Maternal Dietary Diversity and Small for Gestational Age: The Effect Modification by Pre-Pregnancy Body Mass Index and Gestational Weight Gain in a Prospective Study within Rural Sichuan, China (2021–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Exposure Assessment
2.2.1. Dietary Diversity during Pregnancy
2.2.2. Maternal Pre-Pregnancy Body Mass Index (BMI, kg/m2)
2.2.3. Gestational Weight Gain (GWG)
2.3. Outcome Measures
2.4. Covariates
2.5. Statistical Analyses
3. Results
3.1. Summary Statistics
3.2. Associations of Infant SGA with Maternal Risk Factors
3.3. Associations of Infant SGA with MDD, GWG, and Underweight Pre-Pregnancy BMI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donangelo, C.M.; Bezerra, F.F. Pregnancy: Metabolic Adaptations and Nutritional Requirements. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 484–490. ISBN 978-0-12-384953-3. [Google Scholar]
- World Health Organization Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee. Available online: https://fctc.who.int/publications/i/item/9241208546 (accessed on 20 July 2023).
- Katz, J.; Lee, A.C.; Kozuki, N.; Lawn, J.E.; Cousens, S.; Blencowe, H.; Ezzati, M.; Bhutta, Z.A.; Marchant, T.; Willey, B.A.; et al. Mortality Risk in Preterm and Small-for-Gestational-Age Infants in Low-Income and Middle-Income Countries: A Pooled Country Analysis. Lancet 2013, 382, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Anne, R.P.; Vardhelli, V.; Oleti, T.P.; Murki, S.; Reddy, G.M.M.; Deshabhotla, S.; Kallem, V.R.; Vadije, P.R. Propensity-Matched Comparison of Very Preterm Small- and Appropriate-for-Gestational-Age Neonates. Indian J. Pediatr. 2022, 89, 59–66. [Google Scholar] [CrossRef]
- Xie, C.; Epstein, L.H.; Eiden, R.D.; Shenassa, E.D.; Li, X.; Liao, Y.; Wen, X. Stunting at 5 Years Among SGA Newborns. Pediatrics 2016, 137, e20152636. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.S. Adult Functional Outcome of Those Born Small for Gestational Age: Twenty-Six-Year Follow-up of the 1970 British Birth Cohort. JAMA 2000, 283, 625–632. [Google Scholar] [CrossRef]
- Mericq, V.; Martinez-Aguayo, A.; Uauy, R.; Iñiguez, G.; Van der Steen, M.; Hokken-Koelega, A. Long-Term Metabolic Risk among Children Born Premature or Small for Gestational Age. Nat. Rev. Endocrinol. 2017, 13, 50–62. [Google Scholar] [CrossRef]
- Lawn, J.E.; Ohuma, E.O.; Bradley, E.; Idueta, L.S.; Hazel, E.; Okwaraji, Y.B.; Erchick, D.J.; Yargawa, J.; Katz, J.; Lee, A.C.C.; et al. Small Babies, Big Risks: Global Estimates of Prevalence and Mortality for Vulnerable Newborns to Accelerate Change and Improve Counting. Lancet 2023, 401, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.M. Dietary Guidelines for Pregnant Women. Public Health Nutr. 2001, 4, 1343–1346. [Google Scholar] [CrossRef]
- Pathirathna, M.L.; Sekijima, K.; Sadakata, M.; Fujiwara, N.; Muramatsu, Y.; Wimalasiri, K.M.S. Impact of Second Trimester Maternal Dietary Intake on Gestational Weight Gain and Neonatal Birth Weight. Nutrients 2017, 9, 627. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abe, S.K.; Kanda, M.; Narita, S.; Rahman, M.S.; Bilano, V.; Ota, E.; Gilmour, S.; Shibuya, K. Maternal Body Mass Index and Risk of Birth and Maternal Health Outcomes in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Obes. Rev. 2015, 16, 758–770. [Google Scholar] [CrossRef]
- Vats, H.; Saxena, R.; Sachdeva, M.P.; Walia, G.K.; Gupta, V. Impact of Maternal Pre-Pregnancy Body Mass Index on Maternal, Fetal and Neonatal Adverse Outcomes in the Worldwide Populations: A Systematic Review and Meta-Analysis. Obes. Res. Clin. Pract. 2021, 15, 536–545. [Google Scholar] [CrossRef]
- Darnton-Hill, I.; Mkparu, U.C. Micronutrients in Pregnancy in Low- and Middle-Income Countries. Nutrients 2015, 7, 1744–1768. [Google Scholar] [CrossRef]
- Madzorera, I.; Isanaka, S.; Wang, M.; Msamanga, G.I.; Urassa, W.; Hertzmark, E.; Duggan, C.; Fawzi, W.W. Maternal Dietary Diversity and Dietary Quality Scores in Relation to Adverse Birth Outcomes in Tanzanian Women. Am. J. Clin. Nutr. 2020, 112, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Cano-Ibáñez, N.; Martínez-Galiano, J.M.; Amezcua-Prieto, C.; Olmedo-Requena, R.; Bueno-Cavanillas, A.; Delgado-Rodríguez, M. Maternal Dietary Diversity and Risk of Small for Gestational Age Newborn: Findings from a Case–Control Study. Clin. Nutr. 2020, 39, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.C.; Kozuki, N.; Cousens, S.; Stevens, G.A.; Blencowe, H.; Silveira, M.F.; Sania, A.; Rosen, H.E.; Schmiegelow, C.; Adair, L.S.; et al. Estimates of Burden and Consequences of Infants Born Small for Gestational Age in Low and Middle Income Countries with INTERGROWTH-21st Standard: Analysis of CHERG Datasets. BMJ 2017, 358, j3677. [Google Scholar] [CrossRef]
- Li, Z.; Tian, Y.; Gong, Z.; Qian, L. Health Literacy and Regional Heterogeneities in China: A Population-Based Study. Front. Public Health 2021, 9, 603325. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method Reduces Bias in the Collection of Energy Intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- FAO. Minimum Dietary Diversity for Women: An Updated Guide to Measurement-from Collection to Action; FAO: Rome, Italy, 2021; ISBN 978-92-5-133993-0. [Google Scholar]
- Chen, C.; Lu, F.C.; Department of Disease Control Ministry of Health, PR China. The Guidelines for Prevention and Control of Overweight and Obesity in Chinese Adults. Biomed. Environ. Sci. 2004, 17, 1–36. [Google Scholar] [PubMed]
- Tan, K.C.B. Appropriate Body-Mass Index for Asian Populations and Its Implications for Policy and Intervention Strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- He, Y.; Tam, C.H.-T.; Yuen, L.Y.; Catalano, P.M.; Ma, R.C.-W.; Tam, W.H. Optimal Gestational Weight Gain for Chinese Women-Analysis from a Longitudinal Cohort with Childhood Follow-Up. Lancet Reg. Health West. Pac. 2021, 13, 100190. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, M.; Song, Y.; Mao, J.; Zhou, M.; Ma, Z.; Qian, X.; Han, Z.; Duan, T. The Institute of Medicine Recommendation for Gestational Weight Gain Is Probably Not Optimal among Non-American Pregnant Women: A Retrospective Study from China. J. Matern. Fetal Neonatal Med. 2019, 32, 1353–1358. [Google Scholar] [CrossRef]
- Announcement of Chinese Nutrition Society on the Release of 2 Group Standards_Official Website of Chinese Nutrition Society. Available online: https://www.cnsoc.org/otherNotice/392100200.html (accessed on 20 July 2023).
- Criteria for Growth Assessment at Birth of Newborns of Different Gestational Ages-National Health Commission of the People’s Republic of China. Available online: http://www.nhc.gov.cn/wjw/fyjk/202208/d6dcc281e9b74db88dc972b34cbd3ec7.shtml (accessed on 20 July 2023).
- Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Available online: https://www.who.int/publications-detail-redirect/WHO-NMH-NHD-MNM-11.1 (accessed on 20 July 2023).
- Zou, G.Y. On the Estimation of Additive Interaction by Use of the Four-by-Two Table and Beyond. Am. J. Epidemiol. 2008, 168, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-0-470-58247-3. [Google Scholar]
- Li, R.; Chambless, L. Test for Additive Interaction in Proportional Hazards Models. Ann. Epidemiol. 2007, 17, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, M.; Tobias, D.K.; Rich-Edwards, J.W.; Darling, A.-M.; Abioye, A.I.; Noor, R.A.; Madzorera, I.; Fawzi, W.W. Dietary Diversity and Diet Quality with Gestational Weight Gain and Adverse Birth Outcomes, Results from a Prospective Pregnancy Cohort Study in Urban Tanzania. Matern. Child Nutr. 2022, 18, e13300. [Google Scholar] [CrossRef]
- Arimond, M.; Wiesmann, D.; Becquey, E.; Carriquiry, A.; Daniels, M.C.; Deitchler, M.; Fanou-Fogny, N.; Joseph, M.L.; Kennedy, G.; Martin-Prevel, Y.; et al. Simple Food Group Diversity Indicators Predict Micronutrient Adequacy of Women’s Diets in 5 Diverse, Resource-Poor Settings1234567. J. Nutr. 2010, 140, 2059S–2069S. [Google Scholar] [CrossRef]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef]
- Baker, B.C.; Hayes, D.J.; Jones, R.L. Effects of Micronutrients on Placental Function: Evidence from Clinical Studies to Animal Models. Reproduction 2018, 156, R69–R82. [Google Scholar] [CrossRef] [PubMed]
- Guelinckx, I.; Devlieger, R.; Beckers, K.; Vansant, G. Maternal Obesity: Pregnancy Complications, Gestational Weight Gain and Nutrition. Obes. Rev. 2008, 9, 140–150. [Google Scholar] [CrossRef]
- Zhang, C.; Schulze, M.B.; Solomon, C.G.; Hu, F.B. A Prospective Study of Dietary Patterns, Meat Intake and the Risk of Gestational Diabetes Mellitus. Diabetologia 2006, 49, 2604–2613. [Google Scholar] [CrossRef]
- Moving Forward on Choosing a Standard Operational Indicator of Women’s Dietary Diversity. IFPRI: International Food Policy Research Institute. Available online: https://www.ifpri.org/publication/moving-forward-choosing-standard-operational-indicator-womens-dietary-diversity (accessed on 20 July 2023).
- Imdad, A.; Bhutta, Z.A. Effect of Balanced Protein Energy Supplementation during Pregnancy on Birth Outcomes. BMC Public Health 2011, 11, S17. [Google Scholar] [CrossRef]
- Braha, K.; Cupák, A.; Pokrivčák, J.; Qineti, A.; Rizov, M. Economic Analysis of the Link between Diet Quality and Health: Evidence from Kosovo. Econ. Hum. Biol. 2017, 27, 261–274. [Google Scholar] [CrossRef]
- Martínez-Galiano, J.M.; Amezcua-Prieto, C.; Cano-Ibañez, N.; Olmedo-Requena, R.; Jiménez-Moleón, J.J.; Bueno-Cavanillas, A.; Delgado-Rodríguez, M. Diet as a Counteracting Agent of the Effect of Some Well-Known Risk Factors for Small for Gestational Age. Nutrition 2020, 72, 110665. [Google Scholar] [CrossRef] [PubMed]
- Uno, K.; Takemi, Y.; Hayashi, F.; Hosokawa, M. Nutritional status and dietary intake among pregnant women in relation to pre-pregnancy body mass index in Japan. Nihon Koshu Eisei Zasshi 2016, 63, 738–749. [Google Scholar] [CrossRef]
- Rowland, M.L. Reporting Bias in Height and Weight Data. Stat. Bull. 1989, 70, 2–11. [Google Scholar]
- Abu-Saad, K.; Fraser, D. Maternal Nutrition and Birth Outcomes. Epidemiol. Rev. 2010, 32, 5–25. [Google Scholar] [CrossRef]
- Ronis, M.J.J.; Pedersen, K.B.; Watt, J. Adverse Effects of Nutraceuticals and Dietary Supplements. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 583–601. [Google Scholar] [CrossRef] [PubMed]
- Rammohan, A.; Goli, S.; Singh, D.; Ganguly, D.; Singh, U. Maternal Dietary Diversity and Odds of Low Birth Weight: Empirical Findings from India. Women Health 2019, 59, 375–390. [Google Scholar] [CrossRef]
Characteristics | Total Sample | By Infant SGA Status | p-Value | |
---|---|---|---|---|
(N = 560) | Infant Not SGA (n = 498) | Infant Is SGA (n = 62) | ||
Infant characteristics | ||||
Gender (male) | 276 (49.29) | 246 (49.39) | 30 (48.39) | 0.91 |
Gestational age (weeks) | 38.74 ± 1.37 | 38.73 ± 1.30 | 38.78 ± 1.89 | 0.84 |
Gestational age < 37 weeks | 26 (4.64) | 20 (4.01) | 6 (9.67) | 0.04 |
Birth weight (g) | 3274.77 ± 505.79 | 3350.06 ± 440.44 | 2556.11 ± 407.79 | <0.001 |
Birth weight < 2500 g | 27 (4.82) | 8 (1.60) | 19 (30.65) | <0.001 |
Length (cm) | 49.66 ± 1.59 | 49.84 ± 1.36 | 48.35 ± 2.58 | <0.001 |
Maternal characteristics | ||||
Age (years) | 28.17 ± 4.69 | 28.38 ± 4.61 | 26.53 ± 5.00 | 0.003 |
Primipara | 82 (14.64) | 69 (13.86) | 13 (20.97) | 0.14 |
SES | ||||
Low | 184 (32.86) | 156 (31.33) | 28 (45.16) | 0.004 |
Medium | 180 (32.14) | 156 (31.33) | 24 (38.71) | |
High | 196 (35.00) | 186 (37.35) | 10 (16.13) | |
DDS | 6.26 ± 1.49 | 6.37 ± 1.47 | 5.45 ± 1.40 | <0.001 |
Inadequate MDD | 73 (13.04) | 55 (11.04) | 18 (29.03) | <0.001 |
Inadequate GWG | 260 (46.43) | 215 (43.17) | 45 (72.58) | <0.001 |
Pre-pregnancy BMI (kg/m2) | 23.34 ± 3.72 | 23.33 ± 3.66 | 23.45 ± 4.19 | 0.80 |
Pre-pregnancy BMI | ||||
Underweight | 36 (6.43) | 27 (5.42) | 9 (14.52) | 0.03 a |
Normal | 312 (55.71) | 283 (56.83) | 29 (46.77) | |
Overweight/obese | 212 (37.86) | 188 (37.75) | 24 (38.71) | |
Gestational hypertension | 29 (5.18) | 19 (3.82) | 10 (16.13) | 0.001 a |
Anemic | 298 (53.21) | 265 (53.21) | 33 (53.23) | 0.99 |
Number of miscarriages | 0.94 ± 0.98 | 0.94 ± 0.99 | 0.98 ± 0.91 | 0.74 |
Had previous LBW infant | 24 (4.29) | 23 (4.62) | 1 (1.61) | 0.23 a |
Iron supplementation | 385 (68.75) | 344 (69.08) | 41 (66.13) | 0.64 |
Folic acid supplementation | 518 (92.50) | 464 (93.17) | 54 (87.10) | 0.09 |
Factors | Reference Group | Univariate RR (95% CI) | Multivariate RR (95% CI) | p-Value |
---|---|---|---|---|
DDS | - | 0.71 (0.57, 0.89) | 0.77 (0.61, 0.97) | 0.03 |
Inadequate gestational weight gain | adequate | 2.87 (1.64, 5.04) | 2.22 (1.42, 3.37) | <0.001 |
Underweight pre-pregnancy BMI | normal | 2.71 (1.69, 4.32) | 2.01 (1.78, 2.27) | <0.001 |
Overweight pre-pregnancy BMI | 1.27 (0.88, 1.83) | 1.10 (0.77, 1.57) | 0.60 | |
Gestational hypertension | no gestational hypertension | 3.35 (1.28, 8.78) | 2.74 (1.05, 7.11) | 0.03 |
Medium SES | low SES | 0.91 (0.71, 1.17) | 0.96(0.71, 1.3) | 0.79 |
High SES | 0.34 (0.13, 0.89) | 0.45(0.18, 1.15) | 0.09 | |
Maternal age | - | 0.93 (0.9, 0.96) | 0.94 (0.91, 0.96) | <0.001 |
Took folic acid supplementation | did not take folic acid supplementation | 0.55 (0.24, 1.3) | 0.65 (0.34, 1.22) | 0.18 |
Exposure Category | aRR (95% CI) a | Additive Interaction Statistics | Multiplicative Interaction Statistics | |||
---|---|---|---|---|---|---|
ICR (95% CI) (Null Hypothesis = 0) | AP (95% CI) (Null Hypothesis = 0) | S (95% CI) (Null Hypothesis = 1) | MII (95% CI) (Null Hypothesis = 1) | |||
Inadequate GWG | Inadequate MDD | 3.33 (−0.66, 7.32) | 0.54 * (0.13, 0.95) | 2.85 (0.74, 11.05) | 2.08 (0.70, 6.12) | |
no | no | 1 (ref.) | ||||
yes | no | 2.21 ** (1.16, 4.19) | ||||
no | yes | 1.59 (0.45, 5.61) | ||||
yes | yes | 6.13 ** (2.89, 12.99) | ||||
Underweight pre-pregnancy BMI | Inadequate MDD | 7.39 ** (5.84, 8.94) | 0.82 * (0.72, 0.92) | 12.79 ** (3.14, 52.03) | 2.05 (0.69, 6.13) | |
no | no | 1 (ref.) | ||||
yes | no | 0.85 (0.55, 1.32) | ||||
no | yes | 1.78 (0.92, 3.43) | ||||
yes | yes | 9.02 ** (7.71, 10.55) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Wu, Y.; Cai, Z.; Li, L.; Feng, J.; van Grieken, A.; Raat, H.; Rozelle, S.; Zhou, H. Maternal Dietary Diversity and Small for Gestational Age: The Effect Modification by Pre-Pregnancy Body Mass Index and Gestational Weight Gain in a Prospective Study within Rural Sichuan, China (2021–2022). Nutrients 2023, 15, 3669. https://doi.org/10.3390/nu15173669
Sun C, Wu Y, Cai Z, Li L, Feng J, van Grieken A, Raat H, Rozelle S, Zhou H. Maternal Dietary Diversity and Small for Gestational Age: The Effect Modification by Pre-Pregnancy Body Mass Index and Gestational Weight Gain in a Prospective Study within Rural Sichuan, China (2021–2022). Nutrients. 2023; 15(17):3669. https://doi.org/10.3390/nu15173669
Chicago/Turabian StyleSun, Chang, Yuju Wu, Zhengjie Cai, Linhua Li, Jieyuan Feng, Amy van Grieken, Hein Raat, Scott Rozelle, and Huan Zhou. 2023. "Maternal Dietary Diversity and Small for Gestational Age: The Effect Modification by Pre-Pregnancy Body Mass Index and Gestational Weight Gain in a Prospective Study within Rural Sichuan, China (2021–2022)" Nutrients 15, no. 17: 3669. https://doi.org/10.3390/nu15173669
APA StyleSun, C., Wu, Y., Cai, Z., Li, L., Feng, J., van Grieken, A., Raat, H., Rozelle, S., & Zhou, H. (2023). Maternal Dietary Diversity and Small for Gestational Age: The Effect Modification by Pre-Pregnancy Body Mass Index and Gestational Weight Gain in a Prospective Study within Rural Sichuan, China (2021–2022). Nutrients, 15(17), 3669. https://doi.org/10.3390/nu15173669