Sex-Specific Dietary Predictors of Blood Glucose Identified Through Decision Tree Modeling in Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Analysis and Collection Methods
2.2. Diet Records
2.3. Statistical Analysis
2.4. Regression Trees
3. Results
3.1. Participant Characteristics
3.2. Overall Model, Decision Tree with Whole Population Included
3.3. Sex-Stratified Model: Male
3.4. Sex-Stratified Model: Female
4. Discussion
4.1. Overall Population Model
4.2. Male Fasting Glucose Decision Tree
4.3. Female Fasting Glucose Decision Tree
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, B.; Rayner, A.W.; Gregg, E.W.; Sheffer, K.E.; Carrillo-Larco, R.M.; Bennett, J.E.; Shaw, J.E.; Paciorek, C.J.; Singleton, R.K.; Pires, A.B.; et al. Worldwide Trends in Diabetes Prevalence and Treatment from 1990 to 2022: A Pooled Analysis of 1108 Population-Representative Studies with 141 Million Participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Zhang, B.; Li, X.; Liu, Y. Diabetes Mellitus and Cause-Specific Mortality: A Population-Based Study. Diabetes Metab. J. 2019, 43, 319–341. [Google Scholar] [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Dinneen, S.F.; Maldonado, D.; Leibson, C.L.; Klee, G.G.; Li, H.; Melton, L.J.; Rizza, R.A. Effects of Changing Diagnostic Criteria on the Risk of Developing Diabetes. Diabetes Care 1998, 21, 1408–1413. [Google Scholar] [CrossRef]
- Nichols, G.A.; Hillier, T.A.; Brown, J.B. Normal Fasting Plasma Glucose and Risk of Type 2 Diabetes Diagnosis. Am. Med. J. 2008, 121, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Bonnefond, A.; Florez, J.C.; Loos, R.J.F.; Froguel, P. Dissection of Type 2 Diabetes: A Genetic Perspective. Lancet Diabetes Endocrinol. 2025, 13, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Thorand, B.; Osterhoff, M.A.; Müller, G.; Böhm, A.; Meisinger, C.; Kowall, B.; Rathmann, W.; Kronenberg, F.; Staiger, H.; et al. Family History of Diabetes Is Associated with Higher Risk for Prediabetes: A Multicentre Analysis from the German Center for Diabetes Research. Diabetologia 2013, 56, 2176–2180. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Pei, J.-H.; Kuang, J.; Chen, H.-M.; Chen, Z.; Li, Z.-W.; Yang, H.-Z. Effect of Lifestyle Intervention in Patients with Type 2 Diabetes: A Meta-Analysis. Metab. Clin. Exp. 2015, 64, 338–347. [Google Scholar] [CrossRef]
- Gómez-Peralta, F.; Abreu, C.; Cos, X.; Gómez-Huelgas, R. When Does Diabetes Start? Early Detection and Intervention in Type 2 Diabetes Mellitus. Rev. Clínica Española 2020, 220, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Roumen, C.; Blaak, E.E.; Corpeleijn, E. Lifestyle Intervention for Prevention of Diabetes: Determinants of Success for Future Implementation. Nutr. Rev. 2009, 67, 132–146. [Google Scholar] [CrossRef]
- Zhang, X.; Devlin, H.M.; Smith, B.; Imperatore, G.; Thomas, W.; Lobelo, F.; Ali, M.K.; Norris, K.; Gruss, S.; Bardenheier, B.; et al. Effect of Lifestyle Interventions on Cardiovascular Risk Factors among Adults without Impaired Glucose Tolerance or Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0176436. [Google Scholar] [CrossRef]
- Jovanovski, E.; Li, D.; Ho, H.V.T.; Djedovic, V.; Marques, A.D.C.R.; Shishtar, E.; Mejia, S.B.; Sievenpiper, J.L.; de Souza, R.J.; Duvnjak, L.; et al. The Effect of Alpha-Linolenic Acid on Glycemic Control in Individuals with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Medicine 2017, 96, e6531. [Google Scholar] [CrossRef] [PubMed]
- Bhadouria, A.S.; Ahirwar, A. Predictive Model Approach for Enhancing Diet Management for Diabetes Patients Through Artificial Intelligence. In Intelligent Systems and IoT Applications in Clinical Health; IGI Global: Hershey, PA, USA, 2025; pp. 335–366. [Google Scholar]
- Lee, H.; Hwang, S.H.; Park, S.; Choi, Y.; Lee, S.; Park, J.; Son, Y.; Kim, H.J.; Kim, S.; Oh, J.; et al. Prediction Model for Type 2 Diabetes Mellitus and Its Association with Mortality Using Machine Learning in Three Independent Cohorts from South Korea, Japan, and the UK: A Model Development and Validation Study. eClinicalMedicine 2025, 80, 103069. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, S.; Feng, W.; Mo, H.; Hua, Y.; Zhang, M.; Zhu, Z.; Zhang, X.; Wu, Z.; Zheng, L.; et al. A Meta-analysis of Diabetes Risk Prediction Models Applied to Prediabetes Screening. Diabetes Obes. Metab. 2024, 26, 1593–1604. [Google Scholar] [CrossRef]
- Ojurongbe, T.A.; Afolabi, H.A.; Oyekale, A.; Bashiru, K.A.; Ayelagbe, O.; Ojurongbe, O.; Abbasi, S.A.; Adegoke, N.A. Predictive Model for Early Detection of Type 2 Diabetes Using Patients’ Clinical Symptoms, Demographic Features, and Knowledge of Diabetes. Health Sci. Rep. 2024, 7, e1834. [Google Scholar] [CrossRef]
- Xie, Z.; Nikolayeva, O.; Luo, J.; Li, D. Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques. Prev. Chronic. Dis. 2019, 16, e130. [Google Scholar] [CrossRef]
- Saltzgiver, S.; Nielson, A.; Costello, H.; Baker, A.; Chan, J.; Aguilar, D. Dietary Determinants of Metabolic Syndrome Parameters Differ by Gender in College Students. Nutrients 2019, 11, 2892. [Google Scholar] [CrossRef]
- Ramezankhani, A.; Hadavandi, E.; Pournik, O.; Shahrabi, J.; Azizi, F.; Hadaegh, F. Decision Tree-Based Modelling for Identification of Potential Interactions between Type 2 Diabetes Risk Factors: A Decade Follow-up in a Middle East Prospective Cohort Study. BMJ Open 2016, 6, e013336. [Google Scholar] [CrossRef] [PubMed]
- Sampa, M.B.; Biswas, T.; Rahman, M.S.; Aziz, N.H.B.A.; Hossain, M.N.; Aziz, N.A.A. A Machine Learning Web App to Predict Diabetic Blood Glucose Based on a Basic Noninvasive Health Checkup, Sociodemographic Characteristics, and Dietary Information: Case Study. JMIR Diabet. 2023, 8, e49113. [Google Scholar] [CrossRef]
- Risérus, U.; Willett, W.C.; Hu, F.B. Dietary Fats and Prevention of Type 2 Diabetes. Prog. Lipid. Res. 2009, 48, 44–51. [Google Scholar] [CrossRef]
- Akinkuolie, A.O.; Ngwa, J.S.; Meigs, J.B.; Djoussé, L. Omega-3 Polyunsaturated Fatty Acid and Insulin Sensitivity: A Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2011, 30, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Yary, T.; Voutilainen, S.; Tuomainen, T.-P.; Ruusunen, A.; Nurmi, T.; Virtanen, J.K. Serum n–6 Polyunsaturated Fatty Acids, Δ5- and Δ6-Desaturase Activities, and Risk of Incident Type 2 Diabetes in Men: The Kuopio Ischaemic Heart Disease Risk Factor Study12. Am. J. Clin. Nutr. 2016, 103, 1337–1343. [Google Scholar] [CrossRef]
- Schoeller, D.A. Limitations in the Assessment of Dietary Energy Intake by Self-Report. Metabolism 1995, 44, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, M.B.E.; Black, A.E. Markers of the Validity of Reported Energy Intake. J. Nutr. 2003, 133, 895S–920S. [Google Scholar] [CrossRef]
- Singh, R.; Martin, B.R.; Hickey, Y.; Teegarden, D.; Campbell, W.W.; Craig, B.A.; Schoeller, D.A.; Kerr, D.A.; Weaver, C.M. Comparison of Self-Reported and Measured Metabolizable Energy Intake with Total Energy Expenditure in Overweight Teens2. Am. J. Clin. Nutr. 2009, 89, 1744–1750. [Google Scholar] [CrossRef]
- Macena, M.L.; Pureza, I.R.O.M.; Melo, I.S.V.; Clemente, A.G.; Ferreira, H.S.; Florêncio, T.M.M.T.; Pfrimer, K.; Ferrioli, E.; Sawaya, A.L.; Bueno, N.B. Agreement between the Total Energy Expenditure Calculated with Accelerometry Data and the BMR Yielded by Predictive Equations v. the Total Energy Expenditure Obtained with Doubly Labelled Water in Low-Income Women with Excess Weight. Br. J. Nutr. 2019, 122, 1398–1408. [Google Scholar] [CrossRef]
- Neuhouser, M.L.; Pettinger, M.; Lampe, J.W.; Tinker, L.F.; George, S.M.; Reedy, J.; Song, X.; Thyagarajan, B.; Beresford, S.A.; Prentice, R.L. Novel Application of Nutritional Biomarkers From a Controlled Feeding Study and an Observational Study to Characterization of Dietary Patterns in Postmenopausal Women. Am. J. Epidemiol. 2021, 190, 2461–2473. [Google Scholar] [CrossRef]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and Management of Type 2 Diabetes: Dietary Components and Nutritional Strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate Quality and Human Health: A Series of Systematic Reviews and Meta-Analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F. Gender Differences in Glucose Homeostasis and Diabetes. Physiol. Behav. 2018, 187, 20–23. [Google Scholar] [CrossRef]
- Palmisano, B.T.; Zhu, L.; Eckel, R.H.; Stafford, J.M. Sex Differences in Lipid and Lipoprotein Metabolism. Mol. Metab. 2018, 15, 45–55. [Google Scholar] [CrossRef]
- Varlamov, O.; Bethea, C.L.; Roberts, C.T. Sex-Specific Differences in Lipid and Glucose Metabolism. Front. Endocrinol. 2015, 5, 241. [Google Scholar] [CrossRef]
- Sanchez, B.N.; Volek, J.S.; Kraemer, W.J.; Saenz, C.; Maresh, C.M. Sex Differences in Energy Metabolism: A Female-Oriented Discussion. Sports Med. 2024, 54, 2033–2057. [Google Scholar] [CrossRef]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, L.S.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A Mixed-Effects Model Approach for Estimating the Distribution of Usual Intake of Nutrients: The NCI Method. Stat. Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Arab, L.; Baer, D.J.; Kipnis, V.; Midthune, D.; Moshfegh, A.J.; Neuhouser, M.L.; Prentice, R.L.; et al. Pooled Results From 5 Validation Studies of Dietary Self-Report Instruments Using Recovery Biomarkers for Energy and Protein Intake. Am. J. Epidemiol. 2014, 180, 172–188. [Google Scholar] [CrossRef]
- Giuntini, E.B.; Sarda, F.A.H.; de Menezes, E.W. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods 2015, 11, 3934. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Leeds, A.R.; Gassull, M.A.; Haisman, P.; Dilawari, J.; Goff, D.V.; Metz, G.L.; Alberti, K.G. Dietary Fibres, Fibre Analogues, and Glucose Tolerance: Importance of Viscosity. Br. Med. J. 1978, 1, 1392–1394. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Huang, F.; Zhu, X.; Wei, D.; Chen, L. Effects of Dietary Fiber on Glycemic Control and Insulin Sensitivity in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Funct. Foods 2021, 82, 104500. [Google Scholar] [CrossRef]
- McRae, M.P. Dietary Fiber Intake and Type 2 Diabetes Mellitus: An Umbrella Review of Meta-Analyses. J. Chiropr. Med. 2018, 17, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Weikert, M.O.; Pfeiffer, A.F. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Tinker, L.F.; Sarto, G.E.; Howard, B.V.; Huang, Y.; Neuhouser, M.L.; Mossavar-Rahmani, Y.; Beasley, J.M.; Margolis, K.L.; Eaton, C.B.; Phillips, L.S.; et al. Biomarker-Calibrated Dietary Energy and Protein Intake Associations with Diabetes Risk among Postmenopausal Women from the Women’s Health Initiative. Am. J. Clin. Nutr. 2011, 94, 1600–1606. [Google Scholar] [CrossRef]
- Villegas, R.; Shu, X.O.; Yang, G.; Matthews, C.E.; Li, H.; Cai, H.; Gao, Y.; Zheng, W. Energy Balance and Type 2 Diabetes: A Report from the Shanghai Women’s Health Study. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 190–197. [Google Scholar] [CrossRef]
- Belury, M.A. Linoleic Acid, an Omega-6 Fatty Acid That Reduces Risk for Cardiometabolic Diseases: Premise, Promise and Practical Implications. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 288–292. [Google Scholar] [CrossRef]
- Summers, L.K.M.; Fielding, B.A.; Bradshaw, H.A.; Ilic, V.; Beysen, C.; Clark, M.L.; Moore, N.R.; Frayn, K.N. Substituting Dietary Saturated Fat with Polyunsaturated Fat Changes Abdominal Fat Distribution and Improves Insulin Sensitivity. Diabetologia 2002, 45, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kraegen, E.W.; Cooney, G.J. Free Fatty Acids and Skeletal Muscle Insulin Resistance. Curr. Opin. Lipidol. 2008, 19, 235–241. [Google Scholar] [CrossRef]
- Astrup, A.; Dyerberg, J.; Elwood, P.; Hermansen, K.; Hu, F.B.; Jakobsen, M.U.; Kok, F.J.; Krauss, R.M.; Lecerf, J.M.; LeGrand, P.; et al. The Role of Reducing Intakes of Saturated Fat in the Prevention of Cardiovascular Disease: Where Does the Evidence Stand in 2010? Am. J. Clin. Nutr. 2011, 93, 684–688. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef]
- Calder, P.C. Marine Omega-3 Fatty Acids and Inflammatory Processes: Effects, Mechanisms and Clinical Relevance. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005; ISBN 978-0-309-08525-0. [Google Scholar]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Leutner, M.; Harreiter, J. Sex Differences in Type 2 Diabetes. Diebetologia 2023, 66, 986–1002. [Google Scholar] [CrossRef] [PubMed]
Nutrient/Measure | Female (Mean ± SD) | Male (Mean ± SD) | Overall (Mean ± SD) |
---|---|---|---|
Fasting Glucose (mg/dL) | 89.46 ± 10.16 | 91.25 ± 8.17 | 90.02 ± 9.60 |
Energy (kcal) | 2436.41 ± 870.47 | 3244.86 ± 1104.77 | 2698.38 ± 1023.53 |
Grains (servings) | 5.02 ± 2.55 | 6.85 ± 3.16 | 5.63 ± 2.89 |
Vegetables (servings) | 1.22 ± 1.27 | 0.92 ± 0.92 | 1.12 ± 1.17 |
Dairy products (servings) | 1.39 ± 1.25 | 1.99 ± 1.55 | 1.58 ± 1.38 |
Protein foods (servings) | 4.97 ± 3.97 | 6.69 ± 5.32 | 5.53 ± 4.52 |
Fruits (servings) | 0.99 ± 1.12 | 0.90 ± 1.13 | 0.96 ± 1.12 |
Carbohydrates (% of total kcal) | 50.85 ± 9.53 | 50.12 ± 9.79 | 50.61 ± 9.60 |
Protein (% of total kcal) | 17.09 ± 5.19 | 16.58 ± 5.49 | 16.92 ± 5.28 |
Fat (% of total kcal) | 33.75 ± 7.01 | 34.55 ± 8.25 | 34.01 ± 7.43 |
Sugar (kcal) | 386.87 ± 209.07 | 463.05 ± 288.96 | 411.47 ± 239.97 |
Fiber (% of DRI) | 71.84 ± 43.14 | 67.09 ± 45.97 | 70.30 ± 44.03 |
Saturated fat (g) | 21.88 ± 9.59 | 29.84 ± 14.54 | 24.45 ± 11.99 |
Monounsaturated fat (g) | 18.74 ± 10.01 | 25.90 ± 12.23 | 21.05 ± 11.27 |
Polyunsaturated fat (g) | 11.45 ± 6.58 | 16.60 ± 11.95 | 13.11 ± 8.99 |
Trans fat (g) | 0.61 ± 0.99 | 0.76 ± 0.97 | 0.66 ± 0.99 |
Unspecified fat (% of total kcal) | 7.55 ± 4.20 | 6.84 ± 4.00 | 7.32 ± 4.14 |
Monounsaturated fat (% kcal) | 9.49 ± 3.97 | 9.49 ± 3.25 | 9.49 ± 3.74 |
Polyunsaturated fat (% kcal) | 5.88 ± 2.89 | 6.08 ± 2.68 | 5.94 ± 2.82 |
Saturated fat (% kcal) | 11.02 ± 3.71 | 10.66 ± 3.07 | 10.90 ± 3.51 |
Trans fat (% kcal) | 0.22 ± 0.51 | 0.18 ± 0.42 | 0.21 ± 0.48 |
Linoleic acid (% kcal) | 0.81 ± 0.55 | 0.81 ± 0.81 | 0.81 ± 0.65 |
Alpha-linolenic acid (% kcal) | 0.84 ± 0.97 | 0.83 ± 0.95 | 0.84 ± 0.96 |
Sugar (g) | 96.72 ± 52.27 | 115.76 ± 72.24 | 102.87 ± 59.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautney, J.; Aguilar, C.; Chan, J.; Aguilar, D. Sex-Specific Dietary Predictors of Blood Glucose Identified Through Decision Tree Modeling in Adults. Nutrients 2025, 17, 3119. https://doi.org/10.3390/nu17193119
Gautney J, Aguilar C, Chan J, Aguilar D. Sex-Specific Dietary Predictors of Blood Glucose Identified Through Decision Tree Modeling in Adults. Nutrients. 2025; 17(19):3119. https://doi.org/10.3390/nu17193119
Chicago/Turabian StyleGautney, Joanna, Christina Aguilar, Julian Chan, and David Aguilar. 2025. "Sex-Specific Dietary Predictors of Blood Glucose Identified Through Decision Tree Modeling in Adults" Nutrients 17, no. 19: 3119. https://doi.org/10.3390/nu17193119
APA StyleGautney, J., Aguilar, C., Chan, J., & Aguilar, D. (2025). Sex-Specific Dietary Predictors of Blood Glucose Identified Through Decision Tree Modeling in Adults. Nutrients, 17(19), 3119. https://doi.org/10.3390/nu17193119