Effect of the Interaction between Seaweed Intake and LPL Polymorphisms on Metabolic Syndrome in Middle-Aged Korean Adults
Abstract
:1. Background
2. Methods
2.1. Data Source and Study Participants
2.2. Metabolic Syndrome Definition
2.3. Assessment of Seaweed Consumption
2.4. Genotyping and Imputation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.S.; Liu, Z.; Ho, S.C. Metabolic syndrome and all-cause mortality: A meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2010, 25, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S. The metabolic syndrome and mortality from cardiovascular disease and all-causes: Findings from the National Health and Nutrition Examination Survey II Mortality Study. Atherosclerosis 2004, 173, 307–312. [Google Scholar] [CrossRef] [PubMed]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018, 36, 14–20. [Google Scholar] [CrossRef]
- Roche, H.M.; Phillips, C.; Gibney, M.J. The metabolic syndrome: The crossroads of diet and genetics. Proc. Nutr. Soc. 2005, 64, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.; Farooq, S.; Datta, M.; Deepa, R.; Mohan, V. Prevalence of metabolic syndrome using WHO, ATPIII and IDF definitions in Asian Indians: The Chennai Urban Rural Epidemiology Study (CURES-34). Diabetes Metab. J. 2007, 23, 127–134. [Google Scholar] [CrossRef]
- Hassenstab, J.J.; Sweat, V.; Bruehl, H.; Convit, A. Metabolic syndrome is associated with learning and recall impairment in middle age. Dement. Geriatr. Cogn. Disord. 2010, 29, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.N.; KIVIMaki, M.; Brunner, E.J.; Chandola, T.; Marmot, M.G.; Singh-Manoux, A.; Ferrie, J.E. Association between metabolic syndrome and depressive symptoms in middle-aged adults: Results from the Whitehall II study. Diabetes Care 2009, 32, 499–504. [Google Scholar] [CrossRef] [PubMed]
- National Health Insurance Service. National Health Screening Statistical Yearbook 2020; National Health Insurance Service: Wonju, Republic of Korea, 2021. [Google Scholar]
- Murthy, V.; Julien, P.; Gagné, C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol. Ther. 1996, 70, 101–135. [Google Scholar] [CrossRef] [PubMed]
- Olivecrona, G. Role of lipoprotein lipase in lipid metabolism. Curr. Opin. Lipidol. 2016, 27, 233–241. [Google Scholar] [CrossRef]
- Yang, R.; Le, G.; Li, A.; Zheng, J.; Shi, Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition 2006, 22, 1185–1191. [Google Scholar] [CrossRef]
- Bruckert, E.; Dejager, S. Lipoprotein lipase: A key enzyme of lipid metabolism. Rev. Prat. 1994, 44, 1487–1493. [Google Scholar]
- Li, Y.-X.; Han, T.-T.; Liu, Y.; Zheng, S.; Zhang, Y.; Liu, W.; Hu, Y.-M. Insulin resistance caused by lipotoxicity is related to oxidative stress and endoplasmic reticulum stress in LPL gene knockout heterozygous mice. Atherosclerosis 2015, 239, 276–282. [Google Scholar] [CrossRef]
- Kuusi, T.; Ehnholm, C.; Viikari, J.; Härkönen, R.; Vartiainen, E.; Puska, P.; Taskinen, M.-R. Postheparin plasma lipoprotein and hepatic lipase are determinants of hypo-and hyperalphalipoproteinemia. J. Lipid Res. 1989, 30, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Barg, E. Polymorphisms of lipoprotein lipase gene and their participation in metabolic processes. Pediatr. Endocrinol. Diabetes Metab. 2011, 17, 107–112. [Google Scholar] [PubMed]
- Serra, M.; Ryan, A.; Goldberg, A. Reduced LPL and subcutaneous lipid storage capacity are associated with metabolic syndrome in postmenopausal women with obesity. Obes. Sci. Pract. 2017, 3, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Groop, L. Genetics of the metabolic syndrome. Br. J. Nutr. 2000, 83, S39–S48. [Google Scholar] [CrossRef]
- Wang, H.; Eckel, R.H. Lipoprotein lipase: From gene to obesity. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E271–E288. [Google Scholar] [CrossRef]
- Ylä-Herttuala, S.; Lipton, B.A.; Rosenfeld, M.E.; Goldberg, I.J.; Steinberg, D.; Witztum, J.L. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 1991, 88, 10143–10147. [Google Scholar] [CrossRef]
- Hoffmann, T.J.; Theusch, E.; Haldar, T.; Ranatunga, D.K.; Jorgenson, E.; Medina, M.W.; Kvale, M.N.; Kwok, P.-Y.; Schaefer, C.; Krauss, R.M. A large electronic-health-record-based genome-wide study of serum lipids. Nat. Genet. 2018, 50, 401–413. [Google Scholar] [CrossRef]
- Graham, S.E.; Clarke, S.L.; Wu, K.-H.H.; Kanoni, S.; Zajac, G.J.; Ramdas, S.; Surakka, I.; Ntalla, I.; Vedantam, S.; Winkler, T.W. The power of genetic diversity in genome-wide association studies of lipids. Nature 2021, 600, 675–679. [Google Scholar] [CrossRef]
- Hitoe, S.; Shimoda, H. Seaweed fucoxanthin supplementation improves obesity parameters in mild obese Japanese subjects. Funct. Foods Health Dis. 2017, 7, 246–262. [Google Scholar] [CrossRef]
- Teas, J.; Baldeón, M.E.; Chiriboga, D.E.; Davis, J.R.; Sarriés, A.J.; Braverman, L.E. Could dietary seaweed reverse the metabolic syndrome? Asia Pac. J. Clin. Nutr. 2009, 18, 145–154. [Google Scholar]
- Kim, M.S.; Kim, J.Y.; Choi, W.H.; Lee, S.S. Effects of seaweed supplementation on blood glucose concentration, lipid profile, and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Nutr. Res. Pract. 2008, 2, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, K.W.; Shin, D. Association of Seaweed Consumption with Metabolic Syndrome and Its Components: Findings from the Korean Genome and Epidemiology Study. Foods 2022, 11, 1635. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, H.C.; Vitek, L.; Nam, C.M. Algae consumption and risk of type 2 diabetes: Korean National Health and Nutrition Examination Survey in 2005. J. Nutr. Sci. Vitaminol. 2010, 56, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Du Preez, R.; Paul, N.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Carrageenans from the red seaweed Sarconema filiforme attenuate symptoms of diet-induced metabolic syndrome in rats. Mar. Drugs 2020, 18, 97. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.-N.; Jeon, S.-M.; Kim, H.-J.; Lee, M.-K.; Shin, S.-K.; Shin, Y.C.; Park, Y.-B.; Choi, M.-S. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem. Biol. Interact. 2010, 186, 316–322. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.-G.; Group, K. Cohort profile: The Korean Genome and Epidemiology Study (KoGES) consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef]
- Cleeman, J.; Grundy, S.; Becker, D.; Clark, L. Expert panel on detection, evaluation and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Adult Treatment Panel (ATP III). JAMA 2001, 285, 2486–2497. [Google Scholar]
- Hong, A.R.; Lim, S. Clinical characteristics of metabolic syndrome in Korea, and its comparison with other Asian countries. J. Diabetes Investig. 2015, 6, 508–515. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.; Park, M.; Joo, Y.; Kimm, K.; Park, C.; Kim, D. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, Y.; Ahn, Y.-O.; Paik, H.-Y.; Aim, Y.; Tokudome, Y.; Hamajima, N.; Inouc, M.; Tajima, K.; Ahn, Y. Development of a food frequency questionnaire in Koreans. Asia Pac. J. Clin. Nutr. 2003, 12, 243–250. [Google Scholar] [PubMed]
- Park, J.-K.; Woo, H.W.; Kim, M.K.; Shin, J.; Lee, Y.-H.; Shin, D.H.; Shin, M.-H.; Choi, B.Y. Dietary iodine, seaweed consumption, and incidence risk of metabolic syndrome among postmenopausal women: A prospective analysis of the Korean Multi-Rural Communities Cohort Study (MRCohort). Eur. J. Nutr. 2021, 60, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Hata, Y.; Nakajima, K.; Uchida, J.-i.; Hidaka, H.; Nakano, T. Clinical effects of brown seaweed, Undaria pinnatifida (wakame), on blood pressure in hypertensive subjects. J. Clin. Biochem. Nutr. 2001, 30, 43–53. [Google Scholar] [CrossRef]
- Aoe, S.; Yamanaka, C.; Ohtoshi, H.; Nakamura, F.; Fujiwara, S. Effects of daily kelp (Laminaria japonica) intake on body composition, serum lipid levels, and thyroid hormone levels in healthy japanese adults: A randomized, double-blind study. Mar. Drugs 2021, 19, 352. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Aluko, R.E.; Hossain, M.; Rai, D.K.; Hayes, M. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats. J. Agric. Food Chem. 2014, 62, 8352–8356. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Idota, Y.; Kogure, Y.; Kato, T.; Ogawa, M.; Kobayashi, S.; Kakinuma, C.; Yano, K.; Arakawa, H.; Miyajima, C.; Kasahara, F. Cholesterol-lowering effect of calcium alginate in rats. Biol. Pharm. Bull. 2016, 39, 62–67. [Google Scholar] [CrossRef]
- Cahua-Pablo, J.Á.; Cruz, M.; Méndez-Palacios, A.; Antúnez-Ortiz, D.L.; Vences-Velázquez, A.; del Carmen Alarcón-Romero, L.; Parra, E.J.; Tello-Flores, V.A.; Leyva-Vázquez, M.A.; Valladares-Salgado, A. Polymorphisms in the LPL and CETP genes and haplotype in the ESR1 gene are associated with metabolic syndrome in women from southwestern Mexico. Int. J. Mol. Sci. 2015, 16, 21539–21554. [Google Scholar] [CrossRef]
- Alinaghian, N.; Abdollahi, E.; Torab, M.; Khodaparast, M.; Zamani, F.; Rahimi-Moghaddam, P. Gender-related relation between metabolic syndrome and S447X and HindIII polymorphisms of lipoprotein lipase gene in northern Iran. Gene 2019, 706, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-A.; Bu, X.; Warden, C.H.; Shen, D.; Jeng, C.; Sheu, W.; Fuh, M.; Katsuya, T.; Dzau, V.J.; Reaven, G.M. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J. Clin. Investig. 1996, 97, 2111–2118. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Qi, Y. Meta-based association of the lipoprotein lipase gene S447X variant with hypertension and blood pressure variation. J. Hum. Hypertens. 2011, 25, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Barrios, S.; Guzmán-Guzmán, I.P.; Francisco, J.; Salgado-Bernabé, A.B.; Salgado-Goytia, L.; Parra-Rojas, I. Association of the HindIII and S447X polymorphisms in LPL gene with hypertension and type 2 diabetes in Mexican families. Dis. Markers 2012, 33, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Go, M.J.; Han, H.R.; Cha, S.-H.; Kim, H.-T.; Min, H.; Shin, H.D.; Park, C.; Han, B.-G.; Cho, N.H. Association of lipoprotein lipase (LPL) single nucleotide polymorphisms with type 2 diabetes mellitus. Exp. Mol. Med. 2008, 40, 523–532. [Google Scholar] [CrossRef]
- Huang, A.; Hu, Y.; Zhan, S.; Xu, B.; Pang, Z.; Cao, W.; Lu, J.; Qin, Y.; Lee, L. Lipoprotein lipase gene S447X polymorphism modulates the relation between central obesity and serum lipids, a twin study. Int. J. Obes. 2006, 30, 1693–1701. [Google Scholar] [CrossRef]
- Garenc, C.; Aubert, S.; Laroche, J.; Bergeron, J.; Gagné, C.; Rousseau, F.; Julien, P. Gene polymorphisms in the Quebec population: A risk to develop hypertriglyceridemia. Biochem. Biophys. Res. Commun. 2006, 344, 588–596. [Google Scholar] [CrossRef]
- McCarty, M. Modulation of adipocyte lipoprotein lipase expression as a strategy for preventing or treating visceral obesity. Med. Hypotheses 2001, 57, 192–200. [Google Scholar] [CrossRef]
- Palacios, S.; Henderson, V.; Siseles, N.; Tan, D.; Villaseca, P. Age of menopause and impact of climacteric symptoms by geographical region. Climacteric 2010, 13, 419–428. [Google Scholar] [CrossRef]
Variable | Men (n = 2558) | Women (n = 2433) | ||||
---|---|---|---|---|---|---|
No MetS | MetS | p-Value (1) | No MetS | MetS | p-Value (1) | |
Participants, n | 1483 | 1075 | 1367 | 1066 | ||
rs17482753 frequency | 0.11 | 0.74 | ||||
GG (n = 3785) | 1114 (75.1%) | 837 (77.9%) | 1027 (75.1%) | 807 (75.7%) | ||
TG, TT (n = 1206) | 369 (24.9%) | 238 (22.1%) | 340 (24.9%) | 259 (24.3%) | ||
Age (years) | 51.5 ± 9.1 | 51.2 ± 8.5 | 0.37 | 48.6 ± 8.0 | 52.8 ± 8.6 | <0.0001 |
Area | 0.0027 | <0.0001 | ||||
Ansung | 580 (39.1%) | 484 (45.0%) | 430 (31.5%) | 624 (58.5%) | ||
Ansan | 903 (60.9%) | 591 (55.0%) | 937 (68.5%) | 442 (41.5%) | ||
Body mass index (kg/m²) | 22.7 ± 2.5 | 24.5 ± 2.5 | <0.0001 | 23.2 ± 2.7 | 24.9 ± 2.8 | <0.0001 |
Education level | 0.52 | <0.0001 | ||||
≤Elementary school | 287 (19.4%) | 206 (19.2%) | 359 (26.2%) | 489 (45.9%) | ||
Middle school | 320 (21.6%) | 218 (20.3%) | 352 (25.8%) | 279 (26.1%) | ||
High school | 538 (36.2%) | 420 (39.0%) | 522 (38.2%) | 248 (23.3%) | ||
≥College | 338 (22.8%) | 231 (21.5%) | 134 (9.8%) | 50 (4.7%) | ||
Alcohol consumption (g/day) | 16.7 ± 26.8 | 19.5 ± 26.8 | 0.01 | 1.4 ± 4.9 | 1.2 ± 4.4 | 0.37 |
Energy (kcal/day) | 1994.4 ± 573.0 | 1991.8 ± 546.1 | 0.91 | 1852.1 ± 583.4 | 1890.0 ± 634.9 | 0.14 |
Carbohydrate (g/day) | 345.2 ± 93.4 | 344.2 ± 91.8 | 0.79 | 325.1 ± 100.1 | 340.9 ± 112.9 | 0.0003 |
Protein (g/day) | 68.3 ± 25.6 | 68.8 ± 24.1 | 0.60 | 64.0 ± 24.6 | 62.9 ± 26.5 | 0.30 |
Fat (g/day) | 35.3 ± 18.6 | 35.2 ± 17.7 | 0.88 | 31.2 ± 16.8 | 28.6 ± 17.5 | 0.0002 |
Smoking status | 0.02 | 0.44 | ||||
Never | 315 (21.2%) | 183 (17.0%) | 1316 (96.2%) | 1015 (95.2%) | ||
Past | 451 (30.4%) | 325 (30.3%) | 13 (1.0%) | 13 (1.2%) | ||
Current | 717 (48.4%) | 567 (52.7%) | 38 (2.8%) | 38 (3.6%) | ||
MET (hours/day) (2) | 24.4 ± 15.0 | 25.0 ± 15.2 | 0.35 | 20.9 ± 12.6 | 23.6 ± 15.0 | <0.0001 |
Family history of diabetes | 0.0027 | 0.22 | ||||
Yes | 133 (9.0%) | 136 (12.7%) | 179 (13.1%) | 122 (11.4%) | ||
No | 1350 (91.0%) | 939 (87.3%) | 1188 (86.9%) | 944 (88.6%) | ||
Marital status | 0.04 | <0.0001 | ||||
Single | 47 (3.2%) | 51 (4.7%) | 132 (9.7%) | 163 (15.3%) | ||
Married | 1436 (96.8%) | 1024 (95.3%) | 1235 (90.3%) | 903 (84.7%) |
Variable | Men (n = 2558) | Women (n = 2433) | ||||
---|---|---|---|---|---|---|
LPL rs17482753 Genotype | ||||||
GG | TG, TT | p-Value (1) | GG | TG, TT | p-Value (1) | |
Participants, n | 1951 | 607 | 1834 | 599 | ||
Age (years) | 51.3 ± 8.8 | 51.6 ± 8.8 | 0.55 | 50.1 ± 8.5 | 51.2 ± 8.7 | 0.01 |
Area | 0.82 | 0.05 | ||||
Ansung | 814 (41.7%) | 250 (41.2%) | 774 (42.2%) | 280 (46.7%) | ||
Ansan | 1137 (58.3%) | 357 (58.8%) | 1060 (57.8%) | 319 (53.3%) | ||
Body mass index (kg/m²) | 23.4 ± 2.6 | 23.6 ± 2.8 | 0.08 | 23.9 ± 2.9 | 24.0 ± 2.9 | 0.6 |
Education level | 0.29 | 0.42 | ||||
≤Elementary school | 384 (19.7%) | 109 (18.0%) | 624 (34.0%) | 224 (37.4%) | ||
Middle school | 406 (20.7%) | 132 (21.8%) | 477 (26.0%) | 154 (25.7%) | ||
High school | 715 (36.7%) | 243 (40.0%) | 589 (32.1%) | 181 (30.2%) | ||
≥College | 446 (22.9%) | 123 (20.2%) | 144 (7.9%) | 40 (6.7%) | ||
Alcohol consumption (g/day) | 18.2 ± 27.0 | 16.9 ±26.1 | 0.31 | 1.4 ± 5.1 | 1.1 ± 3.4 | 0.37 |
Energy (kcal/day) | 1991.4 ± 566.0 | 1999.4 ± 548.4 | 0.76 | 1865.1 ± 594.4 | 1878.9 ± 643.2 | 0.64 |
Carbohydrate (g/day) | 344.5 ± 93.9 | 345.7 ± 88.9 | 0.78 | 331.1 ± 103.9 | 334.8 ± 113.0 | 0.49 |
Protein (g/day) | 68.4 ± 24.8 | 68.8 ± 25.8 | 0.70 | 63.5 ± 25.2 | 63.6 ± 26.4 | 0.93 |
Fat (g/day) | 35.3 ± 18.3 | 35.4 ± 18.0 | 0.91 | 30.0 ± 17.2 | 30.0 ± 16.9 | 0.99 |
Smoking status | 0.02 | 0.24 | ||||
Never | 383 (19.6%) | 115 (19.0%) | 1753 (95.6%) | 578 (96.5%) | ||
Past | 565 (29.0%) | 211 (34.8%) | 18 (1.0%) | 8 (1.3%) | ||
Current | 1003 (51.4%) | 281 (46.2%) | 63 (3.4%) | 13 (2.2%) | ||
MET (hours/day) (2) | 25.0 ± 15.2 | 23.5 ± 14.6 | 0.03 | 22.1 ± 13.5 | 22.0 ± 14.5 | 0.93 |
Family history of diabetes | 0.02 | 0.56 | ||||
Yes | 190 (9.7%) | 79 (13.0%) | 231 (12.6%) | 70 (11.7%) | ||
No | 1761 (90.3%) | 528 (87.0%) | 1603 (87.4%) | 529 (88.3%) | ||
Marital status | 0.10 | 0.01 | ||||
Single | 68 (3.5%) | 30 (4.9%) | 205 (11.2%) | 90 (15.0%) | ||
Married | 1883 (96.5%) | 577 (95.1%) | 1629 (88.8%) | 509 (85.0%) |
Total Seaweed | ||||||||
---|---|---|---|---|---|---|---|---|
Men (n = 2558) | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | ||||
Multivariable HR (95% CI) | HR (95% CI) | p-value | HR (95% CI) | p-value | HR (95% CI) | p-value | HR (95% CI) | p-value |
MetS | 1.00 (Ref) | 0.96 (0.81–1.13) | 0.59 | 0.97 (0.81–1.16) | 0.76 | 0.82 (0.69–0.99) | 0.03 | |
Women (n = 2433) | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | ||||
Multivariable HR (95% CI) | HR (95% CI) | p-value | HR (95% CI) | HR (95% CI) | HR (95% CI) | p-value | HR (95% CI) | p-value |
MetS | 1.00 (Ref) | 0.83 (0.70–0.98) | 0.03 | 0.94 (0.79–1.12) | 0.46 | 1.05 (0.89–1.24) | 0.59 |
LPL rs17482753 Genotype | ||||
---|---|---|---|---|
Men (n = 2558) | GG | TG, TT | ||
Multivariable HR (95% CI) | HR (95% CI) | p-value | HR (95% CI) | p-value |
Metabolic syndrome | 1.00 (Ref) | 0.83 (0.71–0.95) | 0.01 | |
Abdominal obesity | 1.00 (Ref) | 0.97 (0.82–1.15) | 0.75 | |
High blood pressure | 1.00 (Ref) | 0.79 (0.67–0.93) | 0.004 | |
High fasting glucose | 1.00 (Ref) | 1.09 (0.94–1.27) | 0.24 | |
High triglyceride levels | 1.00 (Ref) | 0.83 (0.70–0.99) | 0.0471 | |
Low HDL cholesterol levels | 1.00 (Ref) | 0.81 (0.69–0.95) | 0.01 | |
Women (n = 2433) | GG | TG, TT | ||
Multivariable HR (95% CI) | HR (95% CI) | p-value | HR (95% CI) | p-value |
Metabolic syndrome | 1.00 (Ref) | 0.89 (0.78–1.03) | 0.12 | |
Abdominal obesity | 1.00 (Ref) | 0.97 (0.82–1.16) | 0.76 | |
High blood pressure | 1.00 (Ref) | 1.01 (0.85–1.21) | 0.89 | |
High fasting glucose | 1.00 (Ref) | 0.99 (0.82–1.18) | 0.88 | |
High triglyceride levels | 1.00 (Ref) | 0.85 (0.71–1.02) | 0.08 | |
Low HDL cholesterol levels | 1.00 (Ref) | 1.01 (0.85–1.21) | 0.89 |
Total Seaweed | |||||||||
---|---|---|---|---|---|---|---|---|---|
Men (n = 2558) | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | ||||
Multivariable HR (95% CI) | HR (95% CI) | p-value | HR (95% CI) | p-value | HR (95% CI) | p-value | HR (95% CI) | p-value | |
GG | 1.00 (Ref) | 0.94 (0.77–1.13) | 0.49 | 0.98 (0.80–1.20) | 0.87 | 0.87 (0.71–1.06) | 0.16 | 0.16 | |
TG, TT | 0.87 (0.66–1.16) | 0.35 | 0.87 (0.66–1.15) | 0.32 | 0.81 (0.60–1.09) | 0.16 | 0.57 (0.41–0.79) | 0.001 | |
Women (n = 2433) | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | ||||
Multivariable HR (95% CI) | HR (95% CI) | p-value | HR (95% CI) | p-value | HR (95% CI) | p-value | HR (95% CI) | p-value | |
GG | 1.00 (Ref) | 0.92 (0.76–1.12) | 0.39 | 1.01 (0.83–1.24) | 0.92 | 1.09 (0.90–1.32) | 0.40 | 0.52 | |
TG, TT | 1.08 (0.85–1.39) | 0.52 | 0.66 (0.49–0.89) | 0.01 | 0.82 (0.60–1.11) | 0.20 | 1.03 (0.78–1.36) | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, J.; Hong, G.; Lee, K.J.; Kim, C.-G.; Shin, D. Effect of the Interaction between Seaweed Intake and LPL Polymorphisms on Metabolic Syndrome in Middle-Aged Korean Adults. Nutrients 2023, 15, 2066. https://doi.org/10.3390/nu15092066
Kwak J, Hong G, Lee KJ, Kim C-G, Shin D. Effect of the Interaction between Seaweed Intake and LPL Polymorphisms on Metabolic Syndrome in Middle-Aged Korean Adults. Nutrients. 2023; 15(9):2066. https://doi.org/10.3390/nu15092066
Chicago/Turabian StyleKwak, Junkyung, Gayeon Hong, Kyung Ju Lee, Choong-Gon Kim, and Dayeon Shin. 2023. "Effect of the Interaction between Seaweed Intake and LPL Polymorphisms on Metabolic Syndrome in Middle-Aged Korean Adults" Nutrients 15, no. 9: 2066. https://doi.org/10.3390/nu15092066
APA StyleKwak, J., Hong, G., Lee, K. J., Kim, C. -G., & Shin, D. (2023). Effect of the Interaction between Seaweed Intake and LPL Polymorphisms on Metabolic Syndrome in Middle-Aged Korean Adults. Nutrients, 15(9), 2066. https://doi.org/10.3390/nu15092066