholar] [CrossRef]
- Kim, J.H.; Yun, S.; Hwang, S.S.; Shim, J.O.; Chae, H.W.; Lee, Y.J.; Lee, J.H.; Kim, S.C.; Lim, D.; Yang, S.W.; et al. The 2017 Korean National Growth Charts for children and adolescents: Development, improvement, and prospects. Korean J. Pediatr. 2018, 61, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Valerio, G.; Licenziati, M.R.; Iannuzzi, A.; Franzese, A.; Siani, P.; Riccardi, G.; Rubba, P. Insulin resistance and impaired glucose tolerance in obese children and adolescents from Southern Italy. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 279–284. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, D.P.; Fairchild, A.J.; Fritz, M.S. Mediation analysis. Annu. Rev. Psychol. 2007, 58, 593–614. [Google Scholar] [CrossRef]
- Tingley, D.; Yamamoto, T.; Hirose, K.; Keele, L.; Imai, K. Mediation: R Package for Causal Mediation Analysis. J. Stat. Softw. 2014, 59, 1–38. [Google Scholar] [CrossRef]
- Salah, N.Y.; Zeid, D.A.; Sabry, R.N.; Fahmy, R.F.; El Abd, M.A.; Awadallah, E.; Omran, A.; El Gendy, Y.G. Circulating spexins in children with obesity: Relation to cardiometabolic risk. Eur. J. Clin. Nutr. 2022, 76, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Hossain, M.J.; Inge, T.; Balagopal, P.B. Roux-en-Y gastric bypass surgery in youth with severe obesity: 1-year longitudinal changes in spexin. Surg. Obes. Relat. Dis. 2018, 14, 1537–1543. [Google Scholar] [CrossRef]
- Ge, J.F.; Walewski, J.L.; Anglade, D.; Berk, P.D. Regulation of Hepatocellular Fatty Acid Uptake in Mouse Models of Fatty Liver Disease with and without Functional Leptin Signaling: Roles of NfKB and SREBP-1C and the Effects of Spexin. Semin. Liver Dis. 2016, 36, 360–372. [Google Scholar] [CrossRef]
- Gu, L.; Ding, X.; Wang, Y.; Gu, M.; Zhang, J.; Yan, S.; Li, N.; Song, Z.; Yin, J.; Lu, L.; et al. Spexin alleviates insulin resistance and inhibits hepatic gluconeogenesis via the FoxO1/PGC-1alpha pathway in high-fat-diet-induced rats and insulin resistant cells. Int. J. Biol. Sci. 2019, 15, 2815–2829. [Google Scholar] [CrossRef]
- Zeng, B.; Shen, Q.; Wang, B.; Tang, X.; Jiang, J.; Zheng, Y.; Huang, H.; Zhuo, W.; Wang, W.; Gao, Y.; et al. Spexin ameliorated obesity-related metabolic disorders through promoting white adipose browning mediated by JAK2-STAT3 pathway. Nutr. Metab. 2024, 21, 22. [Google Scholar] [CrossRef]
- Fang, P.; Ge, R.; She, Y.; Zhao, J.; Yan, J.; Yu, X.; Jin, Y.; Shang, W.; Zhang, Z. Adipose tissue spexin in physical exercise and age-associated diseases. Ageing Res. Rev. 2022, 73, 101509. [Google Scholar] [CrossRef]
- Kumar, S.; Hossain, M.J.; Javed, A.; Kullo, I.J.; Balagopal, P.B. Relationship of circulating spexin with markers of cardiovascular disease: A pilot study in adolescents with obesity. Pediatr. Obes. 2018, 13, 374–380. [Google Scholar] [CrossRef]
- Sahu, A. Leptin signaling in the hypothalamus: Emphasis on energy homeostasis and leptin resistance. Front. Neuroendocrinol. 2003, 24, 225–253. [Google Scholar] [CrossRef] [PubMed]
- Behrooz, M.; Vaghef-Mehrabany, E.; Moludi, J.; Ostadrahimi, A. Are spexin levels associated with metabolic syndrome, dietary intakes and body composition in children? Diabetes Res. Clin. Pract. 2021, 172, 108634. [Google Scholar] [CrossRef]
- Pruszynska-Oszmalek, E.; Sassek, M.; Szczepankiewicz, D.; Nowak, K.W.; Kolodziejski, P.A. Short-term administration of spexin in rats reduces obesity by affecting lipolysis and lipogenesis: An in vivo and in vitro study. Gen. Comp. Endocrinol. 2020, 299, 113615. [Google Scholar] [CrossRef]
- Said, M.A.; Nafeh, N.Y.; Abdallah, H.A. Spexin alleviates hypertension, hyperuricaemia, dyslipidemia and insulin resistance in high fructose diet induced metabolic syndrome in rats via enhancing PPAR-ɣ and AMPK and inhibiting IL-6 and TNF-alpha. Arch. Physiol. Biochem. 2023, 129, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Saxena, A. Surrogate markers of insulin resistance: A review. World J. Diabetes 2010, 1, 36–47. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Obese (n = 69) | Overweight (n = 43) | Control (n = 16) | p Value |
---|---|---|---|---|
Age, years | 9.8 ± 2.4 | 10.6 ± 2.1 | 11.3 ± 2.3 | 0.04 |
Sex, no. (%) | ||||
Male | 45 (65.2) | 15 (34.9) | 4 (25.0) | 0.001 |
Female | 24 (34.8) | 28 (65.1) | 12 (75.0) | |
Height SDS | 1.1 ± 0.9 | 0.3 ± 0.8 | 0.2 ± 1.1 | <0.001 |
Weight SDS | 2.1 ± 0.5 | 1.0 ± 0.4 | 0.7 ± 0.7 | <0.001 |
BMI, kg/m2 | 25.7 ± 2.2 | 21.7 ± 1.8 | 20.1 ± 1.3 | <0.001 |
BMI SDS | 2.4 ± 0.3 | 1.3 ± 0.2 | 0.7 ± 0.2 | <0.001 |
Tanner stage | 0.17 | |||
1 | 37 (53.6) | 17 (39.5) | 4 (25.0) | |
2 | 15 (21.7) | 14 (32.6) | 4 (25.0) | |
3 | 11 (16.0) | 8 (18.6) | 3 (18.8) | |
4 | 2 (2.9) | 1 (2.3) | 3 (18.8) | |
5 | 4 (5.8) | 3 (7.0) | 2 (12.5) | |
Puberty, no. (%) | 32 (46.4) | 26 (60.5) | 12 (75.0) | 0.08 |
Systolic BP, mmHg | 108.8 ± 9.4 | 105.1 ± 6.7 | 102.9 ± 3.5 | 0.009 |
Diastolic BP, mmHg | 63.5 ± 6.3 | 62.8 ± 4.8 | 66.1 ± 8.8 | 0.20 |
HbA1c, % | 5.4 ± 0.2 | 5.4 ± 0.2 | 5.4 ± 0.3 | 0.35 |
Glucose, mg/dL | 92.8 ± 7.4 | 91.8 ± 8.7 | 90.4 ± 6.7 | 0.50 |
Insulin, μU/mL | 13.7 ± 4.6 | 10.1 ± 3.4 | 5.5 ± 1.9 | <0.001 |
HOMA-IR | 3.1 ± 1.1 | 2.3 ± 0.8 | 1.2 ± 0.4 | <0.001 |
Insulin resistance, no. (%) | 29 (42.0) | 7 (16.3) | 0 | <0.001 |
Total cholesterol, mg/dL | 175.6 ± 23.0 | 159.6 ± 19.6 | 144.9 ± 11.1 | <0.001 |
LDL cholesterol, mg/dL | 114.9 ± 23.1 | 105.8 ± 17.3 | 98.8 ± 16.2 | 0.006 |
HDL cholesterol, mg/dL | 49.9 ± 11.9 | 54.9 ± 9.4 | 57.3 ± 8.1 | 0.01 |
Triglycerides, mg/dL | 119.3 ± 28.5 | 120.9 ± 20.6 | 113.8 ± 19.0 | 0.62 |
AST, U/L | 23.1 ± 6.1 | 22.7 ± 4.5 | 21.2 ± 9.2 | 0.56 |
ALT, U/L | 22.3 ± 8.4 | 18.6 ± 5.8 | 15.8 ± 4.6 | 0.001 |
ALP, U/L | 267.8 ± 73.3 | 256.7 ± 70.4 | 251.4 ± 65.8 | 0.60 |
GGT, U/L | 17.8 ± 8.2 | 14.2 ± 5.4 | 14.0 ± 5.8 | 0.02 |
Uric acid, mg/dL | 5.1 ± 1.3 | 4.8 ± 1.0 | 4.6 ± 1.3 | 0.27 |
25-hydroxyvitamin D, pg/mL | 14.5 ± 7.6 | 13.9 ± 6.8 | 15.1 ± 6.5 | 0.85 |
Spexin, pg/mL | 163.1 ± 49.7 | 182.2 ± 53.7 | 198.4 ± 53.3 | 0.02 |
Leptin, pg/mL | 17.5 ± 6.8 | 12.8 ± 6.9 | 13.7 ± 6.8 | 0.001 |
Characteristic | All Subjects (n = 128) | Males (n = 64) | Females (n = 64) | |||||
---|---|---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | |||
Age, years | 0.03 | 0.76 | 0.05 | 0.72 | 0.14 | 0.25 | ||
BMI SDS | −0.30 | <0.001 | −0.12 | 0.34 | −0.39 | 0.002 | ||
Systolic BP | −0.33 | <0.001 | −0.30 | 0.02 | −0.33 | 0.008 | ||
Diastolic BP | −0.10 | 0.25 | −0.17 | 0.18 | −0.06 | 0.63 | ||
Tanner stage | 0.01 | 0.90 | 0.06 | 0.65 | 0.06 | 0.63 | ||
HbA1c | −0.14 | 0.13 | −0.19 | 0.13 | −0.10 | 0.42 | ||
Glucose | −0.08 | 0.35 | 0.01 | 0.91 | −0.18 | 0.16 | ||
Insulin | −0.41 | <0.001 | −0.35 | 0.004 | −0.44 | <0.001 | ||
HOMA-IR | −0.41 | <0.001 | −0.36 | 0.003 | −0.44 | <0.001 | ||
Total cholesterol | −0.16 | 0.07 | 0.05 | 0.68 | −0.33 | 0.009 | ||
LDL cholesterol | −0.08 | 0.38 | −0.02 | 0.89 | −0.09 | 0.47 | ||
HDL cholesterol | 0.11 | 0.20 | 0.04 | 0.75 | 0.21 | 0.09 | ||
Triglycerides | −0.38 | <0.001 | −0.42 | <0.001 | −0.43 | <0.001 | ||
AST | 0.15 | 0.09 | 0.11 | 0.38 | 0.19 | 0.13 | ||
ALT | −0.06 | 0.49 | 0.06 | 0.64 | −0.14 | 0.27 | ||
ALP | −0.14 | 0.13 | −0.24 | 0.06 | −0.05 | 0.68 | ||
GGT | −0.11 | 0.23 | −0.03 | 0.83 | −0.13 | 0.31 | ||
Uric acid | −0.02 | 0.85 | 0.20 | 0.12 | −0.22 | 0.08 | ||
25-hydroxyvitamin D | 0.13 | 0.19 | 0.12 | 0.38 | 0.14 | 0.31 | ||
Leptin | −0.26 | 0.004 | −0.28 | 0.03 | −0.21 | 0.09 |
Simple Linear Regression | Multiple Linear Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|
Unstandardized Coefficients | Standardized Coefficients | Unstandardized Coefficients | Standardized Coefficients | ||||||
Variables | B | SE | β | p-Value | B | SE | β | p-Value | |
BMI SDS | −22.54 | 6.36 | −0.30 | <0.001 | −4.04 | 7.50 | −0.05 | 0.59 | |
Systolic BP | −2.11 | 0.53 | −0.33 | <0.001 | −1.05 | 0.53 | −0.17 | 0.051 | |
HOMA-IR | −18.98 | 3.71 | −0.41 | <0.001 | −11.75 | 4.65 | −0.26 | 0.01 | |
Triglycerides | −0.81 | 0.17 | −0.38 | <0.001 | −0.58 | 0.17 | −0.28 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Chun, Y.H. Associations Between Circulating Spexin, Obesity, and Insulin Resistance in Korean Children and Adolescents. Nutrients 2025, 17, 3177. https://doi.org/10.3390/nu17193177
Kim S-H, Chun YH. Associations Between Circulating Spexin, Obesity, and Insulin Resistance in Korean Children and Adolescents. Nutrients. 2025; 17(19):3177. https://doi.org/10.3390/nu17193177
Chicago/Turabian StyleKim, Shin-Hee, and Yoon Hong Chun. 2025. "Associations Between Circulating Spexin, Obesity, and Insulin Resistance in Korean Children and Adolescents" Nutrients 17, no. 19: 3177. https://doi.org/10.3390/nu17193177
APA StyleKim, S.-H., & Chun, Y. H. (2025). Associations Between Circulating Spexin, Obesity, and Insulin Resistance in Korean Children and Adolescents. Nutrients, 17(19), 3177. https://doi.org/10.3390/nu17193177