Plasma Phospholipid Polyunsaturated Fatty Acid Associations with Neurocognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Clinical Assessments
2.3. Neurocognitive Assessments
2.3.1. Continuous Performance Test
2.3.2. Computerized Stroop Test
2.3.3. Object Alternation Task
2.3.4. Wisconsin Card Sorting Task
2.4. Blood Sampling and Plasma Phospholipid PUFA Analysis
2.5. Statistical Methods
2.5.1. Statistical Software
2.5.2. Demographic and Clinical Characteristics
2.5.3. LC-PUFAs
2.5.4. Neurocognitive Testing
2.5.5. Statistical Analyses
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Neurocognitive Assessments
3.3. LC-PUFAs
3.4. LC-PUFAs and Neurocognitive Assessments
3.4.1. Continuous Performance Test (CPT-IP)
3.4.2. Computerized Stroop Test
3.4.3. Object Alternation Task (OAT)
3.4.4. Wisconsin Card Sort
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chetelat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021, 7, 33. [Google Scholar] [CrossRef]
- Pievsky, M.A.; McGrath, R.E. The Neurocognitive Profile of Attention-Deficit/Hyperactivity Disorder: A Review of Meta-Analyses. Arch. Clin. Neuropsychol. 2018, 33, 143–157. [Google Scholar] [CrossRef]
- Rock, P.L.; Roiser, J.P.; Riedel, W.J.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med. 2014, 44, 2029–2040. [Google Scholar] [CrossRef]
- Keilp, J.G.; Gorlyn, M.; Russell, M.; Oquendo, M.A.; Burke, A.K.; Harkavy-Friedman, J.; Mann, J.J. Neuropsychological function and suicidal behavior: Attention control, memory and executive dysfunction in suicide attempt. Psychol. Med. 2013, 43, 539–551. [Google Scholar] [CrossRef]
- Herzog, S.; Keilp, J.G.; Galfalvy, H.; Mann, J.J.; Stanley, B.H. Attentional control deficits and suicidal ideation variability: An ecological momentary assessment study in major depression. J. Affect. Disord. 2023, 323, 819–825. [Google Scholar] [CrossRef]
- Keilp, J.G.; Beers, S.R.; Burke, A.K.; Melhem, N.M.; Oquendo, M.A.; Brent, D.A.; Mann, J.J. Neuropsychological deficits in past suicide attempters with varying levels of depression severity. Psychol. Med. 2014, 44, 2965–2974. [Google Scholar] [CrossRef]
- Keilp, J.G.; Sackeim, H.A.; Brodsky, B.S.; Oquendo, M.A.; Malone, K.M.; Mann, J.J. Neuropsychological dysfunction in depressed suicide attempters. Am. J. Psychiatry 2001, 158, 735–741. [Google Scholar] [CrossRef]
- Bazinet, R.P.; Laye, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Valentine, R.C.; Valentine, D.L. Omega-3 fatty acids in cellular membranes: A unified concept. Prog. Lipid Res. 2004, 43, 383–402. [Google Scholar] [CrossRef]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Bazan, N.G. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Green, P.; John Mann, J.; Rapoport, S.I.; Sublette, M.E. Pathways of polyunsaturated fatty acid utilization: Implications for brain function in neuropsychiatric health and disease. Brain Res. 2014, 1597, 220–246. [Google Scholar] [CrossRef] [PubMed]
- Alex, A.; Abbott, K.A.; McEvoy, M.; Schofield, P.W.; Garg, M.L. Long-chain omega-3 polyunsaturated fatty acids and cognitive decline in non-demented adults: A systematic review and meta-analysis. Nutr. Rev. 2020, 78, 563–578. [Google Scholar] [CrossRef]
- Cooper, R.E.; Tye, C.; Kuntsi, J.; Vassos, E.; Asherson, P. Omega-3 polyunsaturated fatty acid supplementation and cognition: A systematic review and meta-analysis. J. Psychopharmacol. 2015, 29, 753–763. [Google Scholar] [CrossRef]
- Wood, A.H.R.; Chappell, H.F.; Zulyniak, M.A. Dietary and supplemental long-chain omega-3 fatty acids as moderators of cognitive impairment and Alzheimer’s disease. Eur. J. Nutr. 2022, 61, 589–604. [Google Scholar] [CrossRef]
- Karr, J.E.; Grindstaff, T.R.; Alexander, J.E. Omega-3 polyunsaturated fatty acids and cognition in a college-aged population. Exp. Clin. Psychopharmacol. 2012, 20, 236–242. [Google Scholar] [CrossRef]
- Ammann, E.M.; Pottala, J.V.; Harris, W.S.; Espeland, M.A.; Wallace, R.; Denburg, N.L.; Carnahan, R.M.; Robinson, J.G. omega-3 fatty acids and domain-specific cognitive aging: Secondary analyses of data from WHISCA. Neurology 2013, 81, 1484–1491. [Google Scholar] [CrossRef]
- Bauer, I.; Hughes, M.; Rowsell, R.; Cockerell, R.; Pipingas, A.; Crewther, S.; Crewther, D. Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum. Psychopharmacol. 2014, 29, 133–144. [Google Scholar] [CrossRef]
- Strike, S.C.; Carlisle, A.; Gibson, E.L.; Dyall, S.C. A high omega-3 fatty acid multinutrient supplement benefits cognition and mobility in older women: A randomized, double-blind, placebo-controlled pilot study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 236–242. [Google Scholar] [CrossRef]
- Nilsson, A.; Radeborg, K.; Salo, I.; Bjorck, I. Effects of supplementation with n-3 polyunsaturated fatty acids on cognitive performance and cardiometabolic risk markers in healthy 51 to 72 years old subjects: A randomized controlled cross-over study. Nutr. J. 2012, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.L.; Parker, H.M.; Donges, C.E.; O’Dwyer, N.J.; Cheng, H.L.; Steinbeck, K.S.; Cox, E.P.; Franklin, J.L.; Garg, M.L.; O’Connor, H.T. Omega-3 polyunsaturated fatty acids status and cognitive function in young women. Lipids Health Dis. 2019, 18, 194. [Google Scholar] [CrossRef] [PubMed]
- Hartlage, S.; Alloy, L.B.; Vazquez, C.; Dykman, B. Automatic and effortful processing in depression. Psychol. Bull. 1993, 113, 247–278. [Google Scholar] [CrossRef] [PubMed]
- Hertel, P.T.; Rude, S.S. Depressive deficits in memory: Focusing attention improves subsequent recall. J. Exp. Psychol. Gen. 1991, 120, 301–309. [Google Scholar] [CrossRef]
- Hammar, A.; Lund, A.; Hugdahl, K. Long-lasting cognitive impairment in unipolar major depression: A 6-month follow-up study. Psychiatry Res. 2003, 118, 189–196. [Google Scholar] [CrossRef]
- Keilp, J.G.; Madden, S.P.; Gorlyn, M.; Burke, A.K.; Oquendo, M.A.; Mann, J.J. The lack of meaningful association between depression severity measures and neurocognitive performance. J. Affect. Disord. 2018, 241, 164–172. [Google Scholar] [CrossRef]
- McClintock, S.M.; Husain, M.M.; Greer, T.L.; Cullum, C.M. Association between depression severity and neurocognitive function in major depressive disorder: A review and synthesis. Neuropsychology 2010, 24, 9–34. [Google Scholar] [CrossRef]
- Donovan, N.J.; Wu, Q.; Rentz, D.M.; Sperling, R.A.; Marshall, G.A.; Glymour, M.M. Loneliness, depression and cognitive function in older U.S. adults. Int. J. Geriatr. Psychiatry 2017, 32, 564–573. [Google Scholar] [CrossRef]
- Nock, M.K.; Park, J.M.; Finn, C.T.; Deliberto, T.L.; Dour, H.J.; Banaji, M.R. Measuring the suicidal mind: Implicit cognition predicts suicidal behavior. Psychol. Sci. 2010, 21, 511–517. [Google Scholar] [CrossRef]
- McGirr, A.; Dombrovski, A.Y.; Butters, M.A.; Clark, L.; Szanto, K. Deterministic learning and attempted suicide among older depressed individuals: Cognitive assessment using the Wisconsin Card Sorting Task. J. Psychiatr. Res. 2012, 46, 226–232. [Google Scholar] [CrossRef]
- Richard-Devantoy, S.; Jollant, F.; Kefi, Z.; Turecki, G.; Olie, J.P.; Annweiler, C.; Beauchet, O.; Le Gall, D. Deficit of cognitive inhibition in depressed elderly: A neurocognitive marker of suicidal risk. J. Affect. Disord. 2012, 140, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Richard-Devantoy, S.; Szanto, K.; Butters, M.A.; Kalkus, J.; Dombrovski, A.Y. Cognitive inhibition in older high-lethality suicide attempters. Int. J. Geriatr. Psychiatry 2015, 30, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Marzuk, P.M.; Hartwell, N.; Leon, A.C.; Portera, L. Executive functioning in depressed patients with suicidal ideation. Acta Psychiatr. Scand. 2005, 112, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Blazer, D.G. Depression and cognition in the elderly. Annu. Rev. Clin. Psychol. 2015, 11, 331–360. [Google Scholar] [CrossRef] [PubMed]
- Jollant, F.; Bellivier, F.; Leboyer, M.; Astruc, B.; Torres, S.; Verdier, R.; Castelnau, D.; Malafosse, A.; Courtet, P. Impaired decision making in suicide attempters. Am. J. Psychiatry 2005, 162, 304–310. [Google Scholar] [CrossRef]
- Clark, L.; Dombrovski, A.Y.; Siegle, G.J.; Butters, M.A.; Shollenberger, C.L.; Sahakian, B.J.; Szanto, K. Impairment in risk-sensitive decision-making in older suicide attempters with depression. Psychol. Aging 2011, 26, 321–330. [Google Scholar] [CrossRef]
- Perrain, R.; Dardennes, R.; Jollant, F. Risky decision-making in suicide attempters, and the choice of a violent suicidal means: An updated meta-analysis. J. Affect. Disord. 2021, 280, 241–249. [Google Scholar] [CrossRef]
- Rogers, P.J.; Appleton, K.M.; Kessler, D.; Peters, T.J.; Gunnell, D.; Hayward, R.C.; Heatherley, S.V.; Christian, L.M.; McNaughton, S.A.; Ness, A.R. No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: A randomised controlled trial. Br. J. Nutr. 2008, 99, 421–431. [Google Scholar] [CrossRef]
- Antypa, N.; Smelt, A.H.; Strengholt, A.; Van der Does, A.J. Effects of omega-3 fatty acid supplementation on mood and emotional information processing in recovered depressed individuals. J. Psychopharmacol. 2012, 26, 738–743. [Google Scholar] [CrossRef]
- Emery, S.; Haberling, I.; Berger, G.; Baumgartner, N.; Strumberger, M.; Albermann, M.; Nalani, K.; Schmeck, K.; Erb, S.; Bachmann, S.; et al. Verbal Memory Performance in Depressed Children and Adolescents: Associations with EPA but Not DHA and Depression Severity. Nutrients 2020, 12, 3630. [Google Scholar] [CrossRef]
- Emery, S.; Haberling, I.; Berger, G.; Walitza, S.; Schmeck, K.; Albert, T.; Baumgartner, N.; Strumberger, M.; Albermann, M.; Drechsler, R. Omega-3 and its domain-specific effects on cognitive test performance in youths: A meta-analysis. Neurosci. Biobehav. Rev. 2020, 112, 420–436. [Google Scholar] [CrossRef] [PubMed]
- Thesing, C.S.; Bot, M.; Milaneschi, Y.; Giltay, E.J.; Penninx, B. The association of omega-3 fatty acid levels with personality and cognitive reactivity. J. Psychosom. Res. 2018, 108, 93–101. [Google Scholar] [CrossRef] [PubMed]
- First, M.; Williams, J.; Karg, R.; Spitzer, R. Structured Clinical Interview for DSM-5—Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV); American Psychiatric Association Inc.: Arlington, VA, USA, 2015. [Google Scholar]
- Oquendo, M.A.; Halberstam, B.; Mann, J.J. Risk factors for suicidal behavior: Utility and limitations of research instruments. In Standardized Evaluation in Clinical Practice; First, M.B., Ed.; APPI Press: Washington, DC, USA, 2003; Volume 22, pp. 103–130. [Google Scholar]
- Hamilton, M. Development of a rating scale for primary depressive illness. Br. J. Soc. Clin. Psychol. 1967, 6, 278–296. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef]
- Beck, A.T.; Kovacs, M.; Weissman, A. Assessment of suicidal intention: The Scale for Suicide Ideation. J. Consult. Clin. Psychol. 1979, 47, 343–352. [Google Scholar] [CrossRef]
- Cornblatt, B.A.; Risch, N.J.; Faris, G.; Friedman, D.; Erlenmeyer-Kimling, L. The Continuous Performance Test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Res. 1988, 26, 223–238. [Google Scholar] [CrossRef]
- Cohen, J.; Macwhinney, B.; Flatt, M.; Provost, J. Psyscope—An interactive graphic system for designing and controlling experiments in the psychology laboratory using macintosh computers. Behav. Res. Methods Instrum. Comput. 1993, 25, 257–271. [Google Scholar] [CrossRef]
- Keilp, J.G.; Gorlyn, M.; Oquendo, M.A.; Burke, A.K.; Mann, J.J. Attention deficit in depressed suicide attempters. Psychiatry Res. 2008, 159, 7–17. [Google Scholar] [CrossRef]
- Cornblatt, B.A.; Keilp, J.G. Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr. Bull. 1994, 20, 31–46. [Google Scholar] [CrossRef]
- MacLeod, C.M. Half a century of research on the Stroop effect: An integrative review. Psychol. Bull. 1991, 109, 163–203. [Google Scholar] [CrossRef]
- Keilp, J.G.; Sackeim, H.A.; Mann, J.J. Correlates of trait impulsiveness in performance measures and neuropsychological tests. Psychiatry Res. 2005, 135, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Freedman, M.; Black, S.; Ebert, P.; Binns, M. Orbitofrontal function, object alternation and perseveration. Cereb. Cortex 1998, 8, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Zald, D.H.; Andreotti, C. Neuropsychological assessment of the orbital and ventromedial prefrontal cortex. Neuropsychologia 2010, 48, 3377–3391. [Google Scholar] [CrossRef] [PubMed]
- Keilp, J.G.; Wyatt, G.; Gorlyn, M.; Oquendo, M.A.; Burke, A.K.; John Mann, J. Intact alternation performance in high lethality suicide attempters. Psychiatry Res. 2014, 219, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Grant, D.A.; Berg, E.A. A Behavioral Analysis of Degree of Reinforcement and Ease of Shifting to New Responses in a Weigl-Type Card-Sorting Problem. J. Exp. Psychol. 1948, 38, 404–411. [Google Scholar] [CrossRef]
- Heaton, R.K. Psychological Assessment Resources (PAR) Staff. In Wisconsin Card Sorting Test: Computer Version 2; Psychological Assessment Resources: Odessa, FL, USA, 1993; Volume 4, pp. 1–4. [Google Scholar]
- Stuss, D.T.; Levine, B.; Alexander, M.P.; Hong, J.; Palumbo, C.; Hamer, L.; Murphy, K.J.; Izukawa, D. Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: Effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 2000, 38, 388–402. [Google Scholar] [CrossRef]
- Glaser, C.; Demmelmair, H.; Koletzko, B. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS ONE 2010, 5, e12045. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Heaton, R.; Chelune, G.; Talley, J.; Kay, G.; Curtis, G. Wisconsin Card Sorting Test Manual: Revised and Expanded; Psychological Assessment Resources: Odessa, FL, USA, 1993. [Google Scholar]
- Huan, M.; Hamazaki, K.; Sun, Y.; Itomura, M.; Liu, H.; Kang, W.; Watanabe, S.; Terasawa, K.; Hamazaki, T. Suicide attempt and n-3 fatty acid levels in red blood cells: A case control study in China. Biol. Psychiatry 2004, 56, 490–496. [Google Scholar] [CrossRef]
- Gold, J.M.; Berman, K.F.; Randolph, C.; Goldberg, T.E.; Weinberger, D.R. PET validation of a novel prefrontal task: Delayed response alternation. Neuropsychology 1996, 10, 3–10. [Google Scholar] [CrossRef]
- Zald, D.H.; Curtis, C.; Chernitsky, L.A.; Pardo, J.V. Frontal lobe activation during object alternation acquisition. Neuropsychology 2005, 19, 97–105. [Google Scholar] [CrossRef]
- Clark, L.; Manes, F. Social and emotional decision-making following frontal lobe injury. Neurocase 2004, 10, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Schmaal, L.; van Harmelen, A.L.; Chatzi, V.; Lippard, E.T.C.; Toenders, Y.J.; Averill, L.A.; Mazure, C.M.; Blumberg, H.P. Imaging suicidal thoughts and behaviors: A comprehensive review of 2 decades of neuroimaging studies. Mol. Psychiatry 2020, 25, 408–427. [Google Scholar] [CrossRef] [PubMed]
- Tessier, C.; Sweers, K.; Frajerman, A.; Bergaoui, H.; Ferreri, F.; Delva, C.; Lapidus, N.; Lamaziere, A.; Roiser, J.P.; De Hert, M.; et al. Membrane lipidomics in schizophrenia patients: A correlational study with clinical and cognitive manifestations. Transl. Psychiatry 2016, 6, e906. [Google Scholar] [CrossRef]
- Chhetry, B.T.; Hezghia, A.; Miller, J.M.; Lee, S.; Rubin-Falcone, H.; Cooper, T.B.; Oquendo, M.A.; Mann, J.J.; Sublette, M.E. Omega-3 polyunsaturated fatty acid supplementation and white matter changes in major depression. J. Psychiatr. Res. 2016, 75, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Fagundo, A.B.; de la Torre, R.; Jimenez-Murcia, S.; Aguera, Z.; Pastor, A.; Casanueva, F.F.; Granero, R.; Banos, R.; Botella, C.; Del Pino-Gutierrez, A.; et al. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans. PLoS ONE 2013, 8, e66387. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Errington, M.L.; Lynch, M.A.; Bliss, T.V.P. Arachidonic-acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 1989, 341, 739–742. [Google Scholar] [CrossRef]
- Brown, S.A.; Morgan, F.; Watras, J.; Loew, L.M. Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys. J. 2008, 95, 1795–1812. [Google Scholar] [CrossRef]
- Latham, C.F.; Osborne, S.L.; Cryle, M.J.; Meunier, F.A. Arachidonic acid potentiates exocytosis and allows neuronal SNARE complex to interact with Munc18a. J. Neurochem. 2007, 100, 1543–1554. [Google Scholar] [CrossRef]
- Jollant, F.; Lawrence, N.L.; Olie, E.; Guillaume, S.; Courtet, P. The suicidal mind and brain: A review of neuropsychological and neuroimaging studies. World J. Biol. Psychiatry 2011, 12, 319–339. [Google Scholar] [CrossRef]
- Richard-Devantoy, S.; Jollant, F.; Deguigne, F.; Letourneau, G. Neurocognitive markers of suicide vulnerability in the elderly: A review. Geriatr. Psychol. Neuropsychiatr. Vieil. 2013, 11, 367–378. [Google Scholar] [CrossRef]
- Interian, A.; Myers, C.E.; Chesin, M.S.; Kline, A.; Hill, L.S.; King, A.R.; Miller, R.; Latorre, M.; Gara, M.A.; Stanley, B.H.; et al. Towards the objective assessment of suicidal states: Some neurocognitive deficits may be temporally related to suicide attempt. Psychiatry Res. 2020, 287, 112624. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Mischoulon, D.; Freeman, M.P.; Matsuoka, Y.; Hibbeln, J.; Belmaker, R.H.; Su, K.P. Are omega-3 fatty acids antidepressants or just mood-improving agents? The effect depends upon diagnosis, supplement preparation, and severity of depression. Mol. Psychiatr. 2012, 17, 1161–1163. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari-Khosravi, H.; Yassini-Ardakani, M.; Karamati, M.; Shariati-Bafghi, S.E. Eicosapentaenoic acid versus docosahexaenoic acid in mild-to-moderate depression: A randomized, double-blind, placebo-controlled trial. Eur. Neuropsychopharmacol. 2013, 23, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Gertsik, L.; Poland, R.E.; Bresee, C.; Rapaport, M.H. Omega-3 fatty acid augmentation of citalopram treatment for patients with major depressive disorder. J. Clin. Psychopharmacol. 2012, 32, 61–64. [Google Scholar] [CrossRef]
- Jazayeri, S.; Tehrani-Doost, M.; Keshavarz, S.A.; Hosseini, M.; Djazayery, A.; Amini, H.; Jalali, M.; Peet, M. Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust. N. Z. J. Psychiatry 2008, 42, 192–198. [Google Scholar] [CrossRef]
- Grosso, G.; Pajak, A.; Marventano, S.; Castellano, S.; Galvano, F.; Bucolo, C.; Drago, F.; Caraci, F. Role of omega-3 fatty acids in the treatment of depressive disorders: A comprehensive meta-analysis of randomized clinical trials. PLoS ONE 2014, 9, e96905. [Google Scholar] [CrossRef]
- Mischoulon, D.; Papakostas, G.I.; Dording, C.M.; Farabaugh, A.H.; Sonawalla, S.B.; Agoston, A.M.; Smith, J.; Beaumont, E.C.; Dahan, L.E.; Alpert, J.E.; et al. A double-blind, randomized controlled trial of ethyl-eicosapentaenoate for major depressive disorder. J. Clin. Psychiatry 2009, 70, 1636–1644. [Google Scholar] [CrossRef]
- Sublette, M.E.; Ellis, S.P.; Geant, A.L.; Mann, J.J. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J. Clin. Psychiatry 2011, 72, 1577–1584. [Google Scholar] [CrossRef]
- Liao, Y.; Xie, B.; Zhang, H.; He, Q.; Guo, L.; Subramanieapillai, M.; Fan, B.; Lu, C.; McIntyre, R.S. Efficacy of omega-3 PUFAs in depression: A meta-analysis. Transl. Psychiatry 2019, 9, 190. [Google Scholar] [CrossRef]
- Hallahan, B.; Ryan, T.; Hibbeln, J.R.; Murray, I.T.; Glynn, S.; Ramsden, C.E.; SanGiovanni, J.P.; Davis, J.M. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br. J. Psychiatry 2016, 209, 192–201. [Google Scholar] [CrossRef]
- Zanderigo, F.; Kang, Y.; Kumar, D.; Nikolopoulou, A.; Mozley, P.D.; Kothari, P.J.; He, B.; Schlyer, D.; Rapoport, S.I.; Oquendo, M.A.; et al. [11C]arachidonic acid incorporation measurement in human brain: Optimization for clinical use. Synapse 2018, 72, e22018. [Google Scholar] [CrossRef]
- Rapoport, S.I. Translational studies on regulation of brain docosahexaenoic acid (DHA) metabolism in vivo. PLEFA 2013, 88, 79–85. [Google Scholar] [CrossRef]
Characteristic | Total MDD (N%) N = 45 | MDD SA (N%) N = 20 | MDD NA (N%) N = 25 | HV (N%) N = 30 | Chi-Square Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Two-Group Comparison 1 | Three-Group Comparison 2 | ||||||||||||||
c2 | df | p-Value | c2 | df | p-Value | ||||||||||
N | N | N | N | ||||||||||||
Sex: Male | 45 | 24.4 (11) | 20 | 15.0 (3) | 25 | 32.0 (8) | 30 | 30.0 (9) | 0.903 | 2 | 0.933 | 4.121 | 4 | 0.390 | |
Race: White | 45 | 44.4 (20) | 20 | 35.0 (7) | 25 | 52.0 (13) | 30 | 43.3 (13) | 0.836 | 4 | 0.637 | 6.297 | 8 | 0.614 | |
Asian | 45 | 28.9 (13) | 20 | 30.0 (6) | 25 | 28.0 (7) | 30 | 30.0 (9) | |||||||
Black | 45 | 13.3 (6) | 20 | 25.0 (5) | 25 | 4.0 (1) | 30 | 16.7 (5) | |||||||
More than one race | 45 | 11.1 (5) | 20 | 10.0 (2) | 25 | 12.0 (3) | 30 | 10.0 (3) | |||||||
Unknown/not reported | 45 | 2.2 (1) | 20 | 0.0 (0) | 25 | 4.0 (1) | 30 | 0.0 (0) | |||||||
Characteristic | Total MDD mean (SD) N = 45 | MDD SA mean (SD) N = 20 | MDD NA mean (SD) N = 25 | HV mean (SD) N = 30 | One-way ANOVA | ||||||||||
Two-Group Comparison 1 | Three-Group Comparison 2 | ||||||||||||||
F-Test | df | p-Value | F-Test | df | p-Value | Contrast | |||||||||
N | N | N | N | ||||||||||||
Age (yrs.) | 45 | 28.8 (7.5) | 20 | 28.2 (7.5) | 25 | 29.3 (7.6) | 30 | 26.5 (6.2) | 1.898 | 1,73 | 0.172 | 1.083 | 2,72 | 0.344 | |
BMI (kg/m2) | 44 | 25.9 (6.2) | 20 | 27.0 (7.2) | 24 | 24.9(5.1) | 30 | 23.7 (4.0) | 2.949 | 1,72 | 0.090 | 2.269 | 2,71 | 0.111 | |
HDRS (17-item) | 45 | 18.8 (6.2) | 20 | 19.4 (7.1) | 25 | 18.4 (5.5) | 30 | 0.5 (0.8) | 260.305 | 1,73 | <0.001 | 129.431 | 2,72 | <0.001 | SA > HV; NA > HV |
BDI | 45 | 24.8 (8.9) | 20 | 27.8 (9.5) | 25 | 22.5 (7.8) | 30 | 0.9 (0.4) | 208.879 | 1,73 | <0.001 | 116.002 | 2,72 | <0.001 | HV < NA < SA |
DHA (g/mL) | 45 | 45.4 (15.6) | 20 | 45.2 (17.5) | 25 | 42.6 (14.3) | 30 | 42.9 (18.8) | 0.397 | 1,73 | 0.531 | 0.198 | 2,72 | 0.821 | |
EPA (g/mL) | 45 | 9.9 (5.5) | 20 | 9.8 (6.2) | 25 | 10.0 (4.9) | 30 | 12.7 (14.9) | 1.284 | 1,73 | 0.261 | 0.636 | 2,72 | 0.532 | |
AA (g/mL) | 45 | 125.2 (33.8) | 20 | 120.3 (32.9) | 25 | 129.1 (34.9) | 30 | 114.2 (40.0) | 1.632 | 1,73 | 0.206 | 1.632 | 1,73 | 0.206 | |
Neurocognitive Assessment Scores 3 Attention | Total MDD | MDD SA | MDD NA | HV | Analysis | ||||||||||
Two-Group Comparison 1 | Three-Group Comparison 2 | ||||||||||||||
F or c2 | df | p-Value | F or c2 | df | p-Value | ||||||||||
N | N | N | N | ||||||||||||
CPT: d-prime (mean (SD)) | 44 | −0.3 (1.0) | 19 | −0.4 (0.9) | 25 | −0.2 (1.0) | 29 | −0.3 (1.0) | 0.003 | 1,72 | 0.956 | 0.377 | 2,70 | 0.687 | |
Stroop: Interference (%) | 44 | −0.5 (1.2) | 20 | −0.7 (1.4) | 24 | −0.4 (1.1) | 30 | −0.4 (1.2) | 0.235 | 1,72 | 0.629 | 0.480 | 2,71 | 0.621 | |
Executive Function | |||||||||||||||
OAT: Criterion Attainment (N%) | 45 | 75.6 (24) | 20 | 75.0 (15) | 25 | 76.0 (19) | 30 | 60.0 (18) | 2.048 | 1 | 0.152 | 2.054 | 2 | 0.358 | |
OAT: Errors (mean (SD)) | 45 | −0.1 (1.1) | 20 | 0.2 (1.2) | 25 | −0.4 (1.1) | 30 | 0.1 (1.3) | 0.648 | 1,73 | 0.423 | 1.506 | 2,72 | 0.229 | |
WCST Criterion Attainment (N%) | 44 | 88.6 (39) | 20 | 85.0 (17) | 24 | 91.7 (22) | 30 | 93.3 (28) | 0.495 | 1 | 0.498 | 1.026 | 2 | 0.599 | |
WCST: Errors (mean (SD)) | 44 | −0.0 (0.8) | 20 | 0.1 (0.8) | 24 | −0.1 (0.8) | 30 | 0.1 (0.7) | 0.515 | 1,72 | 0.475 | 0.682 | 2,71 | 0.509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, J.; Keilp, J.G.; Galfalvy, H.C.; Cardino, V.N.; Ahmed, A.; Burke, A.K.; Fenton, J.I.; Mann, J.J.; Sublette, M.E. Plasma Phospholipid Polyunsaturated Fatty Acid Associations with Neurocognition. Nutrients 2023, 15, 4542. https://doi.org/10.3390/nu15214542
Ling J, Keilp JG, Galfalvy HC, Cardino VN, Ahmed A, Burke AK, Fenton JI, Mann JJ, Sublette ME. Plasma Phospholipid Polyunsaturated Fatty Acid Associations with Neurocognition. Nutrients. 2023; 15(21):4542. https://doi.org/10.3390/nu15214542
Chicago/Turabian StyleLing, Jinjie, John G. Keilp, Hanga C. Galfalvy, Vanessa N. Cardino, Alyina Ahmed, Ainsley K. Burke, Jenifer I. Fenton, J. John Mann, and M. Elizabeth Sublette. 2023. "Plasma Phospholipid Polyunsaturated Fatty Acid Associations with Neurocognition" Nutrients 15, no. 21: 4542. https://doi.org/10.3390/nu15214542
APA StyleLing, J., Keilp, J. G., Galfalvy, H. C., Cardino, V. N., Ahmed, A., Burke, A. K., Fenton, J. I., Mann, J. J., & Sublette, M. E. (2023). Plasma Phospholipid Polyunsaturated Fatty Acid Associations with Neurocognition. Nutrients, 15(21), 4542. https://doi.org/10.3390/nu15214542