Effects of Postbiotics Derived from Guava (Psidium guajava L.) Leaf Extract Bioconverted by Limosilactobacillus fermentum on Renal Inflammation in Type 2 Diabetic Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Bioconverted Guava Leaf Extract
2.2. Experimental Design
2.3. Hemoglobin A1c Analysis
2.4. Oral Glucose Tolerance Test
2.5. Body Composition Analysis
2.6. Renal Histological Analysis
2.7. Protein Extraction and Western Blot Analysis
2.8. Statistical Analysis
3. Results
3.1. Effects of GBL Supplementation on Body Weight, Body Composition, Kidney Weight, and Food Intake in T2DM Mice
3.2. Effects of GBL Supplementation on Glycemic Regulation in T2DM Mice
3.3. Effects of GBL Supplementation on Glucose Tolerance in T2DM Mice
3.4. Effects of GBL Supplementation on Renal Morphology in T2DM Mice
3.5. Effects of GBL Supplementation on the Renal RAGE in T2DM Mice
3.6. Effects of GBL Supplementation on Renal Oxidative Stress in T2DM Mice
3.7. Effects of GBL Supplementation on Renal Inflammation in T2DM Mice
3.8. Effects of GBL Supplementation on Renal Apoptosis in T2DM Mice
3.9. Effects of GBL Supplementation on Renal Energy Metabolism in T2DM Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2019, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ortega, M.; Rayego-Mateos, S.; Lamas, S.; Ortiz, A.; Rodrigues-Diez, R.R. Targeting the Progression of Chronic Kidney Disease. Nat. Rev. Nephrol. 2020, 16, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J. Management of Diabetic Nephropathy: Recent Progress and Future Perspective. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 343–358. [Google Scholar] [CrossRef]
- Xue, R.; Gui, D.; Zheng, L.; Zhai, R.; Wang, F.; Wang, N. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. J. Diabetes Res. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Wu, T.; Ding, L.; Andoh, V.; Zhang, J.; Chen, L. The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life 2023, 13, 539. [Google Scholar] [CrossRef]
- Dozio, E.; Caldiroli, L.; Molinari, P.; Castellano, G.; Delfrate, N.W.; Romanelli, M.M.C.; Vettoretti, S. Accelerated AGEing: The Impact of Advanced Glycation End Products on the Prognosis of Chronic Kidney Disease. Antioxidants 2023, 12, 584. [Google Scholar] [CrossRef]
- Zhang, J.; Anshul, F.; Breidenbach, J.D.; Liu, J.; Shaffner, J. NRF2: A Potential Target for the Treatment of Diabetic Nephropathy. Diabet. Nephrop. 2021, 1, 27–32. [Google Scholar] [CrossRef]
- Ji, Y.; Hua, H.; Jia, Z.; Zhang, A.; Ding, G. Therapy Targeted to the NLRP3 Inflammasome in Chronic Kidney Disease. Kidney Dis. 2024, 10, 369. [Google Scholar] [CrossRef]
- Sha, J.; Sui, B.; Su, X.; Meng, Q.; Zhang, C. Alteration of Oxidative Stress and Inflammatory Cytokines Induces Apoptosis in Diabetic Nephropathy. Mol. Med. Rep. 2017, 16, 7715–7723. [Google Scholar] [CrossRef]
- Mohtadi, S.; Salehcheh, M.; Tabandeh, M.R.; Khorsandi, L.; Khodayar, M.J. Ketotifen Counteracts Cisplatin-Induced Acute Kidney Injury in Mice via Targeting NF-ΚB/NLRP3/Caspase-1 and Bax/Bcl2/Caspase-3 Signaling Pathways. Biomed. Pharmacother. 2024, 175, 116797. [Google Scholar] [CrossRef]
- Zhao, L.; Hao, Y.; Tang, S.; Han, X.; Li, R.; Zhou, X. Energy Metabolic Reprogramming Regulates Programmed Cell Death of Renal Tubular Epithelial Cells and Might Serve as a New Therapeutic Target for Acute Kidney Injury. Front. Cell Dev. Biol. 2023, 11, 1276217. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Tang, B.; Zhang, C. Signaling Pathways of Chronic Kidney Diseases, Implications for Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Iatcu, C.O.; Steen, A.; Covasa, M. Gut Microbiota and Complications of Type-2 Diabetes. Nutrients 2022, 14, 166. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, K.; Lee, Y.; Chen, M. Preventive Effects of Lactobacillus Mixture against Chronic Kidney Disease Progression through Enhancement of Beneficial Bacteria and Downregulation of Gut-Derived Uremic Toxins. J. Agric. Food Chem. 2021, 69, 7353–7366. [Google Scholar] [CrossRef]
- Guamán, L.P.; Carrera-Pacheco, S.E.; Zúñiga-Miranda, J.; Teran, E.; Erazo, C.; Barba-Ostria, C. The Impact of Bioactive Molecules from Probiotics on Child Health: A Comprehensive Review. Nutrients 2024, 16, 3706. [Google Scholar] [CrossRef]
- Gholami, A.; Montazeri-Najafabady, N.; Ashoori, Y.; Kazemi, K.; Heidari, R.; Omidifar, N.; Karimzadeh, I.; Ommati, M.M.; Abootalebi, S.N.; Golkar, N. The Ameliorating Effect of Limosilactobacillus fermentum and Its Supernatant Postbiotic on Cisplatin-Induced Chronic Kidney Disease in an Animal Model. BMC Complement. Med. Ther. 2023, 23, 243. [Google Scholar] [CrossRef]
- Chen, J.; Jin, L.; Chen, M.; Xu, K.; Huang, Q.; He, B. Application of Natural Compounds in the Treatment and Prevention of Prediabetes. Front. Nutr. 2023, 10, 1301129. [Google Scholar] [CrossRef]
- Zhu, X.; Ouyang, W.; Lan, Y.; Xiao, H.; Tang, L.; Liu, G.; Feng, K.; Zhang, L.; Song, M.; Cao, Y. Anti-Hyperglycemic and Liver Protective Effects of Flavonoids from Psidium guajava L. (Guava) Leaf in Diabetic Mice. Food Biosci. 2020, 35, 100574. [Google Scholar] [CrossRef]
- Braga, T.V.; das Dores, R.G.R.; Ramos, C.S.; Evangelista, F.C.G.; Tinoco, L.M.d.S.; Varotti, F.d.P.; Carvalho, M.d.G.; Sabino, A.d.P. Antioxidant, Antibacterial and Antitumor Activity of Ethanolic Extract of the Psidium guajava Leaves. Am. J. Plant Sci. 2014, 5, 3492–3500. [Google Scholar] [CrossRef]
- Jang, M.; Jeong, S.-W.; Cho, S.K.; Ahn, K.S.; Lee, J.H.; Yang, D.C.; Kim, J.-C. Anti-Inflammatory Effects of an Ethanolic Extract of Guava (Psidium guajava L.) Leaves In Vitro and In Vivo. J. Med. Food 2014, 17, 678–685. [Google Scholar] [CrossRef]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Złotek, U.; Zielińska, E. Digestion and Bioavailability of Bioactive Phytochemicals. Int. J. Food Sci. Technol. 2017, 52, 291–305. [Google Scholar] [CrossRef]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhong, X.; Yan, J.; Sun, C.; Zhao, X.; Wang, X. Potential Roles of Gut Microbes in Biotransformation of Natural Products: An Overview. Front. Microbiol. 2022, 13, 956378. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.G.; Kim, S.H.; Kim, S.H.; Hong, S.M.; Lee, H.; Lim, Y.; Kim, S.Y.; Lee, C.H. Metabolomic Comparison of Guava (Psidium guajava L.) Leaf Extracts Fermented by Limosilactobacillus fermentum and Lactiplantibacillus plantarum and Their Antioxidant and Antiglycation Activities. Nutrients 2024, 16, 841. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, H.; Kim, S.Y.; Lee, C.H.; Lim, Y. Effects of Metabolites Derived from Guava (Psidium guajava L.) Leaf Extract Fermented by Limosilactobacillus fermentum on Hepatic Energy Metabolism via SIRT1-PGC1α Signaling in Diabetic Mice. Nutrients 2025, 17, 7. [Google Scholar] [CrossRef]
- Nath, S.; Ghosh, S.K.; Choudhury, Y. A Murine Model of Type 2 Diabetes Mellitus Developed Using a Combination of High Fat Diet and Multiple Low Doses of Streptozotocin Treatment Mimics the Metabolic Characteristics of Type 2 Diabetes Mellitus in Humans. J. Pharmacol. Toxicol. Methods 2017, 84, 20–30. [Google Scholar] [CrossRef]
- Wan Mohammad, W.M.Z. Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malays. J. Med. Sci. 2017, 24, 101–105. [Google Scholar] [CrossRef]
- Nair, A.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic. Clin. Pharm. 2016, 7, 27. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, H.; Kim, S.Y.; Lim, Y. Lespedeza Bicolor Extract Ameliorated Renal Inflammation by Regulation of NLRP3 Inflammasome-Associated Hyperinflammation in Type 2 Diabetic Mice. Antioxidants 2020, 9, 148. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, S.-H.; Kim, S.-A.; Kwak, M.J.; Han, N.S.; Lee, C.H. Pathway and Production Differences in Branched-Chain Hydroxy Acids as Bioactive Metabolites in Limosilactobacillus fermentum, Ligilactobacillus salivarius, and Latilactobacillus sakei. Int. J. Mol. Sci. 2024, 25, 10112. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kwak, W.; Nam, Y.; Baek, J.; Lee, Y.; Yoon, S.; Kim, W. Effect of Postbiotic Lactiplantibacillus plantarum LRCC5314 Supplemented in Powdered Milk on Type 2 Diabetes in Mice. J. Dairy. Sci. 2024, 107, 5301–5315. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 872918. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, R.; Dodesini, A.R. The Hyperfiltering Kidney in Diabetes. Nephron 2017, 136, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Zeni, L.; Norden, A.G.W.; Cancarini, G.; Unwin, R.J. A More Tubulocentric View of Diabetic Kidney Disease. J. Nephrol. 2017, 30, 701–717. [Google Scholar] [CrossRef]
- Ho, H.-J.; Shirakawa, H. Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022, 12, 88. [Google Scholar] [CrossRef]
- Zhao, A.; Li, J.; Wang, S.; Bian, L.; Li, W.; Guo, J. Stress Can Affect Mitochondrial Energy Metabolism and AMPK/SIRT1 Signaling Pathway in Rats. Brain Res. Bull. 2023, 203, 110770. [Google Scholar] [CrossRef]
- Uchinaka, A.; Azuma, N.; Mizumoto, H.; Nakano, S.; Minamiya, M.; Yoneda, M.; Aoyama, K.; Komatsu, Y.; Yamada, Y.; Murohara, T.; et al. Anti-Inflammatory Effects of Heat-Killed Lactobacillus Plantarum L-137 on Cardiac and Adipose Tissue in Rats with Metabolic Syndrome. Sci. Rep. 2018, 8, 8156. [Google Scholar] [CrossRef]
- Umadevi, S.; Gopi, V.; Elangovan, V. Regulatory Mechanism of Gallic Acid against Advanced Glycation End Products Induced Cardiac Remodeling in Experimental Rats. Chem. Biol. Interact. 2014, 208, 28–36. [Google Scholar] [CrossRef]
- Podkowińska, A.; Formanowicz, D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediat. Inflamm. 2016, 2016, 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, Z.; Jia, X.; Xiong, Y.; Li, B.; Zhang, L.; Li, X.; Li, X.; Fang, Y.; Dong, X.; et al. (+)-Catechin Ameliorates Diabetic Nephropathy Injury by Inhibiting Endoplasmic Reticulum Stress-Related NLRP3-Mediated Inflammation. Food Funct. 2024, 15, 5450–5465. [Google Scholar] [CrossRef]
- Sifuentes-Franco, S.; Padilla-Tejeda, D.E.; Carrillo-Ibarra, S.; Miranda-Díaz, A.G. Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy. Int. J. Endocrinol. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Zhong, Y.; Lee, K.; He, J.C. SIRT1 Is a Potential Drug Target for Treatment of Diabetic Kidney Disease. Front. Endocrinol. 2018, 9, 624. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Yang, C.; Guo, Y.; Huang, T.; Zhao, J.; Huang, X.-J.; Tang, H.; An, N.; Pan, Q.; Xu, Y.; Liu, H. Asiatic Acid Protects against Cisplatin-Induced Acute Kidney Injury via Anti-Apoptosis and Anti-Inflammation. Biomed. Pharmacother. 2018, 107, 1354–1362. [Google Scholar] [CrossRef]
NC (n = 6) | DMC (n = 6) | LF (n = 6) | GBL (n = 5) | |
---|---|---|---|---|
Body weight (g) | 33.17 ± 1.29 | 36.56 ± 1.78 | 33.94 ± 1.21 | 34.50 ± 2.22 |
Body composition (%) | ||||
fat mass | 24.93 ± 1.25 | 31.45 ± 2.45 | 25.97 ± 1.32 | 29.03 ± 3.13 |
lean mass | 72.39 ± 1.23 | 66.17 ± 2.40 | 71.60 ± 1.32 | 68.59 ± 3.04 |
Kidney weight (% BW) | 0.501 ± 0.011 | 1.499 ± 0.019 | 0.532 ± 0.012 | 0.502 ± 0.030 |
Food intake (kcal/day) | 12.65 ± 0.25 a | 14.24 ± 0.31 b | 14.84 ± 0.52 b | 13.12 ± 0.09 a |
NC (n = 6) | DMC (n = 6) | LF (n = 6) | GBL (n = 5) | |
---|---|---|---|---|
FBG (mg/dL) | ||||
Week 0 | 173.50 ± 9.25 a | 484.00 ± 10.97 b | 437.17 ± 25.53 b | 443.40 ± 37.30 b |
Week 5 | 168.33 ± 10.47 a | 382.17 ± 23.87 c | 279.83 ± 26.53 b | 330.20 ± 30.94 bc |
Week 10 | 194.17 ± 7.73 a | 450.83 ± 55.72 c | 306.50 ± 37.97 b | 317.80 ± 28.17 b |
Week 15 | 188.50 ± 12.74 a | 433.33 ± 50.28 b | 281.33 ± 31.08 a | 248.80 ± 14.81 a |
HbA1c (%) | 4.08 ± 0.08 a | 7.35 ± 0.30 d | 5.68 ± 0.14 c | 4.82 ± 0.19 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, N.; Lee, H.; Lee, C.-H.; Lim, Y. Effects of Postbiotics Derived from Guava (Psidium guajava L.) Leaf Extract Bioconverted by Limosilactobacillus fermentum on Renal Inflammation in Type 2 Diabetic Mice. Nutrients 2025, 17, 3084. https://doi.org/10.3390/nu17193084
Park N, Lee H, Lee C-H, Lim Y. Effects of Postbiotics Derived from Guava (Psidium guajava L.) Leaf Extract Bioconverted by Limosilactobacillus fermentum on Renal Inflammation in Type 2 Diabetic Mice. Nutrients. 2025; 17(19):3084. https://doi.org/10.3390/nu17193084
Chicago/Turabian StylePark, Nayoung, Heaji Lee, Choong-Hwan Lee, and Yunsook Lim. 2025. "Effects of Postbiotics Derived from Guava (Psidium guajava L.) Leaf Extract Bioconverted by Limosilactobacillus fermentum on Renal Inflammation in Type 2 Diabetic Mice" Nutrients 17, no. 19: 3084. https://doi.org/10.3390/nu17193084
APA StylePark, N., Lee, H., Lee, C.-H., & Lim, Y. (2025). Effects of Postbiotics Derived from Guava (Psidium guajava L.) Leaf Extract Bioconverted by Limosilactobacillus fermentum on Renal Inflammation in Type 2 Diabetic Mice. Nutrients, 17(19), 3084. https://doi.org/10.3390/nu17193084