Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Clinical Trials Registration
References
- McNamara, K.; Alzubaidi, H.; Jackson, J.K. Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved? Integr. Pharm. Res. Pract. 2019, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brunt, V.E.; Gioscia-Ryan, R.A.; Casso, A.G.; VanDongen, N.S.; Ziemba, B.P.; Sapinsley, Z.J.; Richey, J.J.; Zigler, M.C.; Neilson, A.P.; Davy, K.P.; et al. Trimethylamine-N-Oxide Promotes Age-Related Vascular Oxidative Stress and Endothelial Dysfunction in Mice and Healthy Humans. Hypertension 2020, 76, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Janeiro, M.H.; Ramírez, M.J.; Milagro, F.I.; Martínez, J.A.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, J.; Lian, J.; Yang, X.; Zhou, J. Gut Metabolite Trimethylamine-N-Oxide in Atherosclerosis: From Mechanism to Therapy. Front. Cardiovasc. Med. 2021, 8, 723886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Roberts, A.B.; Buffa, J.A.; Levison, B.S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M.K.; et al. Non-Lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 2015, 163, 1585–1595. [Google Scholar] [CrossRef]
- Naghipour, S.; Cox, A.J.; Peart, J.N.; Du Toit, E.F.; Headrick, J.P. Trimethylamine N-Oxide: Heart of the Microbiota-CVD Nexus? Nutr. Res. Rev. 2021, 34, 125–146. [Google Scholar] [CrossRef]
- Ge, X.; Zheng, L.; Zhuang, R.; Yu, P.; Xu, Z.; Liu, G.; Xi, X.; Zhou, X.; Fan, H. The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose–Response Meta-Analysis. Adv. Nutr. 2020, 11, 66–76. [Google Scholar] [CrossRef]
- Heianza, Y.; Ma, W.; Manson, J.E.; Rexrode, K.M.; Qi, L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J. Am. Heart Assoc. 2017, 6, e004947. [Google Scholar] [CrossRef]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef]
- Videja, M.; Sevostjanovs, E.; Upmale-Engela, S.; Liepinsh, E.; Konrade, I.; Dambrova, M. Fasting-Mimicking Diet Reduces Trimethylamine N-Oxide Levels and Improves Serum Biochemical Parameters in Healthy Volunteers. Nutrients 2022, 14, 1093. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M.; Gérard, P.; Mosca, A.; Leclerc, M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front. Nutr. 2021, 8, 637010. [Google Scholar] [CrossRef] [PubMed]
- Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid. Med. Cell. Longev. 2017, 2017, 3831972. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.L.; Malin, S.K.; Wang, Z.; Brown, J.M.; Hazen, S.L.; Kirwan, J.P. Effects of Lifestyle Intervention on Plasma Trimethylamine N-Oxide in Obese Adults. Nutrients 2019, 11, 179. [Google Scholar] [CrossRef] [PubMed]
- Steele, C.N.; Baugh, M.E.; Griffin, L.E.; Neilson, A.P.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Fasting and Postprandial Trimethylamine N-oxide in Sedentary and Endurance-trained Males Following a Short-term High-fat Diet. Physiol. Rep. 2021, 9, e14970. [Google Scholar] [CrossRef]
- Argyridou, S.; Bernieh, D.; Henson, J.; Edwardson, C.L.; Davies, M.J.; Khunti, K.; Suzuki, T.; Yates, T. Associations between Physical Activity and Trimethylamine N-Oxide in Those at Risk of Type 2 Diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001359. [Google Scholar] [CrossRef]
- Ma, Z.; Li, W. How and Why Men and Women Differ in Their Microbiomes: Medical Ecology and Network Analyses of the Microgenderome. Adv. Sci. 2019, 6, 1902054. [Google Scholar] [CrossRef] [PubMed]
- Heiston, E.M.; Gilbertson, N.M.; Eichner, N.Z.M.; Malin, S.K. A Low-Calorie Diet with or without Exercise Reduces Postprandial Aortic Waveform in Females with Obesity. Med. Sci. Sports Exerc. 2021, 53, 796–803. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Kirsch, S.H.; Herrmann, W.; Rabagny, Y.; Obeid, R. Quantification of Acetylcholine, Choline, Betaine, and Dimethylglycine in Human Plasma and Urine Using Stable-Isotope Dilution Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 3338–3344. [Google Scholar] [CrossRef]
- Lee, Y.; Nemet, I.; Wang, Z.; Lai, H.T.M.; de Oliveira Otto, M.C.; Lemaitre, R.N.; Fretts, A.M.; Sotoodehnia, N.; Budoff, M.; DiDonato, J.A.; et al. Longitudinal Plasma Measures of Trimethylamine N-Oxide and Risk of Atherosclerotic Cardiovascular Disease Events in Community-Based Older Adults. J. Am. Heart Assoc. 2021, 10, e020646. [Google Scholar] [CrossRef]
- Papandreou, C.; Moré, M.; Bellamine, A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health—Cause or Effect? Nutrients 2020, 12, 1330. [Google Scholar] [CrossRef]
- Argyridou, S.; Davies, M.J.; Biddle, G.J.H.; Bernieh, D.; Suzuki, T.; Dawkins, N.P.; Rowlands, A.V.; Khunti, K.; Smith, A.C.; Yates, T. Evaluation of an 8-Week Vegan Diet on Plasma Trimethylamine-N-Oxide and Postchallenge Glucose in Adults with Dysglycemia or Obesity. J. Nutr. 2021, 151, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Miller, M.; Rhyne, J.; Wang, Z.; Hazen, S.L. Differential Effect of Short-Term Popular Diets on TMAO and Other Cardio-Metabolic Risk Markers. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Sowah, S.A.; Milanese, A.; Schübel, R.; Wirbel, J.; Kartal, E.; Johnson, T.S.; Hirche, F.; Grafetstätter, M.; Nonnenmacher, T.; Kirsten, R.; et al. Calorie Restriction Improves Metabolic State Independently of Gut Microbiome Composition: A Randomized Dietary Intervention Trial. Genome Med. 2022, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Avolio, A.P.; Van Bortel, L.M.; Boutouyrie, P.; Cockcroft, J.R.; McEniery, C.M.; Protogerou, A.D.; Roman, M.J.; Safar, M.E.; Segers, P.; Smulyan, H. Role of Pulse Pressure Amplification in Arterial Hypertension. Hypertension 2009, 54, 375–383. [Google Scholar] [CrossRef]
- Van Parys, A.; Lysne, V.; Svingen, G.F.T.; Ueland, P.M.; Dhar, I.; Øyen, J.; Dierkes, J.; Nygård, O.K. Dietary Choline Is Related to Increased Risk of Acute Myocardial Infarction in Patients with Stable Angina Pectoris. Biochimie 2020, 173, 68–75. [Google Scholar] [CrossRef]
- Jaworska, K.; Hering, D.; Mosieniak, G.; Bielak-Zmijewska, A.; Pilz, M.; Konwerski, M.; Gasecka, A.; Kapłon-Cieślicka, A.; Filipiak, K.; Sikora, E.; et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins 2019, 11, 490. [Google Scholar] [CrossRef]
- Arias, N.; Arboleya, S.; Allison, J.; Kaliszewska, A.; Higarza, S.G.; Gueimonde, M.; Arias, J.L. The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients 2020, 12, 2340. [Google Scholar] [CrossRef] [PubMed]
- Zamani, P.; Jacobs, D.R.; Segers, P.; Duprez, D.A.; Brumback, L.; Kronmal, R.A.; Lilly, S.M.; Townsend, R.R.; Budoff, M.; Lima, J.A.; et al. Reflection Magnitude as a Predictor of Mortality. Hypertension 2014, 64, 958–964. [Google Scholar] [CrossRef]
- Jaworska, K.; Bielinska, K.; Gawrys-Kopczynska, M.; Ufnal, M. TMA (Trimethylamine), but Not Its Oxide TMAO (Trimethylamine-Oxide), Exerts Haemodynamic Effects: Implications for Interpretation of Cardiovascular Actions of Gut Microbiome. Cardiovasc. Res. 2019, 115, 1948–1949. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; Lavie, C.J.; Fares, H.; Menezes, A.R.; O’Keefe, J.H. L-Carnitine in the Secondary Prevention of Cardiovascular Disease: Systematic Review and Meta-Analysis. Mayo Clin. Proc. 2013, 88, 544–551. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Liu, Y.-Y.; Liu, G.-H.; Lu, H.-B.; Mao, C.-Y. L-Carnitine and Heart Disease. Life Sci. 2018, 194, 88–97. [Google Scholar] [CrossRef]
- Mate, A.; Miguel-Carrasco, J.L.; Vázquez, C.M. The Therapeutic Prospects of Using L-Carnitine to Manage Hypertension-Related Organ Damage. Drug Discov. Today 2010, 15, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Gürlek, A.; Tutar, E.; Akçil, E.; Dinçer, I.; Erol, C.; Kocatürk, P.A.; Oral, D. The Effects of L-Carnitine Treatment on Left Ventricular Function and Erythrocyte Superoxide Dismutase Activity in Patients with Ischemic Cardiomyopathy. Eur. J. Heart Fail. 2000, 2, 189–193. [Google Scholar] [CrossRef]
- Song, X.; Qu, H.; Yang, Z.; Rong, J.; Cai, W.; Zhou, H. Efficacy and Safety of L-Carnitine Treatment for Chronic Heart Failure: A Meta-Analysis of Randomized Controlled Trials. BioMed Res. Int. 2017, 2017, 6274854. [Google Scholar] [CrossRef] [PubMed]
- Little, W.C.; Oh, J.K. Echocardiographic Evaluation of Diastolic Function Can Be Used to Guide Clinical Care. Circulation 2009, 120, 802–809. [Google Scholar] [CrossRef]
- Lemaitre, R.N.; Jensen, P.N.; Wang, Z.; Fretts, A.M.; McKnight, B.; Nemet, I.; Biggs, M.L.; Sotoodehnia, N.; de Oliveira Otto, M.C.; Psaty, B.M.; et al. Association of Trimethylamine N-Oxide and Related Metabolites in Plasma and Incident Type 2 Diabetes: The Cardiovascular Health Study. JAMA Netw. Open 2021, 4, e2122844. [Google Scholar] [CrossRef]
- Rath, S.; Rox, K.; Kleine Bardenhorst, S.; Schminke, U.; Dörr, M.; Mayerle, J.; Frost, F.; Lerch, M.M.; Karch, A.; Brönstrup, M.; et al. Higher Trimethylamine-N-Oxide Plasma Levels with Increasing Age Are Mediated by Diet and Trimethylamine-Forming Bacteria. mSystems 2021, 6, e00945-21. [Google Scholar] [CrossRef]
- Wilson Tang, W.H.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut Microbiota-Dependent Trimethylamine N-Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef]
- Miao, J.; Ling, A.V.; Manthena, P.V.; Gearing, M.E.; Graham, M.J.; Crooke, R.M.; Croce, K.J.; Esquejo, R.M.; Clish, C.B.; Vicent, D.; et al. Flavin-Containing Monooxygenase 3 as a Potential Player in Diabetes-Associated Atherosclerosis. Nat. Commun. 2015, 6, 6498. [Google Scholar] [CrossRef] [PubMed]
- Han, H.-S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.-H. Regulation of Glucose Metabolism from a Liver-Centric Perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef] [PubMed]
LCD | LCD+INT | ANOVA p Value | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Test | G × T | |
n (female) | 12 | - | 11 | - | ||
Non-Hispanic white | 11 | - | 6 | - | ||
Non-Hispanic black | 0 | - | 3 | - | ||
Hispanic | 1 | - | 1 | - | ||
Asian Pacific Islander | 0 | - | 1 | - | ||
Age, yr | 48.4 ± 2.6 | - | 47.6 ± 4.3 | - | ||
Weight, kg | 102.1 ± 5.0 | 99.7 ± 4.9 | 104.9 ± 6.9 | 103.2 ± 6.8 | <0.01 | 0.19 |
BMI, kg/m2 | 37.8 ± 1.6 | 37.0 ± 1.6 | 38.0 ± 2.3 | 37.4 ± 2.3 | <0.01 | 0.13 |
Body fat, % | 51.5 ± 1.4 | 50.2 ± 1.5 | 49.1 ± 2.5 | 48.2 ± 2.7 | <0.01 | 0.89 |
FFM, kg | 49.4 ± 1.5 | 49.0 ± 1.3 | 52.5 ± 2.8 | 52.7 ± 2.9 | 0.78 | 0.45 |
VO2peak, L/min | 1.83 ± 0.1 | 1.65 ± 0.1 | 1.9 ± 0.1 | 2.0 ± 0.1 | 0.61 | 0.03 |
VO2peak, ml/kg/min | 18.1 ± 1.0 | 17.5 ± 1.1 | 19.0 ± 1.6 | 20.3 ± 1.8 | 0.50 | 0.05 |
HDL Cholesterol, mg/dL | 50.8 ± 2.2 | 43.7 ± 2.0 | 42.9 ±1.7 | 49.1 ± 4.6 | 0.06 | <0.01 |
LDL Cholesterol, mg/dL | 136.3 ± 13.0 | 115.0 ± 11.5 | 114.4 ± 8.2 | 100.2 ± 5.7 | <0.01 | 0.62 |
Glucose | ||||||
Fasting, mg/dL | 97.1 ± 1.5 | 94.2 ± 2.5 | 97.0 ± 2.5 | 92.9 ± 2.2 | 0.05 | 0.71 |
120 min, mg/dL | 113.1 ± 6.3 | 115.3 ± 9.0 | 112.8 ± 7.0 | 126.0 ± 8.3 | 0.66 | 0.93 |
tAUC, mg/dlx180 min | 20,482.6 ± 965.8 | 20,550.8 ± 1242.4 | 22,612.2 ± 1039.3 | 22,416.7 ± 1245.0 | 0.91 | 0.82 |
Insulin | ||||||
Fasting, μU/mL | 15.3 ± 2.1 | 11.8 ± 2.3 | 22.3 ± 6.2 | 18.2 ± 4.1 | 0.03 | 0.77 |
120 min, μU/mL | 83.2 ± 14.9 | 74.2 ± 16.0 | 125.3 ± 20.5 | 80.2 ± 19.1 | 0.45 | 0.68 |
tAUC, μU/mLx180 min | 12,681.0 ± 1794.0 | 12,737.4 ± 1864.7 | 19,252.2 ± 2805.5 | 12,905.5 ± 1043.3 | 0.01 | 0.31 |
LCD | LCD+INT | ANOVA p Value | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Test | G × T | |
Total Kcal, kcal | 2013.9 ± 191.9 | 1608.9 ± 88.2 | 2047.7 ± 191.1 | 1346.5 ± 29.1 | <0.01 | 0.67 |
Carbohydrates, g | 235.5 ± 25.5 | 175.2 ± 6.6 | 238.7 ± 28.8 | 217.6 ± 13.1 | 0.05 | 0.33 |
Fiber, g | 17.3 ± 1.9 | 10.5 ± 0.7 | 17.2 ± 1.4 | 10.1 ± 1.1 | <0.01 | 0.92 |
Fat, g | 86.7 ± 7.7 | 44.5 ± 2.0 | 84.1 ± 8.7 | 49.6 ± 4.3 | <0.01 | 0.51 |
Protein, g | 83.3 ± 8.1 | 61.8 ± 3.0 | 78.2 ± 8.9 | 71.9 ± 3.7 | 0.03 | 0.20 |
LCD | LCD+INT | ANOVA p Value | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Test | G × T | |
bSBP | ||||||
Fasting, mmHg | 131.8 ± 5.6 | 129.4 ± 4.6 | 139.5 ± 6.6 | 137.5 ± 7.8 | 0.47 | 0.93 |
120 min, mmHg | 133.3 ± 7.0 | 130.7 ± 3.6 | 133.5 ± 4.8 | 136.1 ± 7.3 | 0.96 | 0.36 |
tAUC, mmHgx180 min | 24,577.5 ± 1040.1 | 23,410.0 ± 712.7 | 24,256.4 ± 883.9 | 24,409.1 ± 1271.9 | 0.97 | 0.73 |
bDBP | ||||||
Fasting, mmHg | 82.8 ± 3.6 | 77.2 ± 3.5 | 80.2 ± 3.4 | 82.0 ± 5.0 | 0.39 | 0.11 |
120 min, mmHg | 81.1 ± 3.7 | 75.8 ± 3.5 | 77.4 ± 3.7 | 78.0 ± 3.8 | 0.37 | 0.16 |
tAUC, mmHgx180 min | 14,825.0 ± 615.1 | 13,805.0 ± 562.7 | 14,075.4 ± 560.2 | 14,269.1 ± 767.9 | 0.30 | 0.07 |
cSBP | ||||||
Fasting, mmHg | 122.7 ± 4.9 | 117.2 ± 2.8 | 128.0 ± 6.1 | 126.9 ± 7.5 | 0.48 | 0.73 |
120 min, mmHg | 121.2 ± 6.5 | 118.5 ± 3.4 | 119.6 ± 5.1 | 121.1 ± 6.9 | 0.93 | 0.44 |
tAUC, mmHgx180 min | 21,309.0 ± 425.3 | 20,541 ± 312.2 | 21,867.3 ± 925.3 | 21,916.4 ± 1210.9 | 0.41 | 0.28 |
cDBP | ||||||
Fasting, mmHg | 84.0 ± 3.6 | 78.3 ± 3.5 | 82.1 ± 3.5 | 83.2 ± 5.0 | 0.30 | 0.15 |
120 min, mmHg | 82.4 ± 4.2 | 78.5 ± 3.8 | 76.8 ± 3.4 | 79.3 ± 4.1 | 0.31 | 0.18 |
tAUC, mmHgx180 min | 14,596.4 ± 492.4 | 14,030.0 ± 564.9 | 14,350.9 ± 572.6 | 14,479.1 ± 789.3 | 0.43 | 0.26 |
PPA | ||||||
Fasting, mmHg | 1.27 ± 0.0 | 1.24 ± 0.0 | 1.26 ± 0.0 | 1.28 ± 0.0 | 0.90 | 0.33 |
120 min, mmHg | 1.36 ± 0.0 | 1.32 ± 0.0 | 1.38 ± 0.0 | 1.41 ± 0.1 | 0.92 | 0.23 |
tAUC, mmHgx180 min | 238.7 ± 3.67 | 237.0 ± 5.6 | 243.3 ± 7.6 | 243.2 ± 4.5 | 0.98 | 0.97 |
AIx75 | ||||||
Fasting, % | 29.9 ± 3.4 | 28.0 ± 3.3 | 29.5 ± 5.7 | 24.7 ± 6.1 | 0.28 | 0.63 |
120 min, % | 24.5 ± 4.7 | 20.8 ± 3.5 | 16.4 ± 5.3 | 17.1 ± 5.5 | 0.68 | 0.50 |
tAUC, %x180 min | 4917.5 ± 524.8 | 3830.0 ±576.6 | 3927.0 ± 856.6 | 3645.0 ± 911.9 | 0.08 | 0.30 |
AP | ||||||
Fasting, mmHg | 13.5 ± 1.0 | 15.1 ± 1.8 | 15.4 ± 2.8 | 13.6 ± 2.9 | 0.96 | 0.30 |
120 min, mmHg | 10.9 ± 2.0 | 11.3 ± 1.9 | 8.5 ± 2.4 | 8.8 ± 2.4 | 0.82 | 0.99 |
tAUC, mmHgx180 min | 2337.5 ± 225.9 | 2077.5 ± 317.5 | 1956.0 ± 426.9 | 1713.0 ± 414.7 | 0.19 | 0.96 |
Pf | ||||||
Fasting, mmHg | 26.5 ± 1.1 | 26.1 ± 1.7 | 31.4 ± 2.3 | 25.6 ± 1.9 | 0.04 | 0.27 |
120 min, mmHg | 27.3 ± 1.7 | 27.4 ± 1.1 | 26.5 ± 1.2 | 30.0 ± 2.9 | 0.36 | 0.36 |
tAUC, mmHgx180 min | 4848.4 ± 131.1 | 4628.0 ± 208.6 | 5335.3 ± 268.4 | 5382.3 ± 241.9 | 0.55 | 0.30 |
Pb | ||||||
Fasting, mmHg | 17.1 ± 1.0 | 18.2 ± 1.2 | 20.7 ± 1.6 | 19.4 ± 2.4 | 0.93 | 0.56 |
120 min, mmHg | 16.7 ± 1.7 | 18.3 ± 1.2 | 19.1 ± 1.0 | 18.2 ± 2.2 | 0.81 | 0.36 |
tAUC, mmHgx180 min | 3027.4 ± 141.8 | 3015.7 ± 214.9 | 3443.0 ± 219.5 | 3523.5 ± 305.6 | 0.29 | 0.73 |
RM | ||||||
Fasting, % | 65.3 ± 4.3 | 70.3 ± 4.4 | 65.8 ± 3.0 | 67.9 ± 5.3 | 0.45 | 0.68 |
120 min, % | 60.7 ± 3.8 | 63.4 ± 3.1 | 69.5 ± 4.5 | 60.2 ± 4.9 | 0.33 | 0.13 |
tAUC, %x180 min | 11,146.7 ± 512.1 | 11,566.7 ± 458.0 | 11,139.0 ± 466.4 | 10,941.4 ± 877.7 | 0.88 | 0.51 |
HR | ||||||
Fasting, bpm | 64.3 ± 2.0 | 60.3 ± 1.3 | 68.8 ± 3.0 | 66.9 ± 3.3 | 0.08 | 0.52 |
120 min, bpm | 68.9 ± 1.6 | 62.4 ± 2.0 | 71.2 ± 2.4 | 72.3 ± 3.2 | 0.21 | 0.09 |
tAUC, bpmx180 min | 12,167.5 ± 237.8 | 11,350.0 ± 261.0 | 12,248.2 ± 584.5 | 12,585.0 ± 499.0 | 0.55 | 0.05 |
LCD | LCD+INT | ANOVA p Value | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Test | G × T | |
TMA (μM) | 16.9 ± 1.0 | 16.5 ± 1.3 | 15.6 ± 0.8 | 15.6 ± 1.0 | 0.62 | 0.62 |
Carnitine (μM) | 35.6 ± 2.0 | 35.2 ± 2.3 | 33.4 ± 1.6 | 33.6 ± 1.9 | 0.89 | 0.67 |
Choline (μM) | 8.0 ± 0.5 | 6.6 ± 0.6 | 9.7 ± 0.6 | 7.9 ± 0.3 | <0.01 | 0.60 |
Betaine (μM) | 22.9 ± 1.8 | 22.6 ± 1.9 | 24.0 ± 1.6 | 23.3 ± 1.8 | 0.54 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battillo, D.J.; Malin, S.K. Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity. Nutrients 2023, 15, 1455. https://doi.org/10.3390/nu15061455
Battillo DJ, Malin SK. Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity. Nutrients. 2023; 15(6):1455. https://doi.org/10.3390/nu15061455
Chicago/Turabian StyleBattillo, Daniel J., and Steven K. Malin. 2023. "Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity" Nutrients 15, no. 6: 1455. https://doi.org/10.3390/nu15061455
APA StyleBattillo, D. J., & Malin, S. K. (2023). Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity. Nutrients, 15(6), 1455. https://doi.org/10.3390/nu15061455