The Influence of Lifestyle on High-Density Lipoprotein Concentration among Mexican Emerging Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.2.1. Prevalence of Inadequate Nutrient Intake
2.2.2. Percentage of Energy from Processed and Ultra-Processed Food
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnett, J.J.; Žukauskienė, R.; Sugimura, K. The New Life Stage of Emerging Adulthood at Ages 18–29 Years: Implications for Mental Health. Lancet Psychiatry 2014, 1, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Arnett, J.J.; Padilla-Walker, L.M. Brief Report: Danish Emerging Adults’ Conceptions of Adulthood. J. Adolesc. 2015, 38, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Arnett, J.J. Emerging Adulthood: A Theory of Development from the Late Teens through the Twenties. Am. Psychol. 2000, 55, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.; Crapnell, T.; Lau, L.; Bennett, A.; Lotstein, D.; Ferris, M.; Kuo, A. Emerging Adulthood as a Critical Stage in the Life Course. In Handbook of Life Course Health Development; Halfon, N., Forrest, C.B., Lerner, R.M., Faustman, E.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 123–143. ISBN 978-3-319-47141-9. [Google Scholar]
- Daw, J.; Margolis, R.; Wright, L. Emerging Adulthood, Emergent Health Lifestyles: Sociodemographic Determinants of Trajectories of Smoking, Binge Drinking, Obesity, and Sedentary Behavior. J. Health Soc. Behav. 2017, 58, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Stok, F.; Renner, B.; Clarys, P.; Lien, N.; Lakerveld, J.; Deliens, T. Understanding Eating Behavior during the Transition from Adolescence to Young Adulthood: A Literature Review and Perspective on Future Research Directions. Nutrients 2018, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Betancourt Núñez, A.; Márquez Sandoval, F.; Babio, N.; Vizmanos, B. Metabolic Syndrome Components in Young Health Professionals; LATIN America METabolic Syndrome (LATINMETS) Mexico Study. Nutr. Hosp. 2018, 35, 864. [Google Scholar] [CrossRef] [PubMed]
- Flores-Viveros, K.L.; Aguilar-Galarza, B.A.; Ordóñez-Sánchez, M.L.; Anaya-Loyola, M.A.; Moreno-Celis, U.; Vázquez-Cárdenas, P.; García-Gasca, T. Contribution of Genetic, Biochemical and Environmental Factors on Insulin Resistance and Obesity in Mexican Young Adults. Obes. Res. Clin. Pract. 2019, 13, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.D.; Fryar, C.D.; Nguyen, D.T. High Total and Low High-Density Lipoprotein Cholesterol in Adults: United States, 2015–2016; NCHS data brief, no 290; National Center for Health Statistics: Hyattsville, MD, USA, 2017. [Google Scholar]
- Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr. Pract. 2017, 23, 1–87. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Hooper, L.; Martin, N.; Jimoh, O.F.; Kirk, C.; Foster, E.; Abdelhamid, A.S. Reduction in Saturated Fat Intake for Cardiovascular Disease. Cochrane Database Syst. Rev. 2020, 2020, CD011737. [Google Scholar] [CrossRef]
- Pastor, R.; Bouzas, C.; Tur, J.A. Beneficial Effects of Dietary Supplementation with Olive Oil, Oleic Acid, or Hydroxytyrosol in Metabolic Syndrome: Systematic Review and Meta-Analysis. Free Radic. Biol. Med. 2021, 172, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Korat, A.A.; Malik, V.; Hu, F.B. Metabolic Effects of Monounsaturated Fatty Acid–Enriched Diets Compared With Carbohydrate or Polyunsaturated Fatty Acid–Enriched Diets in Patients With Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Care 2016, 39, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; et al. Omega-3 Fatty Acids for the Primary and Secondary Prevention of Cardiovascular Disease. Cochrane Database Syst. Rev. 2018, 7, CD003177. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Sadeghirad, B.; Ball, G.D.C.; da Costa, B.R.; Hitchcock, C.L.; Svendrovski, A.; Kiflen, R.; Quadri, K.; Kwon, H.Y.; Karamouzian, M.; et al. Comparison of Dietary Macronutrient Patterns of 14 Popular Named Dietary Programmes for Weight and Cardiovascular Risk Factor Reduction in Adults: Systematic Review and Network Meta-Analysis of Randomised Trials. BMJ 2020, 369, m696. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Tessarolo Silva, F.; Amaral Medeiros, S.; Mekary, R.; Radenkovic, D. The Effect of Low-Fat and Low-Carbohydrate Diets on Weight Loss and Lipid Levels: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3774. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Long-Term Effects of Low-Fat Diets Either Low or High in Protein on Cardiovascular and Metabolic Risk Factors: A Systematic Review and Meta-Analysis. Nutr. J. 2013, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Paschou, S.A.; Goulis, D.G.; Athyros, V.G.; Karagiannis, A. Dietary Management of Dyslipidaemias. Is There Any Evidence for Cardiovascular Benefit? Maturitas 2018, 108, 45–52. [Google Scholar] [CrossRef]
- Castro-Barquero, S.; Tresserra-Rimbau, A.; Vitelli-Storelli, F.; Doménech, M.; Salas-Salvadó, J.; Martín-Sánchez, V.; Rubín-García, M.; Buil-Cosiales, P.; Corella, D.; Fitó, M.; et al. Dietary Polyphenol Intake Is Associated with HDL-Cholesterol and A Better Profile of Other Components of the Metabolic Syndrome: A PREDIMED-Plus Sub-Study. Nutrients 2020, 12, 689. [Google Scholar] [CrossRef]
- Subedi, B.H.; Michos, E.; Joshi, P.H.; Jones, S.R.; Martin, S.S.; Blaha, M.J. Current Guidelines for High-Density Lipoprotein Cholesterol in Therapy and Future Directions. VHRM 2014, 10, 205–216. [Google Scholar] [CrossRef]
- Franczyk, B.; Gluba-Brzózka, A.; Ciałkowska-Rysz, A.; Ławiński, J.; Rysz, J. The Impact of Aerobic Exercise on HDL Quantity and Quality: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4653. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, D. Effects of Aerobic Exercise on Lipids and Lipoproteins. Lipids Health Dis. 2017, 16, 132. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Su, C.; Du, W.; Wang, H.; Zhang, B.; Luo, S.; Tan, T.; Song, X.; Zhong, X.; Zhang, H.; et al. Longitudinal Association between Physical Activity, Blood Lipids, and Risk of Dyslipidemia among Chinese Adults: Findings from the China Health and Nutrition Surveys in 2009 and 2015. Nutrients 2023, 15, 341. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, G.; Stensel, D.; Hamer, M.; Stamatakis, E. The Association between Leisure-Time Physical Activity, Low HDL-Cholesterol and Mortality in a Pooled Analysis of Nine Population-Based Cohorts. Eur. J. Epidemiol. 2017, 32, 559–566. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-001512-8. [Google Scholar]
- Couillard, C.; Després, J.-P.; Lamarche, B.; Bergeron, J.; Gagnon, J.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H.; Bouchard, C. Effects of Endurance Exercise Training on Plasma HDL Cholesterol Levels Depend on Levels of Triglycerides: Evidence From Men of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. ATVB 2001, 21, 1226–1232. [Google Scholar] [CrossRef]
- Fontana, L.; Meyer, T.E.; Klein, S.; Holloszy, J.O. Long-Term Calorie Restriction Is Highly Effective in Reducing the Risk for Atherosclerosis in Humans. Proc. Natl. Acad. Sci. USA 2004, 101, 6659–6663. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhao, S.; Peng, Z. Effects of Cigarette Smoking on HDL Quantity and Function: Implications for Atherosclerosis: Effects of Cigarette Smoking on HDL. J. Cell. Biochem. 2013, 114, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira e Silva, E.R.; Foster, D.; McGee Harper, M.; Seidman, C.E.; Smith, J.D.; Breslow, J.L.; Brinton, E.A. Alcohol Consumption Raises HDL Cholesterol Levels by Increasing the Transport Rate of Apolipoproteins A-I and A-II. Circulation 2000, 102, 2347–2352. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, J.; Shearer, G.C.; Lichtenstein, A.H.; Zheng, X.; Wu, Y.; Jin, C.; Wu, S.; Gao, X. Longitudinal Study of Alcohol Consumption and HDL Concentrations: A Community-Based Study. Am. J. Clin. Nutr. 2017, 105, 905–912. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W. Effects of Diet on High-Density Lipoprotein Cholesterol. Curr. Atheroscler. Rep. 2011, 13, 453–460. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra-Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. Food Classification. Public Health. NOVA. The Star Shines Bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Rauber, F.; Campagnolo, P.D.B.; Hoffman, D.J.; Vitolo, M.R. Consumption of Ultra-Processed Food Products and Its Effects on Children’s Lipid Profiles: A Longitudinal Study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Vizmanos, B.; Betancourt-Nuñez, A.; Márquez-Sandoval, F.; González-Zapata, L.I.; Monsalve-Álvarez, J.; Bressan, J.; de Carvalho Vidigal, F.; Figueredo, R.; López, L.B.; Babio, N.; et al. Metabolic Syndrome Among Young Health Professionals in the Multicenter Latin America Metabolic Syndrome Study. Metab. Syndr. Relat. Disord. 2020, 18, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish Men. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Garcia, M.; Aguilar, A.; Molina, L.; Covas, M.-I.; Marrugat, J. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish Women. Med. Sci. Sports Exerc. 2000, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Macedo-Ojeda, G.; Vizmanos-Lamotte, B.; Márquez-Sandoval, Y.F.; Rodríguez-Rocha, N.P.; López-Uriarte, P.J.; Fernández-Ballart, J.D. Validation of a Semi-Quantitative Food Frequency Questionnaire to Assess Food Groups and Nutrient Intake. Nutr. Hosp. 2013, 28, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Suverza, A.; Haua, K. El ABCD de La Evaluación del Estado de Nutrición, 1st ed.; McGraw-Hill: Ciudad de México, Mexico, 2010; ISBN 978607151706. [Google Scholar]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Miller, N.H.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S76–S99. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006; p. 11537. ISBN 978-0-309-15742-1. [Google Scholar]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Levin, R.I.; Rubin, D.S. Estadística para Administración y Economía; 7th ed.; Pearson Educación: Mexico City, Mexico, 2004; ISBN 970-26-0497-4. [Google Scholar]
- Anderson, D.R.; Sweeney, D.J.; Williams, T.A. Estadística Para Administración y Economía; CENGAGE Learning: Santa Fe, Mexico, 2008; Volume 8, ISBN 13: 978-607-481-319-7. [Google Scholar]
- Simopoulos, A.P.; DiNicolantonio, J.J. The Importance of a Balanced ω-6 to ω-3 Ratio in the Prevention and Management of Obesity. Open Heart 2016, 3, e000385. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e563–e595. [Google Scholar] [CrossRef]
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary Habits, Lipoprotein Metabolism and Cardiovascular Disease: From Individual Foods to Dietary Patterns. Crit. Rev. Food Sci. Nutr. 2021, 61, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Sanllorente, A.; Lassale, C.; Soria-Florido, M.T.; Castañer, O.; Fitó, M.; Hernáez, Á. Modification of High-Density Lipoprotein Functions by Diet and Other Lifestyle Changes: A Systematic Review of Randomized Controlled Trials. J. Clin. Med. 2021, 10, 5897. [Google Scholar] [CrossRef] [PubMed]
- Talbot, C.P.J.; Plat, J.; Ritsch, A.; Mensink, R.P. Determinants of Cholesterol Efflux Capacity in Humans. Progress Lipid Res. 2018, 69, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.O.; Lavie, C.J. Weight Loss and Its Influence on High-Density Lipoprotein Cholesterol (HDL-C) Concentrations: A Noble Clinical Hesitation. Clin. Nutr. ESPEN 2021, 42, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Woudberg, N.J.; Mendham, A.E.; Katz, A.A.; Goedecke, J.H.; Lecour, S. Exercise Intervention Alters HDL Subclass Distribution and Function in Obese Women. Lipids Health Dis. 2018, 17, 232. [Google Scholar] [CrossRef] [PubMed]
- Nagata, J.M.; Vittinghoff, E.; Pettee Gabriel, K.; Garber, A.K.; Moran, A.E.; Rana, J.S.; Reis, J.P.; Sidney, S.; Bibbins-Domingo, K. Moderate-to-Vigorous Intensity Physical Activity from Young Adulthood to Middle Age and Metabolic Disease: A 30-Year Population-Based Cohort Study. Br. J. Sports Med. 2022, 56, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Medina, C.; Jáuregui, A.; Hernández, C.; Shamah, T.; Barquera, S. Physical Inactivity and Sitting Time Prevalence and Trends in Mexican Adults. Results from Three National Surveys. PLoS ONE 2021, 16, e0253137. [Google Scholar] [CrossRef] [PubMed]
- Dipietro, L.; Zhang, Y.; Mavredes, M.; Simmens, S.J.; Whiteley, J.A.; Hayman, L.L.; Faro, J.; Malin, S.K.; Winston, G.; Napolitano, M.A. Physical Activity and Cardiometabolic Risk Factor Clustering in Young Adults with Obesity. Med. Sci. Sports Exerc. 2020, 52, 1050–1056. [Google Scholar] [CrossRef]
- Mieziene, B.; Emeljanovas, A.; Fatkulina, N.; Stukas, R. Dietary Pattern and Its Correlates among Lithuanian Young Adults: Mediterranean Diet Approach. Nutrients 2020, 12, 2025. [Google Scholar] [CrossRef]
- Cornelius, M.E.; Loretan, C.G.; Wang, T.W.; Jamal, A.; Homa, D.M. Tobacco Product Use Among Adults—United States, 2020. Morb. Mortal. Wkly. Rep. 2022, 71, 397–405. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, K.-S. Factors Related to Smoking Status Among Young Adults: An Analysis of Younger and Older Young Adults in Korea. J. Prev. Med. Public Health 2019, 52, 92–100. [Google Scholar] [CrossRef] [PubMed]
- La Fauci, V.; Mondello, S.; Squeri, R. Family, Lifestyles and New and Old Type of Smoking in Young Adults: Insights from an Italian Multiple-Center Study. Ann. Ig. Med. Prev. E Comunità 2021, 33, 131–140. [Google Scholar] [CrossRef]
- Garritsen, H.H.; da Costa Senior, Y.Y.; Rozema, A.D.; Kunst, A.E.; Kuipers, M.A.G. Association Between Smoke-Free Legislation in Hospitality Venues and Smoking Behavior of Young People: A Systematic Review. Nicotine Tob. Res. 2022, 24, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Man, Q.; Li, Y.; Jia, S.; Yu, D.; Zhang, J.; Ding, G. Association between Dietary Patterns and Low HDL-C among Community-Dwelling Elders in North China. Nutrients 2021, 13, 3308. [Google Scholar] [CrossRef] [PubMed]
- Ryan, H.; Trosclair, A.; Gfroerer, J. Adult Current Smoking: Differences in Definitions and Prevalence Estimates—NHIS and NSDUH, 2008. J. Environ. Public Health 2012, 2012, 918368. [Google Scholar] [CrossRef] [PubMed]
- Gorber, S.C.; Schofield-Hurwitz, S.; Hardt, J.; Levasseur, G.; Tremblay, M. The Accuracy of Self-Reported Smoking: A Systematic Review of the Relationship between Self-Reported and Cotinine-Assessed Smoking Status. Nicotine Tob. Res. 2009, 11, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Kim, J.; Lee, D.; Jung, H.; Park, S.-W. Underestimation of Self-Reported Smoking Prevalence in Korean Adolescents: Evidence from Gold Standard by Combined Method. Int. J. Environ. Res. Public Health 2018, 15, 689. [Google Scholar] [CrossRef]
- Tehrani, H.; Rajabi, A.; Ghelichi- Ghojogh, M.; Nejatian, M.; Jafari, A. The Prevalence of Electronic Cigarettes Vaping Globally: A Systematic Review and Meta-Analysis. Arch. Public Health 2022, 80, 240. [Google Scholar] [CrossRef]
- Kalaji, M.; Mathios, A.D.; Skurka, C.; Niederdeppe, J.; Byrne, S. Youth and Young Adult-Targeted E-Cigarette Warnings and Advertising Messages: An Experiment with Young Adults in the US. J. Health Commun. 2022, 27, 574–584. [Google Scholar] [CrossRef]
- Pokhrel, P.; Ing, C.; Kawamoto, C.T.; Laestadius, L.; Buente, W.; Herzog, T.A. Social Media’s Influence on e-Cigarette Use Onset and Escalation among Young Adults: What Beliefs Mediate the Effects? Addict. Behav. 2021, 112, 106617. [Google Scholar] [CrossRef]
- United Nations Office Drugs and Crime. UNODC: World Drug Report 2021; UNODC: Vienna, Austria, 2021. [Google Scholar]
- Brien, S.E.; Ronksley, P.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Effect of Alcohol Consumption on Biological Markers Associated with Risk of Coronary Heart Disease: Systematic Review and Meta-Analysis of Interventional Studies. BMJ 2011, 342, d636. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Matsuzawa, Y. Low HDL and High HDL Syndromes. In Encyclopedia of Endocrine Diseases; Elsevier: Amsterdam, The Netherlands, 2018; pp. 327–339. ISBN 978-0-12-812200-6. [Google Scholar]
- Cho, K.-H. The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. Int. J. Mol. Sci. 2022, 23, 3967. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-156563-9.
- SAMHSA. Center for Behavioral Health Statistics and Quality 2021 National Survey on Drug Use and Health. Heavy Alcohol Use in Past Month: Among People Aged 12 or Older; by Age Group and Demographic Characteristics, Number in Thousands; NIAAA: Rockville, MD, USA, 2021. [Google Scholar]
- Lavigne-Robichaud, M.; Moubarac, J.-C.; Lantagne-Lopez, S.; Johnson-Down, L.; Batal, M.; Laouan Sidi, E.A.; Lucas, M. Diet Quality Indices in Relation to Metabolic Syndrome in an Indigenous Cree (Eeyouch) Population in Northern Québec, Canada. Public Health Nutr. 2018, 21, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Martínez Steele, E.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary Share of Ultra-Processed Foods and Metabolic Syndrome in the US Adult Population. Prev. Med. 2019, 125, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Martínez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The Share of Ultra-Processed Foods and the Overall Nutritional Quality of Diets in the US: Evidence from a Nationally Representative Cross-Sectional Study. Popul. Health Metr. 2017, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Marrón-Ponce, J.A.; Sánchez-Pimienta, T.G.; Louzada, M.L.D.C.; Batis, C. Energy Contribution of NOVA Food Groups and Sociodemographic Determinants of Ultra-Processed Food Consumption in the Mexican Population. Public Health Nutr. 2018, 21, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-Processed Food Consumption and Chronic Non-Communicable Diseases-Related Dietary Nutrient Profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef]
- Nasreddine, L.; Tamim, H.; Itani, L.; Nasrallah, M.P.; Isma’eel, H.; Nakhoul, N.F.; Abou-Rizk, J.; Naja, F. A Minimally Processed Dietary Pattern Is Associated with Lower Odds of Metabolic Syndrome among Lebanese Adults. Public Health Nutr. 2018, 21, 160–171. [Google Scholar] [CrossRef]
- Donat-Vargas, C.; Sandoval-Insausti, H.; Rey-García, J.; Moreno-Franco, B.; Åkesson, A.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. High Consumption of Ultra-Processed Food Is Associated with Incident Dyslipidemia: A Prospective Study of Older Adults. J. Nutr. 2021, 151, 2390–2398. [Google Scholar] [CrossRef]
- Rodrigues, V.B.; Ravagnani, C.D.F.C.; Nabuco, H.C.G.; Ravagnani, F.C.D.P.; Fernandes, V.L.S.; Espinosa, M.M. Adequacy of Energy and Macronutrient Intake of Food Supplements for Athletes. Rev. Nutr. 2017, 30, 593–603. [Google Scholar] [CrossRef]
- López-Olmedo, N.; Carriquiry, A.L.; Rodríguez-Ramírez, S.; Ramírez-Silva, I.; Espinosa-Montero, J.; Hernández-Barrera, L.; Campirano, F.; Martínez-Tapia, B.; Rivera, J.A. Usual Intake of Added Sugars and Saturated Fats Is High While Dietary Fiber Is Low in the Mexican Population. J. Nutr. 2016, 146, 1856S–1865S. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.; Chamsine, S.; Merheb, C.; Arfoul, E.; Rached, M.; Younes, F.; El Osta, N.; Laye, S.; Aoun, C.; Papazian, T.; et al. Binge Eating among Young Adults: Association with Sociodemographic Factors, Nutritional Intake, Dietary n-6: N-3 Ratio and Impulsivity. Br. J. Nutr. 2021, 126, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Bauman-Fortin, J.; Ma, D.; Mutch, D.; Abdelmagid, S.; Badawi, A.; El-Sohemy, A.; Fontaine-Bisson, B. The Association between Plasma Omega-6/Omega-3 Ratio and Anthropometric Traits Differs by Racial/Ethnic Groups and NFKB1 Genotypes in Healthy Young Adults. J. Pers. Med. 2019, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Li, N.; Jia, M.; Deng, Q.; Wang, Z.; Huang, F.; Hou, H.; Xu, T. Effect of Low-Ratio n-6/n-3 PUFA on Blood Lipid Level: A Meta-Analysis. Hormones 2021, 20, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Blesso, C.N.; Andersen, C.J.; Bolling, B.W.; Fernandez, M.L. Egg Intake Improves Carotenoid Status by Increasing Plasma HDL Cholesterol in Adults with Metabolic Syndrome. Food Funct. 2013, 4, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.T.; Marsche, G. Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int. J. Mol. Sci. 2020, 21, 8985. [Google Scholar] [CrossRef]
- Duffy, D.; Rader, D.J. Update on Strategies to Increase HDL Quantity and Function. Nat. Rev. Cardiol. 2009, 6, 455–463. [Google Scholar] [CrossRef]
- De Lauzon, B.; Volatier, J.; Martin, A. A Monte Carlo Simulation to Validate the EAR Cut-Point Method for Assessing the Prevalence of Nutrient Inadequacy at the Population Level. Public Health Nutr. 2004, 7, 893–900. [Google Scholar] [CrossRef]
- Asfura-Carrasco, D.; Santiago, S.; Zazpe, I.; Gómez-Donoso, C.; Bes-Rastrollo, M.; Martínez-González, M.Á. Healthful and Unhealthful Provegetarian Food Patterns and Micronutrient Intake Adequacy in the SUN Cohort. Public Health Nutr. 2023, 26, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Reider, C.A.; Chung, R.-Y.; Devarshi, P.P.; Grant, R.W.; Hazels Mitmesser, S. Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005–2016 NHANES. Nutrients 2020, 12, 1735. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Fang, H.; Yu, D.; Guo, Q.; Xu, X.; Ju, L.; Cai, S.; Yang, Y.; Wei, X.; Zhao, L. Usual Intake of Micronutrients and Prevalence of Inadequate Intake among Chinese Adults: Data from CNHS 2015–2017. Nutrients 2022, 14, 4714. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Silva, I.; Rodríguez-Ramírez, S.; Barragán-Vázquez, S.; Castellanos-Gutiérrez, A.; Reyes-García, A.; Martínez-Piña, A.; Pedroza-Tobías, A. Prevalence of Inadequate Intake of Vitamins and Minerals in the Mexican Population Correcting by Nutrient Retention Factors, Ensanut 2016. Salud Publica Mex 2020, 62, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Manios, Y.; Moschonis, G.; Mavrogianni, C.; Bos, R.; Singh-Povel, C. Micronutrient Intakes among Children and Adults in Greece: The Role of Age, Sex and Socio-Economic Status. Nutrients 2014, 6, 4073–4092. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. Workplace Health Saf. 2021, 69, 395. [Google Scholar] [CrossRef] [PubMed]
- Bahonar, A.; Saadatnia, M.; Khorvash, F.; Maracy, M.; Khosravi, A. Carotenoids as Potential Antioxidant Agents in Stroke Prevention: A Systematic Review. Int. J. Prev. Med. 2017, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Dietary Intake and Blood Concentrations of Antioxidants and the Risk of Cardiovascular Disease, Total Cancer, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2018, 108, 1069–1091. [Google Scholar] [CrossRef]
- Mirmiran, P.; Hosseini-Esfahani, F.; Esfandiar, Z.; Hosseinpour-Niazi, S.; Azizi, F. Associations between Dietary Antioxidant Intakes and Cardiovascular Disease. Sci. Rep. 2022, 12, 1504. [Google Scholar] [CrossRef]
- Dibaba, D.T. Effect of Vitamin D Supplementation on Serum Lipid Profiles: A Systematic Review and Meta-Analysis. Nutr. Rev. 2019, 77, 890–902. [Google Scholar] [CrossRef]
- Sabico, S.; Wani, K.; Grant, W.B.; Al-Daghri, N.M. Improved HDL Cholesterol through Vitamin D Status Correction Substantially Lowers 10-Year Atherosclerotic Cardiovascular Disease Risk Score in Vitamin D-Deficient Arab Adults. Nutrients 2023, 15, 551. [Google Scholar] [CrossRef]
- Weissglas-Volkov, D.; Pajukanta, P. Genetic Causes of High and Low Serum HDL-Cholesterol. J. Lipid Res. 2010, 51, 2032–2057. [Google Scholar] [CrossRef]
- Kuivenhoven, J.A.; Groen, A.K. High Density Lipoproteins: From Biological Understanding to Clinical Exploitation; Springer: Cham, Switzerland, 2014; ISBN 978-3-319-09664-3. [Google Scholar]
- Chang, H.-C.; Nfor, O.N.; Ho, C.-C.; Chen, P.-H.; Liaw, Y.-P. Variations in High Density Cholesterol Levels Based on Apolipoprotein E Variant and Exercise Type. Front. Genet. 2023, 14, 1136483. [Google Scholar] [CrossRef]
- Brunham, L.R.; Hayden, M.R. Human Genetics of HDL: Insight into Particle Metabolism and Function. Prog. Lipid Res. 2015, 58, 14–25. [Google Scholar] [CrossRef]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; et al. Biological, Clinical and Population Relevance of 95 Loci for Blood Lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef]
Total | Healthy HDL-C | Low HDL-C | p-Value | |
---|---|---|---|---|
N | 261 (100) | 191 (73.1) | 70 (26.8) | |
Age, years | 22.7 ± 2.0 | 22.7 ± 2.0 | 22.7 ± 2.0 | 0.831 |
Women, n (%) Men, n (%) | 188 (72) 73 (28) | 130 (68.1) 61 (31.9) | 58 (82.9) 12 (17.1) | 0.018 * |
Occupation Student, n (%) Professional, n (%) | 181 (69.3) 80 (30.7) | 132 (69.1) 59 (30.9) | 49 (70) 21 (30) | 0.890 |
Family history of Dyslipidemia, n (%) | 68 (26.1) | 143 (74.9) | 50 (71.4) | 0.575 |
Total | Healthy HDL-C | Low HDL-C | p-Value | |
---|---|---|---|---|
N | 261 (100) | 191 (73.1) | 70 (26.8) | |
Cholesterol, mg/dL | 162.6 ± 32.0 | 166.5 ± 30.1 | 152.0 ± 34.6 | 0.001 * |
HDL-C, mg/dL Women Men | 53.5 ± 10.7 55.6 ± 10.5 48.1 ± 9.5 | 57.5 ± 9.2 60.7 ± 7.7 50.6 ± 8.4 | 42.6 ± 6.3 44.1 ± 5.9 35.5 ± 2.5 | <0.001 * 0.012 * <0.001 * |
LDL-C, mg/dL | 93.3 ± 25.0 | 93.6 ± 25.8 | 92.4 ± 22.9 | 0.733 |
Triglycerides, mg/dL | 81.5 ± 44.8 | 79.6 ± 40.7 | 86.7 ± 54.4 | 0.260 |
Total (n = 261) | Healthy HDL-C (n = 191) | Low HDL-C (n = 70) | p-Value | |
---|---|---|---|---|
Lifestyle characteristics | ||||
Physical activity <150 min/week >150 min/week | ||||
6 (2.3) | 4 (2.1) | 2 (2.9) | 0.510 a | |
255 (97.7) | 187 (97.9) | 68 (97.1) | ||
Smoking habits Non-smokers, n (%) Smokers, n (%) Ex-smokers n, (%) | ||||
223 (85.4) | 161 (84.3) | 62 (88.6) | 0.388 b | |
27 (10.3) | 21 (11.0) | 6 (8.6) | ||
11 (4.2) | 9 (4.7) | 2 (2.9) | ||
Alcohol consumption Adequate, n (%) Excessive, n (%) | ||||
234 (89.7) | 170 (89.0) | 64 (91.4) | 0.653 b | |
27 (10.3) | 21 (11.0) | 6 (8.6) | ||
Alcohol consumption Non-drinker, n (%) Moderate intake, n (%) Excessive intake, n (%) | ||||
172 (65.9) | 121 (63.4) | 51 (72.9) | 0.173 b | |
62 (23.8) | 49 (25.7) | 13 (18.6) | ||
27 (10.3) | 21 (11.0) | 6 (8.6) | ||
Medications, n (%) Diabetes drugs | 2 (0.8) | 1 (0.5) | 1 (0.5) | 0.465 a |
Hormonal treatments (only women) | 18 (6.9) | 14 (7.3) | 4 (5.7) | 0.428 b |
Weight loss, n (%) | 110 (42.1) | 73 (38.2) | 37 (52.9) | 0.034 * |
Percentage of energy from NOVA food classification system | ||||
NP and MPF, % energy | 49.7 ± 12.6 | 49.0 ± 12.8 | 51.4 ± 12.09 | 0.189 |
PCI, % energy | 7.6 ± 3.8 | 7.5 ± 3.7 | 7.9 ± 4.1 | 0.452 |
PF, % energy | 14.6 ± 7.1 | 14.7 ± 7.4 | 14.2 ± 6.3 | 0.603 |
UPF, % energy | 29.9 ± 10.9 | 30.5 ± 11.5 | 28.1 ± 9.2 | 0.118 |
PF + UPF, % energy | 44.5 ± 12.1 | 45.3 ± 12.4 | 42.4 ± 11.0 | 0.086 |
Recommendation Reference | Total (n = 261) | Healthy HDL-C (n = 191) | Low HDL-C (n = 70) | p-Value | |
---|---|---|---|---|---|
Energy, n (%) | IOM, 2006 [42] | 0.842 a | |||
Inadequate | 22 (8.4) | 16 (8.4) | 6 (8.6) | ||
Adequate | 164 (62.8) | 122 (63.9) | 42 (60.0) | ||
Excessive | 75 (28.7) | 53 (27.7) | 22 (31.4) | ||
%E from CHO, n (%) | EAS, 2021 [11] | 0.698 a | |||
Below (<45%) | 134 (51.3) | 97 (50.8) | 37 (52.9) | ||
Within (45–55%) | 50 (19.2) | 39 (20.4) | 11 (15.7) | ||
Above (>55%) | 77 (29.5) | 55 (28.8) | 22 (31.4) | ||
%E from FAs, n (%) | AACE, 2017 [10] | 0.967 a | |||
Below (<25%) | 60 (23.0) | 43 (22.5) | 17 (24.3) | ||
Within (25–35%) | 97 (37.2) | 71 (37.2) | 26 (37.1) | ||
Above (>35%) | 104 (39.8) | 77 (40.3) | 27 (38.6) | ||
%E from SFAs, n (%) | AACE, 2017, AHA 2013 [10,41] | 0.715 | |||
Below (<7%) | 34 (13.0) | 24 (12.6) | 10 (14.3) | ||
Above (>7%) | 227 (87.0) | 167 (87.4) | 60 (85.7) | ||
%E from MUFAs, n (%) | AACE, 2017 [10] | 0.279 | |||
Below or equal (≤20%) | 252 (96.6) | 183 (95.8) | 69 (98.6) | ||
Above (>20%) | 9 (3.4) | 8 (4.2) | 1 (1.4) | ||
%E from PUFAs, n (%) | AACE, 2017 [10] | 0.874 | |||
Below or equal (≤10%) | 226 (86.6) | 165 (86.4) | 61 (87.1) | ||
Above (>10%) | 35 (13.4) | 26 (13.6) | 9 (12.9) | ||
%E from LA, ω6, n (%) | IOM, 2006 [42] | 0.121 a | |||
Below (<5%) | 101 (38.7) | 81 (42.4) | 20 (28.6) | ||
Within (5–10%) | 152 (58.2) | 104 (54.5) | 48 (68.6) | ||
Above (>10%) | 8 (3.1) | 6 (3.1) | 2 (2.9) | ||
%E from ALA, ω3, n (%) | IOM, 2006 [42] | 0.489 | |||
Below (<0.6%) | 125 (47.9) | 89 (46.6) | 36 (51.4) | ||
Within (0.6–1.2%) | 136 (52.1) | 102 (53.4) | 34 (48.6) | ||
ω6/ω3 ratio | Simopoulos, 2016 [47] | 8.5/1 | 8.4/1 | 8.7/1 | 0.535 b |
Within (2/1 to 4/1) | 2 (0.8) | 2 (1.0) | 70 (100) | ||
Above (>4/1) | 259 (99.2) | 189 (99) | 0 | ||
EPA + DHA (g/d) | AHA, 2009 [48] | 0.892 | |||
Below (<500 mg) | 230 (88.1) | 168 (88.0) | 62 (88.6) | ||
Above or equal (≥500 mg) | 31 (11.9) | 23 (12.0) | 8 (11.4) | ||
%E from TFAs, n (%) | AACE, 2017, AHA 2006 [10,41] | 259 (99.2) | 190 (99.5) | 69 (98.6) | 0.465 b |
Below (<1%) | 2 (0.8) | 1 (0.5) | 1 (1.4) | ||
Above (>1%) |
Total | Healthy HDL-C | Low HDL-C | p-Value | |
---|---|---|---|---|
Number of nutrients below the EAR | 1–11 | 1–11 | 1–9 | |
Prevalence (%) of failing to meet EAR | ||||
Vitamin A | 27 (10.3) | 23 (12.0) | 4 (5.7) | 0.137 |
Vitamin C | 3 (1.1) | 3 (1.6) | 0 | 0.566 a |
Vitamin D | 95 (36.4) | 68 (35.6) | 27 (38.6) | 0.659 |
Vitamin E | 261 (100) | 191 (100) | 70 (100) | NA |
Vitamin K | 152 (58.2) | 112 (58.6) | 40 (57.1) | 0.828 |
Vitamin B1 | 9 (3.4) | 8 (4.2) | 1 (1.4) | 0.279 |
Vitamin B2 | 8 (3.1) | 7 (3.7) | 1 (1.4) | 0.353 |
Vitamin B3 | 2 (0.8) | 2 (1.0) | 0 | 1.0 a |
Vitamin B5 | 115 (44.1) | 82 (42.9) | 33 (47.1) | 0.544 |
Vitamin B6 | 5 (1.9) | 4 (2.1) | 1 (1.4) | 1.0 a |
Vitamin B7 | 222 (85.1) | 165 (86.4) | 57 (81.4) | 0.319 |
Vitamin B9 | 59 (22.6) | 42 (22) | 17 (24.3) | 0.694 |
Vitamin B12 | 6 (2.3) | 4 (2.1) | 2 (2.9) | 0.661 a |
Total (n = 261) | Healthy HDL-C (n = 191) | Low HDL-C (n = 70) | p-Value | |
---|---|---|---|---|
Phytosterols (mg) | 32.4 ± 20.1 | 33.0 ± 21.7 | 30.8 ± 14.8 | 0.424 |
Carotenoids | ||||
Total carotenoids (mg) | 13.8 ± 63.1 | 13.9 ± 64.1 | 13.8 ± 60.6 | 0.893 |
Lutein + Zeaxanthin (mcg) | 1786.6 ± 807.6 | 1806.3 ± 824.2 | 1733.9 ± 764.8 | 0.524 |
β-carotene (mcg) | 4721.9 ± 2689.8 | 4653.2 ± 2687.4 | 4905.1 ± 2707.2 | 0.585 |
α-carotene (mcg) | 1393.2 ± 972.5 | 1369.3 ± 951.6 | 1457.5 ± 1031.0 | 0.521 |
β-cryptoxanthin (mcg) | 324.9 ± 255.0 | 331.7 ± 236.7 | 306.0 ± 244.0 | 0.446 |
Lycopene (mcg) | 4032.0 ± 2099.5 | 4104.6 ± 2147.5 | 3838.8 ± 1968.3 | 0.375 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna-Castillo, K.P.; López-Quintero, A.; Carrera-Quintanar, L.; Llamas-Covarrubias, I.M.; Muñoz-Valle, J.F.; Márquez-Sandoval, F. The Influence of Lifestyle on High-Density Lipoprotein Concentration among Mexican Emerging Adults. Nutrients 2023, 15, 4568. https://doi.org/10.3390/nu15214568
Luna-Castillo KP, López-Quintero A, Carrera-Quintanar L, Llamas-Covarrubias IM, Muñoz-Valle JF, Márquez-Sandoval F. The Influence of Lifestyle on High-Density Lipoprotein Concentration among Mexican Emerging Adults. Nutrients. 2023; 15(21):4568. https://doi.org/10.3390/nu15214568
Chicago/Turabian StyleLuna-Castillo, Karla Paulina, Andres López-Quintero, Lucrecia Carrera-Quintanar, Iris Monserrat Llamas-Covarrubias, José Francisco Muñoz-Valle, and Fabiola Márquez-Sandoval. 2023. "The Influence of Lifestyle on High-Density Lipoprotein Concentration among Mexican Emerging Adults" Nutrients 15, no. 21: 4568. https://doi.org/10.3390/nu15214568
APA StyleLuna-Castillo, K. P., López-Quintero, A., Carrera-Quintanar, L., Llamas-Covarrubias, I. M., Muñoz-Valle, J. F., & Márquez-Sandoval, F. (2023). The Influence of Lifestyle on High-Density Lipoprotein Concentration among Mexican Emerging Adults. Nutrients, 15(21), 4568. https://doi.org/10.3390/nu15214568