Brown Seaweed Consumption as a Promising Strategy for Blood Glucose Management: A Comprehensive Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
- Population: Healthy participants, those with prediabetes, or participants with type 2 diabetes mellitus
- Intervention: Experimental studies exploring the effects of brown seaweeds or their extracts
- Comparison: Placebo
- Outcome: Randomized controlled trials (parallel or crossover)
2.3. Data Extraction, Quality Assessment, and Publication Bias
2.4. Statistical Analysis
3. Results
3.1. Selection and Characteristics of Included Studies
3.2. Effect of Seaweed Intervention
3.2.1. Fasting Blood Glucose and Fasting Blood Insulin Outcomes
3.2.2. Postprandial Blood Glucose
3.2.3. HbA1c and HOMA-IR
3.2.4. Subgroup Analysis
3.3. Publication Bias
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leahy, J.L. Pathogenesis of type 2 diabetes mellitus. Arch. Med. Res. 2005, 36, 197–209. [Google Scholar] [CrossRef]
- Verde, L.; Frias-Toral, E.; Cardenas, D. Environmental Factors Implicated in Obesity; Frontiers Media SA: Lausanne, Switzerland, 2023; p. 1171507. [Google Scholar]
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and diabetes in the developing world—A growing challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef]
- Schlienger, J.L. Type 2 diabetes complications. Presse Med. 2013, 42, 839–848. [Google Scholar] [CrossRef]
- Zhang, B.B.; Moller, D.E. New approaches in the treatment of type 2 diabetes. Curr. Opin. Chem. Biol. 2000, 4, 461–467. [Google Scholar] [CrossRef]
- Sami, W.; Ansari, T.; Butt, N.S.; Hamid, M.R.A. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. 2017, 11, 65–71. [Google Scholar]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Mišurcová, L. Chemical composition of seaweeds. In Handbook of Marine Macroalgae: Biotechnology and Applied Phycology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 171–192. [Google Scholar]
- Scieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, I.; Fairclough, A.; Hall, A.; Paxman, J. The Potential Health Benefits of Seaweed and Seaweed Extract. In Seaweed: Ecology, Nutrient Composition and Medicinal Uses; Nova Science: Hauppauge, NY, USA, 2012. [Google Scholar]
- Kılınç, B.; Cirik, S.; Turan, G.; Tekogul, H.; Koru, E. Seaweeds for food and industrial applications. In Food Industry; IntechOpen: London, UK, 2013. [Google Scholar]
- Michalak, I.; Chojnacka, K. Seaweeds as a component of the human diet. In Algae Biomass: Characteristics and Applications: Towards Algae-Based Products; Springer: Cham, Switzerland, 2018; pp. 57–71. [Google Scholar]
- Fleurence, J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef]
- Ibañez, E.; Cifuentes, A. Benefits of using algae as natural sources of functional ingredients. J. Sci. Food Agric. 2013, 93, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Paradis, M.E.; Couture, P.; Lamarche, B. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Appl. Physiol. Nutr. Metab. 2011, 36, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols. Crit. Rev. Food Sci. Nutr. 2018, 58, 1342–1358. [Google Scholar] [CrossRef]
- Jiménez-Escrig, A.; Sánchez-Muniz, F. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 2000, 20, 585–598. [Google Scholar] [CrossRef]
- Misurcova, L.; Skrovankova, S.; Samek, D.; Ambrozova, J.; Machu, L. Health benefits of algal polysaccharides in human nutrition. Adv. Food Nutr. Res. 2012, 66, 75–145. [Google Scholar] [CrossRef] [PubMed]
- Sharifuddin, Y.; Chin, Y.X.; Lim, P.E.; Phang, S.M. Potential Bioactive Compounds from Seaweed for Diabetes Management. Mar. Drugs 2015, 13, 5447–5491. [Google Scholar] [CrossRef]
- Kang, C.; Jin, Y.B.; Lee, H.; Cha, M.; Sohn, E.T.; Moon, J.; Park, C.; Chun, S.; Jung, E.S.; Hong, J.S.; et al. Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food Chem. Toxicol. 2010, 48, 509–516. [Google Scholar] [CrossRef]
- Shin, D.; Shim, S.R.; Wu, Y.; Hong, G.; Jeon, H.; Kim, C.-G.; Lee, K.J. How Do Brown Seaweeds Work on Biomarkers of Dyslipidemia? A Systematic Review with Meta-Analysis and Meta-Regression. Mar. Drugs 2023, 21, 220. [Google Scholar] [CrossRef]
- Vaughan, K.; Ranawana, V.; Cooper, D.; Aceves-Martins, M. Effect of brown seaweed on plasma glucose in healthy, at-risk, and type 2 diabetic individuals: Systematic review and meta-analysis. Nutr. Rev. 2022, 80, 1194–1205. [Google Scholar] [CrossRef]
- Kwak, J.S.; Park, M.Y.; Kwon, O. Effect of cassia cinnamon intake on improvement of the glycemic response: An updated meta-analysis—Focus on preparation of dehydrated powder and water extract. J. Nutr. Health 2017, 50, 437–446. [Google Scholar] [CrossRef]
- Park, M.J.; Ryu, H.K.; Han, J.S. Effects of Laminaria Japonica Extract Supplement on Blood Glucose, Serum Lipids and Antioxidant Systems in Type 2 Diabetic Patients. J. Korean Soc. Food Sci. Nutr. 2007, 36, 1391–1398. [Google Scholar] [CrossRef]
- Oh, J.-K.; Shin, Y.-O.; Yoon, J.-H.; Kim, S.H.; Shin, H.-C.; Hwang, H.J. Effect of supplementation with Ecklonia cava polyphenol on endurance performance of college students. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-J.; Kim, H.-J.; Han, J.-S. Effects of Ishige okamurae Extract Supplement on Blood Glucose and Antioxidant Systems in Type 2 Diabetic Patients. J. Korean Soc. Food Sci. Nutr. 2011, 40, 1726–1733. [Google Scholar] [CrossRef]
- Shin, H.C.; Kim, S.H.; Park, Y.; Lee, B.H.; Hwang, H.J. Effects of 12-week oral supplementation of Ecklonia cava polyphenols on anthropometric and blood lipid parameters in overweight Korean individuals: A double-blind randomized clinical trial. Phytother. Res. 2012, 26, 363–368. [Google Scholar] [CrossRef]
- Hernández-Corona, D.M.; Martínez-Abundis, E.; González-Ortiz, M. Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults. J. Med. Food 2014, 17, 830–832. [Google Scholar] [CrossRef]
- Lee, S.-H.; Jeon, Y.-J. Efficacy and safety of a dieckol-rich extract (AG-dieckol) of brown algae, Ecklonia cava, in pre-diabetic individuals: A double-blind, randomized, placebo-controlled clinical trial. Food Funct. 2015, 6, 853–858. [Google Scholar] [CrossRef]
- Choi, W.-c.; Reid, S.N.; Ryu, J.-k.; Kim, Y.; Jo, Y.-H.; Jeon, B.H. Effects of γ-aminobutyric acid-enriched fermented sea tangle (Laminaria japonica) on brain derived neurotrophic factor-related muscle growth and lipolysis in middle aged women. Algae 2016, 31, 175–187. [Google Scholar] [CrossRef]
- Nishihira, J.; Nishimura, M.; Sugawara, M.; Kudo, M. Double-blind, parallel group, placebo-controlled study of Kjellmaniella crassifolia Miyabe (Gagome) in human: The potential of Gagome to activate the immune system. Funct. Foods Health Dis. 2017, 7, 758–772. [Google Scholar] [CrossRef]
- Derosa, G.; Cicero, A.F.; D’Angelo, A.; Maffioli, P. Ascophyllum nodosum and Fucus vesiculosus on glycemic status and on endothelial damage markers in dysglicemic patients. Phytother. Res. 2019, 33, 791–797. [Google Scholar] [CrossRef]
- Derosa, G.; Pascuzzo, M.D.; D’Angelo, A.; Maffioli, P. Ascophyllum nodosum, Fucus vesiculosus and chromium picolinate nutraceutical composition can help to treat type 2 diabetic patients. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1861–1865. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. A single-dose of a polyphenol-rich Fucus vesiculosus extract is insufficient to blunt the elevated postprandial blood glucose responses exhibited by healthy adults in the evening: A randomised crossover trial. Antioxidants 2019, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Sugawara, M.; Kudo, M.; Kinoshita, Y.; Yoshino, H.; Nishihira, J. Effects of daily intake of Harudori-kombu: A randomized, double-blind, placebo-controlled, parallel-group study. Funct. Foods Health Dis. 2019, 9, 205–223. [Google Scholar] [CrossRef]
- Okimura, T.; Jiang, Z.; Liang, Y.; Yamaguchi, K.; Oda, T. Suppressive effect of ascophyllan HS on postprandial blood sugar level through the inhibition of α-glucosidase and stimulation of glucagon-like peptide-1 (GLP-1) secretion. Int. J. Biol. Macromol. 2019, 125, 453–458. [Google Scholar] [CrossRef]
- Wright, C.M.; Bezabhe, W.; Fitton, J.H.; Stringer, D.N.; Bereznicki, L.R.; Peterson, G.M. Effect of a fucoidan extract on insulin resistance and cardiometabolic markers in obese, nondiabetic subjects: A randomized, controlled trial. J. Altern. Complement. Med. 2019, 25, 346–352. [Google Scholar] [CrossRef] [PubMed]
- van den Driessche, J.J.; Plat, J.; Konings, M.C.; Mensink, R.P. Effects of spirulina and wakame consumption on intestinal cholesterol absorption and serum lipid concentrations in non-hypercholesterolemic adult men and women. Eur. J. Nutr. 2020, 59, 2229–2236. [Google Scholar] [CrossRef]
- Elidottir, A.S.; Sveinsdottir, K.; Ingadottir, B.; Geirsdottir, O.G.; Jonsson, P.V.; Rothenberg, E.; Hardardottir, I.; Freysdottir, J.; Ramel, A. Seaweed Extract Improves Carbohydrate Metabolism in Overweight and Obese Adults. Curr. Nutr. Food Sci. 2021, 17, 216–224. [Google Scholar] [CrossRef]
- Murray, M.; Dordevic, A.L.; Cox, K.; Scholey, A.; Ryan, L.; Bonham, M.P. Twelve weeks’ treatment with a polyphenol-rich seaweed extract increased HDL cholesterol with no change in other biomarkers of chronic disease risk in overweight adults: A placebo-controlled randomized trial. J. Nutr. Biochem. 2021, 96, 108777. [Google Scholar] [CrossRef]
- van den Driessche, J.J.; Mensink, R.P.; Plat, J. Spirulina, wakame or goji berries do not lower markers of low-grade systemic inflammation in healthy subjects. Funct. Foods Health Dis. 2021, 11, 627–640. [Google Scholar] [CrossRef]
- Zaharudin, N.; Tullin, M.; Pekmez, C.T.; Sloth, J.J.; Rasmussen, R.R.; Dragsted, L.O. Effects of brown seaweeds on postprandial glucose, insulin and appetite in humans–A randomized, 3-way, blinded, cross-over meal study. Clin. Nutr. 2021, 40, 830–838. [Google Scholar] [CrossRef]
- Almutairi, M.G.; Aldubayan, K.; Molla, H. Effect of seaweed (Ecklonia cava extract) on blood glucose and insulin level on prediabetic patients: A double-blind randomized controlled trial. Food Sci. Nutr. 2023, 11, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Vodouhè, M.; Marois, J.; Guay, V.; Leblanc, N.; Weisnagel, S.J.; Bilodeau, J.-F.; Jacques, H. Marginal Impact of Brown Seaweed Ascophyllum nodosum and Fucus vesiculosus Extract on Metabolic and Inflammatory Response in Overweight and Obese Prediabetic Subjects. Mar. Drugs 2022, 20, 174. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jeon, Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr. Med. Res. Opin. 2003, 19, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights 2016, 11, 95–104. [Google Scholar] [CrossRef]
- Reaven, G. What do we learn from measurements of HOMA-IR? Diabetologia 2013, 56, 1867–1868. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Li, X.; Song, P.; Xu, L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discov. Ther. 2015, 9, 380–385. [Google Scholar] [CrossRef]
- Ding, K.X.; Gao, T.L.; Xu, R.; Cai, J.; Zhang, H.Q.; Sun, Y.Y.; Zhong, F.; Ma, A.G. Quantifying the Effect of Supplementation with Algae and Its Extracts on Glycolipid Metabolism: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2020, 12, 1712. [Google Scholar] [CrossRef]
- Animish, A.; Jayasri, M.A. A retrospective review of marine algae and the strategies employed for prospective diabetes management. Algal. Res.-Biomass Biofuels Bioprod. 2023, 74, 103209. [Google Scholar] [CrossRef]
- Shelby, L.B.; Vaske, J.J. Understanding meta-analysis: A review of the methodological literature. Leis. Sci. 2008, 30, 96–110. [Google Scholar] [CrossRef]
- Gliner, J.A.; Morgan, G.A.; Harmon, R.J. Meta-analysis: Formulation and interpretation. J. Am. Acad. Child Adolesc. Psychiatry 2003, 42, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Gabbia, D.; Dall’Acqua, S.; Di Gangi, I.M.; Bogialli, S.; Caputi, V.; Albertoni, L.; Marsilio, I.; Paccagnella, N.; Carrara, M.; Giron, M.C.; et al. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH. Mar. Drugs 2017, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.E. Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. J. Med. Chem. 2004, 47, 4135–4141. [Google Scholar] [CrossRef] [PubMed]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of Bioactivities of Fucoidan from the Brown Seaweed Fucus vesiculosus L. of the Barents Sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef]
- Kang, M.-C.; Wijesinghe, W.; Lee, S.-H.; Kang, S.-M.; Ko, S.-C.; Yang, X.; Kang, N.; Jeon, B.-T.; Kim, J.; Lee, D.-H. Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetes in db/db mouse model. Food Chem. Toxicol. 2013, 53, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Gunathilaka, T.L.; Samarakoon, K.; Ranasinghe, P.; Peiris, L.D.C. Antidiabetic Potential of Marine Brown Algae—A Mini Review. J. Diabetes Res. 2020, 2020, 1230218. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Himaya, S.W. Medicinal effects of phlorotannins from marine brown algae. Adv. Food Nutr. Res. 2011, 64, 97–109. [Google Scholar] [CrossRef]
- Jung, H.A.; Islam, M.N.; Lee, C.M.; Jeong, H.O.; Chung, H.Y.; Woo, H.C.; Choi, J.S. Promising antidiabetic potential of fucoxanthin isolated from the edible brown algae Eisenia bicyclis and Undaria pinnatifida. Fish. Sci. 2012, 78, 1321–1329. [Google Scholar] [CrossRef]
- Heo, S.J.; Hwang, J.Y.; Choi, J.I.; Han, J.S.; Kim, H.J.; Jeon, Y.J. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 2009, 615, 252–256. [Google Scholar] [CrossRef]
- Seo, C.; Jeong, S.J.; Yun, H.J.; Lee, H.J.; Lee, J.W.; An, H.W.; Han, N.; Jung, W.K.; Lee, S.G. Nutraceutical potential of polyphenol-rich Sargassum species grown off the Korean coast: A review. Food Sci. Biotechnol. 2022, 31, 971–984. [Google Scholar] [CrossRef]
- Ferdouse, F.; Holdt, S.L.; Smith, R.; Murúa, P.; Yang, Z. The global status of seaweed production, trade and utilization. Globefish Res. Programme 2018, 124, I. [Google Scholar]
- Authority, E.F.S.; Dujardin, B.; Ferreira de Sousa, R.; Gómez Ruiz, J.Á. Dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population. EFSA J. 2023, 21, e07798. [Google Scholar]
Study Name | Scientific Name | Intervention | RCT Design | Diabetes | Country | Subject Number | Duration (Day) | Result |
---|---|---|---|---|---|---|---|---|
Min-Jung Park. [27] | Laminaria Japonica | Laminaria Japonica hot water extract 1400 mg | Parallel | Y | Republic of Korea | 44 | 84 | (-) FBG, HbA1c |
Oh, J.K. [28] | Ecklonia cava | Drink contained 40 mg of Ecklonia cava Polyphenol per 100 mL (72 mg/day) | Cross-over | N | Republic of Korea | 20 | Acute | (-) Blood glucose level |
Paradis, M.E. [18] | Ascophyllum nodosum, Fucus vesiculosus | InSea2® (Ascophyllum nodosum and Fucus vesiculosus hot water extract powder) 500 mg | Cross-over | N | Danmark | 23 | Acute | (-) Plasma glucose iAUC, (↑) Plasma insulin iAUC |
Kang, Y.-J. [29] | Ishige okamurae | Freeze-dried Ishige okamurae extract 1600 mg | Parallel | Y | Republic of Korea | 60 | 70 | (-) FBG, Insulin, HOMA-IR, (↓) HbA1c |
Shin, H.C. [30] | Ecklonia cava | Ecklonia cava Polyphenol 72, 144 mg | Parallel | N | Republic of Korea | 107 | 84 | (↓) Glucose |
Hernández-Corona, D.M. [31] | - | F-fucoidan (Green Foods) 500 mg | Parallel | N | NA | 25 | 90 | (-) Glucose, (↑) Insulin, HOMA-IR |
Lee, S.H. [32] | Ecklonia cava | Dieckol-rich extract (AG-dieckol) from E. cava 500 mg | Parallel | N | Republic of Korea | 80 | 84 | (↓) Postprandial glucose, Insulin, (-) FPG, HbA1c, HOMA-IR |
Choi, W.-c. [33] | Laminaria Japonica | γ-aminobutyric acid (GABA)-enriched fermented sea tangle 1000 mg | Parallel | N | Republic of Korea | 21 | 56 | (↑) IGF |
Nishihira, J. [34] | Kjellmaniella crassifolia Miyabe | Kjellmaniella crassifolia Miyabe dietary fiber 800 mg | Parallel | N | Japan | 60 | 56 | (-) Glucose, HbA1c |
Murray, M. [19] | Fucus vesiculosus | Maritech® Synergy (Fucus vesiculosus powdered extract) 500, 2000 mg | Cross-over | N | Asian (Chinese, Indian, Indonesian), non-Asian (white Australian, British, Polish, Persian, Turkish, Italian, Greek) | 39 | Acute | (-) Blood glucose, Plasma insulin |
Derosa, G. [35] | Ascophyllum nodosum, Fucus vesiculosus | Gdue® (Ascophyllum nodosum and Fucus vesiculosus extract) | Parallel | Y | Caucasian patient | 65 | 180 | (↓) HbA1c, FPG, PPG, HOMA index, (-) FPI |
Derosa, G. [36] | Ascophyllum Nodosum, Fucus Vesiculosus | InSea2® (Ascophyllum nodosum and Fucus vesiculosus extract) 500 mg | Parallel | Y | Caucasian patient | 175 | 180 | (↓) FPG, PPG, HbA1c |
Murray, M. [37] | Fucus Vesiculosus | Fucus Vesiculosus powder extract 2000 mg | Cross-over | N | Melbourne, Australia | 23 | Acute | (-) Blood glucose, Plasma insulin |
Nishimura, M. [38] | Laminariaceae | Laminariaceae powder 2000 mg | Parallel | N | Japan | 70 | 42 | (↓) FPG, (-) Insulin, HbA1c, HOMA-IR |
Okimura, T. [39] | Ascophyllum nodosum | Ascophyllan HS (Ascophyllum nodosum water extract) 100 mg | Parallel | N | Japan | NA | 56 | (-) Blood glucose, Serum HbA1c, (↓) Fluctuation of HbA1c |
Wright, C.M. [40] | Fucus vesiculosus | Maritech® Synergy (Fucus vesiculosus fucoidan/polyphenol extract) 1000 mg | Parallel | N | Australian New Zealand | 72 | 90 | (-) Insulin, HOMA-IR, FBG |
van den Driessche, J.J. [41] | Undaria pinnatifida | Undaria pinnatifida 4800 mg | Cross-over | N | The Netherlands | 36 | 17 | (-) Glucose |
Elidottir, A.S. [42] | Fucus vesiculosus | Fucus Vesiculosus extract 1200 mg | Parallel | N | Iceland | 76 | 70 | (↓) Glucose, Insulin, (-) HbA1c |
Murray, M. [43] | Fucus vesiculosus | Maritech® Synergy (Fucus vesiculosus powdered extract) 2000 mg | Parallel | N | Asian, non-Asian (Caucasian, African, Poly-ethnic) | 38 | 96 | (-) Glucose, Insulin |
van den Driessche, J.J. [44] | Undaria pinnatifida | Undaria pinnatifida 4800 mg | Cross-over | N | The Netherlands | 52 | 17 | (-) Glucose |
Zaharudin, N. [45] | Laminaria digitata, Undaria pinnatifida | Seaweed salads (whole or chopped leafs) 5000 mg | Cross-over | N | NA | 20 | Acute | (↓) Glucose, Insulin, C-peptide, GLPx1-1 |
Almutairi, M.G. [46] | Ecklonia cava | Seanol (Ecklonia cava extract) 600 mg | Parallel | Y | Saudi Arabia | 20 | Acute | (-) FBG, PBG 30 min, 60 min, Peak concentration, FBI, PBI, (↓) PBG 90 min, 120 min |
Vodouhè, M. [47] | Ascophyllum nodosum, Fucus vesiculosus | InSea2® (Ascophyllum nodosum and Fucus vesiculosus extract) 500 mg | Parallel | Y | NA | 56 | 84 | (-) FBG, FBI, C-peptide, HbA1c |
Outcome | Subgroup | No. of Trials | Effect Size (95% CI) | p-Value | I2 (%) |
---|---|---|---|---|---|
Fasting blood glucose | Duration | ||||
<12 weeks | 5 | −0.099 (−0.442, 0.244) | 0.571 | 49.441 | |
≥12 weeks | 7 | −0.216 (−0.425, −0.006) | 0.044 * | 0 | |
Dose & Intake direction | |||||
<1000 mg/day | 6 | −0.099 (−0.357, 0.158) | 0.450 | 30.716 | |
≥1000 mg/day | 5 | −0.314 (−0.582, −0.046) | 0.022 * | 0 | |
Intervention | |||||
Water extract | 2 | −0.026 (−0.433, 0.381) | 0.900 | 0 | |
Powder | 4 | −0.177 (−0.466, 0.111) | 0.228 | 0 | |
Polyphenol | 2 | −0.408 (−0.757, −0.060) | 0.022 * | 0 | |
Fucoidan | 1 | −0.189 (−0.975 0.598) | 0.638 | 0 | |
Dietary fiber | 2 | 0.235 (−0.125, 0.594) | 0.201 | 0 | |
Fasting blood insulin | Intervention | ||||
Water extract | 1 | 0.048 (−0.476, 0.572) | 0.857 | 0 | |
Powder | 4 | 1.578 (−0.208, 3.365) | 0.083 | 95.993 | |
Fucoidan | 1 | −0.062 (−0.847, 0.722) | 0.876 | 0 | |
Dieckol | 1 | −0.265 (−0.761, 0.231) | 0.295 | 0 | |
HbA1c | Scientific name | ||||
Ascophyllum nodosum, Fucus vesiculosus | 4 | −0.433 (0.652, −0.233) | 0.002 * | 35.63 | |
Ecklonia cava | 1 | 0.000 (−0.494, 0.494) | 1.000 | 0 | |
Fucus vesiculosus | 1 | 0.181 (−0.299, 0.661) | 0.459 | 0 | |
Ishige okamurae | 1 | −0.405 (−0.989, 0.180) | 0.175 | 0 | |
Kjellmaniella crassifolia Miyabe | 2 | −0.198 (0.557, 0.161) | 0.280 | 0 | |
Laminaria Japonica | 1 | −0.388 (−1.040, 0.265) | 0.244 | 0 | |
Diabetes | |||||
Y | 6 | −0.434 (−0.623, −0.245) | 0.000 * | 0 | |
N | 4 | −0.046 (−0.295, −0.202) | 0.715 | 0 | |
Duration | |||||
<12 weeks | 4 | −0.129 (−0.387, 0.129) | 0.328 | 0 | |
≥12 weeks | 6 | −0.360 (−0.593, −0.128) | 0.002 * | 31.245 | |
Intervention | |||||
Water extract | 5 | −0.432 (−0.655, 0.210) | <0.0001 * | 14.617 | |
Powder | 1 | −0.405 (−0.989, 0.180) | 0.175 | 0 | |
Dietary fiber | 2 | −0.198 (−0.557, 0.161) | 0.280 | 0 | |
Dieckol | 1 | 0.000 (−0.494, 0.494) | 1.000 | 0 | |
HOMA-IR | Duration | ||||
<12 weeks | 1 | −0.964 (−1.575, −0.353) | 0.002 * | 0 | |
≥12 weeks | 6 | −0.176 (−0.388, 0.353) | 0.103 | 0 | |
Intervention | |||||
Water extract | 3 | −0.172 (−0.461, 0.117) | 0.244 | 0 | |
Powder | 2 | −0.542 (−1.316, 0.233) | 0.170 | 75.614 | |
Fucoidan | 1 | 0.088 (−0.697, 0.873) | 0.826 | 0 | |
Dieckol | 1 | −0.301 (−0.798, 0.196) | 0.235 | 0 | |
Postprandial blood glucose (60 min) | Design | ||||
Cross-over | 6 | −0.725 (−1.262, −0.188) | <0.0001 * | 74.476 | |
Parallel | 2 | −0.789 (−1.533, −0.044) | 0.038 * | 0 | |
Dose & Intake direction | |||||
<1000 mg/day | 4 | −0.347 (−0.740, 0.046) | 0.084 | 0 | |
≥1000 mg/day | 4 | −1.007 (−1.703, −0.312) | 0.005 * | 76.814 | |
Intervention | |||||
Water extract | 1 | −1.052 (−2.374, 0.271) | 0.119 | 0 | |
Powder | 2 | −0.176 (−0.639, 0.287) | 0.457 | 0 | |
Polyphenol | 1 | −0.667 (−1.567, 0.234) | 0.147 | 0 | |
Fresh seaweed | 4 | −1.007 (−1.703, −0.312) | 0.005 * | 76.814 | |
Postprandial blood glucose (90 min) | Scientific name | ||||
Ascophyllum nodosum | 1 | −0.805 (−2.094, 0.484) | 0.221 | 0 | |
Ecklonia cava | 1 | −1.044 (−1.978, 0.110) | 0.029 * | 0 | |
Fucus Vesiculosus | 2 | −0.014 (−0.476, 0.447) | 0.951 | 0 | |
Laminaria digitata, Undaria pinnatifida | 4 | −1.015 (−1.432, −0.597) | <0.0001 * | 36.879 | |
Design | |||||
Cross-over | 6 | −0.667 (−0.936, −0.397) | <0.0001 * | 69.414 | |
Parallel | 2 | 0.962 (−1.718, −0.205) | 0.013 * | 0 | |
Diabetes | |||||
Y | 7 | −0.672 (−0.936, −0.409) | <0.0001 * | 63.392 | |
N | 1 | 1.044 (−1.978, −0.110) | 0.029 * | 0 | |
Dose & Intake direction | |||||
<1000 mg/day | 4 | −0.330 (−0.831, 0.172) | 0.198 | 32.879 | |
≥1000 mg/day | 4 | −1.015 (−1.432, −0.597) | <0.0001 * | 32.991 | |
Duration | |||||
Acute | 7 | −0.726 (−1.164, −0.288) | 0.001 * | 64.552 | |
Long | 1 | −0.805 (−2.094, 0.484) | 0.221 | 0 | |
Intervention | |||||
Water extract | 1 | −0.805 (−2.094, 0.484) | 0.221 | 0 | |
Powder | 2 | −0.014 (−0.476, 0.447) | 0.951 | 0 | |
Polyphenol | 1 | −1.044 (−1.978, −0.110) | 0.029 * | 0 | |
Fresh seaweed | 4 | −1.015 (−1.432, −0.597) | <0.0001 * | 36.879 | |
Postprandial blood glucose (120 min) | Scientific name | ||||
Ascophyllum nodosum | 1 | −0.500 (−1.758, 0.759) | 0.437 | 0 | |
Ecklonia cava | 1 | −1.101 (−2.041, −0.160) | 0.022 * | 0 | |
Fucus Vesiculosus | 2 | −0.097 (−0.559, 0.365) | 0.682 | 0 | |
Laminaria digitata, Undaria pinnatifida | 4 | −1.027 (−1.982, −0.071) | 0.035 * | 87.332 | |
Design | |||||
Cross-over | 6 | −0.710 (−1.395, −0.025) | 0.042 * | 84.025 | |
Parallel | 2 | −0.885 (−1.639, −0.132) | 0.021 * | 0 | |
Diabetes | |||||
Y | 7 | −0.686 (−1.309, −0.064) | 0.031 * | 80.851 | |
N | 1 | −1.101 (−2.041, 0.022) | 0.022 * | 0 | |
Dose & Intake direction | |||||
<1000 mg/day | 4 | −0.336 (−0.781, 0.109) | 0.139 | 17.631 | |
≥1000 mg/day | 4 | −1.027 (−1.982, −0.071) | 0.035 * | 87.332 | |
Duration | |||||
Acute | 7 | −0.757 (−1.370, 0.144) | 0.015 * | 81.377 | |
Long | 1 | −0.5 (−1.758, 0.759) | 0.437 | 0 | |
Intervention | |||||
Water extract | 1 | −0.500 (−1.758, 0.759) | 0.437 | 0 | |
Powder | 2 | −0.097 (−0.559, 0.365) | 0.682 | 0 | |
Polyphenol | 1 | −1.101 (−2.041, −0.160) | 0.022 * | 0 | |
Fresh seaweed | 4 | −1.027 (−1.982, −0.071) | 0.035 * | 87.332 |
Outcome | 95% Lower Limit | 95% Upper Limit | t-Value | df | p-Value |
---|---|---|---|---|---|
Fasting blood glucose | −4.46 | 4.52 | 0.01 | 10 | 0.989 |
Fasting blood insulin | 3.79 | 15.95 | 3.97 | 6 | 0.007 |
Postprandial blood glucose 60 min | −10.17 | 4.36 | 0.98 | 6 | 0.366 |
Postprandial blood glucose 90 min | −9.05 | 5.40 | 0.62 | 6 | 0.560 |
Postprandial blood glucose 120 min | −13.06 | 6.16 | 0.88 | 6 | 0.413 |
HbA1c | −2.64 | 5.42 | 0.79 | 8 | 0.449 |
HOMA-IR | −8.58 | 7.79 | 0.12 | 5 | 0.906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.R.; Park, M.J.; Park, S.-y.; Kim, J.Y. Brown Seaweed Consumption as a Promising Strategy for Blood Glucose Management: A Comprehensive Meta-Analysis. Nutrients 2023, 15, 4987. https://doi.org/10.3390/nu15234987
Kim YR, Park MJ, Park S-y, Kim JY. Brown Seaweed Consumption as a Promising Strategy for Blood Glucose Management: A Comprehensive Meta-Analysis. Nutrients. 2023; 15(23):4987. https://doi.org/10.3390/nu15234987
Chicago/Turabian StyleKim, Yu Rim, Min Ju Park, Soo-yeon Park, and Ji Yeon Kim. 2023. "Brown Seaweed Consumption as a Promising Strategy for Blood Glucose Management: A Comprehensive Meta-Analysis" Nutrients 15, no. 23: 4987. https://doi.org/10.3390/nu15234987
APA StyleKim, Y. R., Park, M. J., Park, S. -y., & Kim, J. Y. (2023). Brown Seaweed Consumption as a Promising Strategy for Blood Glucose Management: A Comprehensive Meta-Analysis. Nutrients, 15(23), 4987. https://doi.org/10.3390/nu15234987