Association between Socioeconomic Factors, Food Insecurity, and Dietary Patterns of Adolescents: A Latent Class Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Food Intake
2.3. Transformation of Variables and Creation of Dietary Patterns
2.4. Other Variables
2.5. Ethical Aspects
2.6. Statistical Analysis
3. Results
3.1. Dietary Patterns
3.2. Prevalence of Dietary Patterns and Relations with Socioeconomic Factors and Food Insecurity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, J.K.; Salam, R.A.; Thornburg, K.L.; Prentice, A.M.; Campisi, S.; Lassi, Z.S.; Koletzko, B.; Bhutta, Z.A. Nutrition in adolescents: Physiology, metabolism, and nutritional needs. Ann. N. Y. Acad. Sci. 2017, 1393, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.R.; Sarti, F.M. Sociodemographic determinants of health behaviors among Brazilian adolescents: Trends in physical activity and food consumption, 2009–2015. Appetite 2020, 144, 104454. [Google Scholar] [CrossRef] [PubMed]
- Vilela, S.; Muresan, I.; Correia, D.; Severo, M.; Lopes, C. The role of socio-economic factors in food consumption of Portuguese children and adolescents: Results from the National Food, Nutrition and Physical Activity Survey 2015–2016. Br. J. Nutr. 2020, 124, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Moraes, C.H.C.; Alvarenga, M.D.S.; Moraes, J.M.M.; Cyrillo, D.C. Exploring Psychosocial Determinants of Eating Behavior: Fruit and Vegetable Intake Among Brazilian Adolescents. Front. Nutr. 2021, 8, 796894. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.A.; Marchioni, D.M.L.; Levy, R.B.; Slater, B. Dietary patterns associated with overweight among Brazilian adolescents. Appetite 2018, 123, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Liberali, R.; Kupek, E.; Assis, M.A.A. Dietary Patterns and Childhood Obesity Risk: A Systematic Review. Child. Obes. 2020, 16, 70–85. [Google Scholar] [CrossRef]
- Kastorini, C.M.; Markaki, I.; Tsiampalis, T.; Critselis, E.; Petralias, A.; Linos, A.; Team, D.P.R. Dietary patterns and food insecurity of students participating in a food aid programme: The Mediterranean perspective. Eur. J. Public Health 2021, 31, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.A.; Fonseca, P.C.; Nobre, L.N.; Priore, S.E.; Franceschini, S.D.C.C. Methods of a posteriori identification of food patterns in Brazilian children: A systematic review. Cien. Saude Colet. 2016, 21, 143–154. [Google Scholar] [CrossRef]
- Tavares, L.F.; de Castro, I.R.R.; Levy, R.B.; de Oliveira Cardoso, L.; Claro, R.M. Dietary patterns of Brazilian adolescents: Results of the Brazilian National School-Based Health Survey (PeNSE). Cad. Saúde Pública 2014, 30, 2679–2690. [Google Scholar] [CrossRef]
- Thorne-Lyman, A.L.; Shaikh, S.; Mehra, S.; Wu, L.S.F.; Ali, H.; Alland, K.; Schultze, K.J.; Mitra, M.; Hur, J.; Christian, P.; et al. Dietary patterns of >30,000 adolescents 9–15 years of age in rural Bangladesh. Ann. N. Y. Acad. Sci. 2020, 1468, 3–15. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, M.M.; Oliveira, B.; Afonso, C.; Santos, C.; Torres, D.; Lopes, C.; Miranda, R.C.; Rauber, F.; Antoniazzi, L.; Levy, R.B.; et al. Dietary Patterns in Portuguese Children and Adolescent Population: The UPPER Project. Nutrients 2021, 13, 3851. [Google Scholar] [CrossRef]
- Sotres-Alvarez, D.; Herring, A.H.; Siega-Riz, A.M. Latent class analysis is useful to classify pregnant women into dietary patterns. J. Nutr. 2010, 140, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
- Kongsted, A.; Nielsen, A.M. Latent Class Analysis in health research. J. Physiother. 2017, 63, 55–58. [Google Scholar] [CrossRef]
- Fonseca, R.d.R. Studies on Eating Patterns in Adolescence: Theoretical-Methodological Contributions. Ph.D. Thesis, Federal University of Bahia, Salvador, Bahia, Brazil, 2017. [Google Scholar]
- Miranda, V.P.N.; Coimbra, D.R.; Bastos, R.R.; Júnior, M.V.M.; Amorim, P.R.D.S. Use of latent class analysis as a method of assessing the physical activity level, sedentary behavior and nutritional habit in the adolescents’ lifestyle: A scoping review. PLoS ONE 2021, 16, e0256069. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.L.P.; de Cássia R Silva, R.; Assis, A.M.O.; Raich, R.M.; Machado, M.E.P.C.; de J Pinto, E.; de Moraes, L.T.L.P.; da C Ribeiro Júnior, H. Factors associated with body image dissatisfaction among adolescents in public schools students in Salvador, Brazil. Nutr. Hosp. 2013, 28, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.M.O.; de Cássia Ribeiro Silva, R.; de Assis, A.M.O.; de Santana, M.L.P.; de Moraes, L.T.L.P.; Barreto, M.L. Identification of food intake patterns and associated factors in teenagers. Revista Nutrição 2014, 27, 45–54. [Google Scholar] [CrossRef]
- Pinheiro, A.; Lacerda, E.; Benzecry, E.; Gomes, M.; Costa, V. Table for Evaluating Food Consumption in Household Measurements; Independent Production: Rio de Janeiro, Brazil, 1993. [Google Scholar]
- Magalhães, L.; Oliveira, V.; Santos, N.; Araújo, C. Practical Guide for Estimating Food Consumption; ENUFBA: Salvador, Brazil, 2000; p. 94. [Google Scholar]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. A new classification of foods based on the extent and purpose of their processing. Cad. Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef]
- Kamakura, W.; Mazzon, J.A. Stratification Criteria and Comparison of Socioeconomic Classifiers in Brazil. Rev. Adm. Empres. 2016, 56, 55–70. [Google Scholar] [CrossRef]
- Segall-Corrêa, A.M.; Marin-Leon, L. Food security in Brazil: Proposition and uses of the Brazilian food insecurity measurement scale (EBIA) from 2003 to 2009. Segur. Aliment. Nutr. 2015, 16, 1–19. [Google Scholar] [CrossRef]
- Lanza, S.T.; Rhoades, B.L. Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prev. Sci. 2013, 14, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.A.; Slater, B.; Santaliestra-Pasias, A.M.; Mouratidou, T.; Huybrechts, I.; Widhalm, K.; Gottrand, F.; Manios, Y.; Jimenez-Pavon, D.; Valtuena, J.; et al. Dietary Patterns in European and Brazilian Adolescents: Comparisons and Associations with Socioeconomic Factors. Nutrients 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Neta, A.; Steluti, J.; Ferreira, F.; Farias Junior, J.C.; Marchioni, D.M.L. Dietary patterns among adolescents and associated factors: Longitudinal study on sedentary behavior, physical activity, diet and adolescent health. Cien. Saude Colet. 2021, 26, 3839–3851. [Google Scholar] [CrossRef]
- Pinho, L.; Silveira, M.F.; Botelho, A.C.; Caldeira, A.P. Identification of dietary patterns of adolescents attending public schools. J. Pediatr. (Rio J.) 2014, 90, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Hinnig, P.F.; Monteiro, J.S.; de Assis, M.A.A.; Levy, R.B.; Peres, M.A.; Perazi, F.M.; Porporatti, A.L.; Canto, G.L. Dietary Patterns of Children and Adolescents from High, Medium and Low Human Development Countries and Associated Socioeconomic Factors: A Systematic Review. Nutrients 2018, 10, 436. [Google Scholar] [CrossRef]
- Alves, M.A.; Souza, A.M.; Barufaldi, L.A.; Tavares, B.M.; Bloch, K.V.; Vasconcelos, F.A.G. Dietary patterns of Brazilian adolescents according to geographic region: An analysis of the Study of Cardiovascular Risk in Adolescents (ERICA). Cad. Saúde Pública 2019, 35, e00153818. [Google Scholar] [CrossRef]
- Santos, N.H.A.D.; Fiaccone, R.L.; Barreto, M.L.; da Silva, L.A.; de Cássia Ribeiro Silva, R. Association between eating patterns and body mass index in a sample of children and adolescents in Northeastern Brazil. Cad. Saúde Pública 2014, 30, 2235–2245. [Google Scholar] [CrossRef]
- Galvan-Portillo, M.; Sanchez, E.; Cardenas-Cardenas, L.M.; Karam, R.; Claudio, L.; Cruz, M.; Burguete-Garcia, A.I. Dietary patterns in Mexican children and adolescents: Characterization and relation with socioeconomic and home environment factors. Appetite 2018, 121, 275–284. [Google Scholar] [CrossRef]
- Williamson, V.G.; Dilip, A.; Dillard, J.R.; Morgan-Daniel, J.; Lee, A.M.; Cardel, M.I. The Influence of Socioeconomic Status on Snacking and Weight among Adolescents: A Scoping Review. Nutrients 2020, 12, 167. [Google Scholar] [CrossRef]
- Naja, F.; Itani, L.; Kharroubi, S.; Diab El Harake, M.; Hwalla, N.; Jomaa, L. Food insecurity is associated with lower adherence to the Mediterranean dietary pattern among Lebanese adolescents: A cross-sectional national study. Eur. J. Nutr. 2020, 59, 3281–3292. [Google Scholar] [CrossRef]
- Maia, I.; Oliveira, A.; Severo, M.; Santos, A.C. Associations between children’s reports of food insecurity and dietary patterns: Findings from the Generation XXI birth cohort. Br. J. Nutr. 2023, 129, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
Food Groups | Composition |
---|---|
Vegetables | Lettuce, kale, cabbage, pumpkin, carrot, tomato, chayote, gherkin, beetroot, okra, vegetable salad. |
Fruits | Pineapple, avocado, acerola, banana, plantain, cashew, jackfruit, papaya, mango, apple, watermelon, melon, orange, tangerine, strawberry, açaí, and natural fruit juice or pulp. |
Roots and tubers | Cassava, yam, potato, and sweet potato. |
Red meat | Beef, viscera, and salted meat. |
Poultry and fish | Chicken, eggs, fish, and seafood. |
Milks | Whole and skimmed milk (powder or liquid). |
Rice and noodles | Rice and noodles (white or brown), and noodle soup. |
Legumes | Beans and peanuts. |
Typical foods | Acarajé, feijoada, and tropeiro beans. |
Flours and cereals | Cassava and corn flour, dairy flour, corn flakes (couscous), oat flakes, popcorn, and granola. |
Bakery products | White or wholemeal bread, cakes, savory biscuits, and sweet biscuits. |
Dairy products | Fermented milk, yogurt, cream cheese, and cheese. |
Sweets and sugars | Candy, gum, lollipop, chocolate bar, ice cream, yogurt ice cream, gelatin, guava paste, marmalade, homemade sweets, powdered chocolate, ready-to-drink chocolate, and added sugar. |
Oils and fats | Vegetable oils, olive oil, palm oil, butter, and margarine. |
Sugar-sweetened beverages | Traditional and diet/light/zero-sugar sodas, soft drinks and artificial juices, energy drinks, and flavored carbonated waters. |
Fast food | Fried snacks, packaged snacks, hot dogs, snacks/hamburgers, French fries or straws, frozen pizza and lasagna, ready-to-eat soups, instant noodles, and sausages. |
No. Latent Class | No. Free Parameters | AIC | BIC | BIC-Adjusted | Entropy | LMR-LRT | BS-LRT p-Value p/k–1 |
---|---|---|---|---|---|---|---|
Model 1 | |||||||
2 LC | 33 | 21,895.270 | 22,063.652 | 21,958.831 | 0.864 | −12,407.001; p < 0.0000 | −12,407.001; p < 0.0000 |
3 LC | 50 | 21,533.777 | 21,788.902 | 21,630.082 | 0.767 | −10,914.635; p < 0.0000 | −10,914.635; p < 0.0000 |
4 LC | 67 | 21,453.861 | 21,795.728 | 21,582.909 | 0.714 | −10,716.889; p < 0.3987 | −10,716.889; p < 0.0000 |
5 LC | 84 | 21,399.056 | 21,827.666 | 21,560.848 | 0.722 | −10,659.930; p < 0.4285 | −10,659.930; p < 0.0000 |
Model 2 | |||||||
2 LC | 33 | 17,324.714 | 17,493.097 | 17,388.275 | 0.866 | −9858.671; p < 0.0000 | −9858.671; p < 0.0000 |
3 LC | 50 | 16,998.134 | 17,253.259 | 17,094.438 | 0.780 | −8629.357; p < 0.0000 | −8629.357; p < 0.0000 |
4 LC | 67 | 16,937.451 | 17,279.318 | 17,066.499 | 0.754 | −8449.067; p < 0.1078 | −8449.067; p < 0.0000 |
5 LC | 84 | 16,918.858 | 17,347.468 | 17,080.650 | 0.700 | −8401.725; p < 0.5316 | −8401.725; p < 0.0128 |
Model 3 | |||||||
2 LC | 33 | 19,277.226 | 19,445.609 | 19,340.787 | 0.870 | −10,983.494; p < 0.0000 | −10,983.494; p < 0.0000 |
3 LC | 50 | 18,960.449 | 19,215.574 | 19,056.754 | 0.770 | −9605.613; p < 0.0000 | −9605.613; p < 0.0000 |
4 LC | 67 | 18,904.756 | 19,246.623 | 19,033.804 | 0.737 | −9430.225; p < 0.5203 | −9430.225; p < 0.0000 |
5 LC | 84 | 18,849.017 | 19,277.627 | 19,010.809 | 0.722 | −9380.809; p < 0.2804 | −9380.809; p < 0.0000 |
Food Groups | Dietary Patterns | |||
---|---|---|---|---|
Mixed | Low Consumption | Prudent | Diverse | |
Vegetables | 26.6 | 7.6 | 45.0 | 59.9 |
Fruits | 17.9 | 3.1 | 49.8 | 80.8 |
Roots and tubers | 23.2 | 5.8 | 44.7 | 70.5 |
Red meat | 27.9 | 6.7 | 35.4 | 75.5 |
Poultry and fish | 27.0 | 6.6 | 38.2 | 70.5 |
Milks | 69.6 | 23.6 | 20.6 | 59.8 |
Rice and noodles | 32.3 | 6.7 | 33.8 | 70.9 |
Legumes | 31.8 | 7.9 | 26.8 | 47.3 |
Typical foods | 25.8 | 10.5 | 31.4 | 67.8 |
Flours and cereals | 16.7 | 9.0 | 42.0 | 70.7 |
Bakery products | 39.9 | 5.8 | 23.1 | 76.9 |
Dairy products | 36.3 | 4.9 | 32.4 | 71.5 |
Sweets and sugars | 34.0 | 4.4 | 24.2 | 87.8 |
Oils and fats | 61.9 | 9.3 | 9.6 | 54.6 |
Sugar-sweetened beverages | 25.3 | 7.8 | 33.3 | 74.1 |
Fast food | 34.7 | 4.3 | 29.4 | 81.1 |
Mean posterior probability (unconditional) | 77.7 | 90.0 | 76.0 | 90.7 |
Variables | All Participants (n = 1215) | Dietary Patterns | p Value * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mixed (n = 192) | Low Consumption (n = 644) | Prudent (n = 209) | Diverse (n = 170) | ||||||||
n | % | n | % | n | % | n | % | n | % | ||
Sex | 0.199 | ||||||||||
Male | 513 | 42.2 | 72 | 14.0 | 272 | 53.0 | 100 | 19.5 | 69 | 13.5 | |
Female | 702 | 57.8 | 120 | 17.1 | 372 | 53.0 | 109 | 15.5 | 101 | 14.4 | |
Age | 0.939 | ||||||||||
<14 years | 528 | 43.5 | 84 | 15.9 | 281 | 53.2 | 87 | 16.5 | 76 | 14.4 | |
≥14 years | 687 | 56.5 | 108 | 15.7 | 363 | 52.8 | 122 | 17.8 | 94 | 13.7 | |
Economic strata | 0.022 ** | ||||||||||
Stratum C e D | 619 | 51.0 | 106 | 17.1 | 339 | 54.8 | 105 | 17.0 | 69 | 11.1 | |
Stratum E | 594 | 49.0 | 86 | 14.5 | 303 | 51.0 | 104 | 17.5 | 101 | 17.0 | |
BFIS | 0.766 | ||||||||||
Food Security | 410 | 33.7 | 61 | 14.9 | 230 | 56.1 | 68 | 16.6 | 51 | 12.4 | |
FI mild | 461 | 37.9 | 80 | 17.4 | 228 | 49.5 | 85 | 18.4 | 68 | 14.8 | |
FI moderate | 251 | 20.7 | 40 | 15.9 | 134 | 53.4 | 41 | 16.3 | 36 | 14.3 | |
FI severe | 93 | 7.7 | 11 | 11.8 | 52 | 55.9 | 15 | 16.1 | 15 | 16.1 |
Variables | Dietary Patterns | |||||
---|---|---|---|---|---|---|
Low Consumption | Prudent | Diverse | ||||
OR Bivariate (95% CI) | OR Multivariate (95% CI) | OR Bivariate (95% CI) | OR Multivariate (95% CI) | OR Bivariate (95% CI) | OR Multivariate (95% CI) | |
Sex | ||||||
Male | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Female | 0.90 (0.62–1.30) | 0.88 (0.60–1.28) | 0.70 (0.44–1.10) | 0.70 (0.44–1.11) | 0.79 (0.50–1.27) | 0.78 (0.48–1.24) |
Age | ||||||
<14 years | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
≥14 years | 1.12 (0.78–1.62) | 1.11 (0.77–1.59) | 1.20 (0.77–1.86) | 1.15 (0.73–1.80) | 0.98 (0.62–1.55) | 0.93 (0.58–1.47) |
Economics strata | ||||||
Strata C e D | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Strata E | 1.33 (0.93–1.92) | 1.38 (0.94–2.03) | 1.40 (0.90–2.20) | 1.39 (0.88–2.20) | 2.00 (1.26–3.16) | 2.02 (1.26–3.24) |
BFIS | ||||||
Food Security | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
FI mild | 0.70 (0.48–1.01) | 0.71 (0.49–1.03) | 1.0 (0.64–1.60) | 1.01 (0.63–1.61) | 0.94 (0.59–1.50) | 0.93 (0.58–1.49) |
FI moderate | 1.08 (0.69–1.67) | 1.02 (0.65–1.61) | 1.05 (0.60–1.83) | 0.99 (0.56–1.75) | 1.10 (0.64–1.91) | 0.95 (0.55–1.66) |
FI severe | 1.65 (0.77–3.50) | 1.60 (0.74–3.46) | 1.16 (0.47–2.85) | 1.10 (0.45–2.71) | 1.53 (0.64–3.63) | 1.39 (0.58–3.33) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facina, V.B.; Fonseca, R.d.R.; da Conceição-Machado, M.E.P.; Ribeiro-Silva, R.d.C.; dos Santos, S.M.C.; de Santana, M.L.P. Association between Socioeconomic Factors, Food Insecurity, and Dietary Patterns of Adolescents: A Latent Class Analysis. Nutrients 2023, 15, 4344. https://doi.org/10.3390/nu15204344
Facina VB, Fonseca RdR, da Conceição-Machado MEP, Ribeiro-Silva RdC, dos Santos SMC, de Santana MLP. Association between Socioeconomic Factors, Food Insecurity, and Dietary Patterns of Adolescents: A Latent Class Analysis. Nutrients. 2023; 15(20):4344. https://doi.org/10.3390/nu15204344
Chicago/Turabian StyleFacina, Vanessa Barbosa, Rosemary da Rocha Fonseca, Maria Ester Pereira da Conceição-Machado, Rita de Cássia Ribeiro-Silva, Sandra Maria Chaves dos Santos, and Mônica Leila Portela de Santana. 2023. "Association between Socioeconomic Factors, Food Insecurity, and Dietary Patterns of Adolescents: A Latent Class Analysis" Nutrients 15, no. 20: 4344. https://doi.org/10.3390/nu15204344
APA StyleFacina, V. B., Fonseca, R. d. R., da Conceição-Machado, M. E. P., Ribeiro-Silva, R. d. C., dos Santos, S. M. C., & de Santana, M. L. P. (2023). Association between Socioeconomic Factors, Food Insecurity, and Dietary Patterns of Adolescents: A Latent Class Analysis. Nutrients, 15(20), 4344. https://doi.org/10.3390/nu15204344