Endocrinology of Underweight and Anorexia Nervosa
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Hypothalamic-Pituitary Dysfunction in AN
- Anterior:
- -
- Thyroid-stimulating hormone (TSH);
- -
- Adrenocorticotropic hormone (ACTH);
- -
- Follicle-stimulating hormone (FSH) and luteinizing hormone (LH);
- -
- Growth hormone (GH);
- -
- Prolactin (PRL).
- Intermediate:
- -
- Melanocyte-stimulating hormone (MSH).
- Posterior:
- -
- Antidiuretic hormone (ADH);
- -
- Oxytocin (OXT).
3.1.1. Hypothalamic-Pituitary-Thyroid Axis
3.1.2. Hypothalamic-Pituitary-Adrenal (HPA) Axis
3.1.3. Hypothalamic-Pituitary-Gonadal (HPG) Axis
3.1.4. Growth Hormone—IGF-1 Axis
3.1.5. Prolactin
3.1.6. Anti-Diuretic Hormone (ADH)
3.1.7. Oxytocin
3.2. Bone Metabolism
3.3. Regulation of Food Intake
3.3.1. Adiponectin
3.3.2. Leptin
3.3.3. Cholecystokinin (CCK)
3.3.4. Peptide YY (PYY)
3.3.5. Ghrelin
3.4. Anorexia Nervosa vs. Constitutional Thinness (CT)
3.4.1. Similarities of AN and CT
3.4.2. CT in between AN and Control
3.4.3. AN Differing from CT and Control
3.4.4. AN and CT Diametrically Opposed
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misra, M.; Miller, K.K.; Almazan, C.; Ramaswamy, K.; Lapcharoensap, W.; Worley, M.; Neubauer, G.; Herzog, D.B.; Klibanski, A. Alterations in cortisol secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J. Clin. Endocrinol. Metab. 2004, 89, 4972–4980. [Google Scholar] [CrossRef] [Green Version]
- Estour, B.; Germain, N.; Diconne, E.; Frere, D.; Cottet-Emard, J.M.; Carrot, G.; Lang, F.; Galusca, B. Hormonal profile heterogeneity and short-term physical risk in restrictive anorexia nervosa. J. Clin. Endocrinol. Metab. 2010, 95, 2203–2210. [Google Scholar] [CrossRef] [Green Version]
- Aschettino-Manevitz, D.L.; Ornstein, R.M.; Meyer Sterling, W.; Kohn, N.; Fisher, M. Triiodothyronine (T3) and metabolic rate in adolescents with eating disorders: Is there a correlation? Eat. Weight Disord. 2012, 17, e252–e258. [Google Scholar] [CrossRef]
- Swenne, I.; Rosling, A. Do thyroid hormones mediate the effects of starvation on mood in adolescent girls with eating disorders? Psychoneuroendocrinology 2010, 35, 1517–1524. [Google Scholar] [CrossRef]
- Swenne, I.; Stridsberg, M.; Thurfjell, B.; Rosling, A. Triiodothyronine is an indicator of nutritional status in adolescent girls with eating disorders. Horm. Res. 2009, 71, 268–275. [Google Scholar] [CrossRef]
- Kaplan, R. Thyroxine abuse. Aust. N. Z. J. Psychiatry 1998, 32, 464–465. [Google Scholar]
- Boyar, R.M.; Hellman, L.D.; Roffwarg, H.; Katz, J.; Zumoff, B.; O’Connor, J.; Bradlow, H.L.; Fukushima, D.K. Cortisol secretion and metabolism in anorexia nervosa. N. Engl. J. Med. 1977, 296, 190–193. [Google Scholar] [CrossRef]
- Stoving, R.K. Mechanisms in endocrinology: Anorexia nervosa and endocrinology: A clinical update. Eur. J. Endocrinol. 2019, 180, R9–R27. [Google Scholar] [CrossRef] [Green Version]
- Misra, M.; Klibanski, A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology 2011, 93, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Grinspoon, S.; Thomas, L.; Miller, K.; Pitts, S.; Herzog, D.; Klibanski, A. Changes in regional fat redistribution and the effects of estrogen during spontaneous weight gain in women with anorexia nervosa. Am. J. Clin. Nutr. 2001, 73, 865–869. [Google Scholar] [CrossRef] [Green Version]
- Schorr, M.; Miller, K.K. The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat. Rev. Endocrinol. 2017, 13, 174–186. [Google Scholar] [CrossRef]
- Van Binsbergen, C.J.; Coelingh Bennink, H.J.; Odink, J.; Haspels, A.A.; Koppeschaar, H.P. A comparative and longitudinal study on endocrine changes related to ovarian function in patients with anorexia nervosa. J. Clin. Endocrinol. Metab. 1990, 71, 705–711. [Google Scholar] [CrossRef]
- Miller, K.K.; Grinspoon, S.; Gleysteen, S.; Grieco, K.A.; Ciampa, J.; Breu, J.; Herzog, D.B.; Klibanski, A. Preservation of neuroendocrine control of reproductive function despite severe undernutrition. J. Clin. Endocrinol. Metab. 2004, 89, 4434–4438. [Google Scholar] [CrossRef] [Green Version]
- Jacoangeli, F.; Masala, S.; Staar Mezzasalma, F.; Fiori, R.; Martinetti, A.; Ficoneri, C.; Novi, B.; Pierangeli, S.; Marchetti, G.; Simonetti, G.; et al. Amenorrhea after weight recover in anorexia nervosa: Role of body composition and endocrine abnormalities. Eat. Weight Disord. 2006, 11, e20–e26. [Google Scholar] [CrossRef]
- Latzer, I.T.; Kidron-Levy, H.; Stein, D.; Levy, A.E.; Yosef, G.; Ziv-Baran, T.; Dubnov-Raz, G. Predicting menstrual recovery in adolescents with anorexia nervosa using body fat percent estimated by bioimpedance analysis. J. Adolesc. Health 2019, 64, 454–460. [Google Scholar] [CrossRef]
- Misra, M.; Katzman, D.; Miller, K.K.; Mendes, N.; Snelgrove, D.; Russell, M.; Goldstein, M.A.; Ebrahimi, S.; Clauss, L.; Weigel, T.; et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J. Bone Min. Res. 2011, 26, 2430–2438. [Google Scholar] [CrossRef] [Green Version]
- Misra, M.; Katzman, D.K.; Estella, N.M.; Eddy, K.T.; Weigel, T.; Goldstein, M.A.; Miller, K.K.; Klibanski, A. Impact of physiologic estrogen replacement on anxiety symptoms, body shape perception, and eating attitudes in adolescent girls with anorexia nervosa: Data from a randomized controlled trial. J. Clin. Psychiatry 2013, 74, e765–e771. [Google Scholar] [CrossRef] [Green Version]
- Golden, N.H.; Kreitzer, P.; Jacobson, M.S.; Chasalow, F.I.; Schebendach, J.; Freedman, S.M.; Shenker, I.R. Disturbances in growth hormone secretion and action in adolescents with anorexia nervosa. J. Pediatr. 1994, 125, 655–660. [Google Scholar] [CrossRef]
- Keeler, J.L.; Robinson, L.; Keeler-Schäffeler, R.; Dalton, B.; Treasure, J.; Himmerich, H. Growth factors in anorexia nervosa: A systematic review and meta-analysis of cross-sectional and longitudinal data. World J. Biol. Psychiatry 2022, 23, 582–600. [Google Scholar] [CrossRef]
- Hotta, M.; Fukuda, I.; Sato, K.; Hizuka, N.; Shibasaki, T.; Takano, K. The relationship between bone turnover and body weight, serum insulin-like growth factor (IGF) I, and serum IGF-binding protein levels in patients with anorexia nervosa. J. Clin. Endocrinol. Metab. 2000, 85, 200–206. [Google Scholar] [CrossRef]
- Argente, J.; Caballo, N.; Barrios, V.; Munoz, M.T.; Pozo, J.; Chowen, J.A.; Hernandez, M. Disturbances in the growth hormone-insulin-like growth factor axis in children and adolescents with different eating disorders. Horm. Res. 1997, 48 (Suppl. S4), 16–18. [Google Scholar] [CrossRef]
- Fazeli, P.K.; Lawson, E.A.; Faje, A.T.; Eddy, K.T.; Lee, H.; Fiedorek, F.T.; Breggia, A.; Gaal, I.M.; DeSanti, R.; Klibanski, A. Treatment with a Ghrelin Agonist in Outpatient Women With Anorexia Nervosa: A Randomized Clinical Trial. J. Clin. Psychiatry 2018, 79, 7823. [Google Scholar] [CrossRef]
- Bahia, A.; Chu, E.S.; Mehler, P.S. Polydipsia and hyponatremia in a woman with anorexia nervosa. Int. J. Eat. Disord. 2011, 44, 186–188. [Google Scholar] [CrossRef]
- Puckett, L.; Grayeb, D.; Khatri, V.; Cass, K.; Mehler, P. A comprehensive review of complications and new findings associated with anorexia nervosa. J. Clin. Med. 2021, 10, 2555. [Google Scholar] [CrossRef]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.; Decaux, G.; Fenske, W.; Hoorn, E.J.; Ichai, C. Clinical Practice Guideline Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol. Dial. Transplant. 2014, 29, i1–i39. [Google Scholar] [CrossRef] [Green Version]
- Lawson, E.A.; Donoho, D.A.; Blum, J.I.; Meenaghan, E.M.; Misra, M.; Herzog, D.B.; Sluss, P.M.; Miller, K.K.; Klibanski, A. Decreased nocturnal oxytocin levels in anorexia nervosa are associated with low bone mineral density and fat mass. J. Clin. Psychiatry 2011, 72, 1546–1551. [Google Scholar] [CrossRef] [Green Version]
- Lawson, E.A.; Holsen, L.M.; Santin, M.; DeSanti, R.; Meenaghan, E.; Eddy, K.T.; Herzog, D.B.; Goldstein, J.M.; Klibanski, A. Postprandial oxytocin secretion is associated with severity of anxiety and depressive symptoms in anorexia nervosa. J. Clin. Psychiatry 2013, 74, e451–e457. [Google Scholar] [CrossRef] [Green Version]
- Culbert, K.M.; Racine, S.E.; Klump, K.L. Hormonal Factors and Disturbances in Eating Disorders. Curr. Psychiatry Rep. 2016, 18, 65. [Google Scholar] [CrossRef]
- Schorr, M.; Marengi, D.A.; Pulumo, R.L.; Yu, E.; Eddy, K.T.; Klibanski, A.; Miller, K.K.; Lawson, E.A. Oxytocin and Its Relationship to Body Composition, Bone Mineral Density, and Hip Geometry across the Weight Spectrum. J. Clin. Endocrinol. Metab. 2017, 102, 2814–2824. [Google Scholar] [CrossRef] [Green Version]
- Faje, A.T.; Karim, L.; Taylor, A.; Lee, H.; Miller, K.K.; Mendes, N.; Meenaghan, E.; Goldstein, M.A.; Bouxsein, M.L.; Misra, M.; et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J. Clin. Endocrinol. Metab. 2013, 98, 1923–1929. [Google Scholar] [CrossRef] [Green Version]
- Faje, A.T.; Fazeli, P.K.; Miller, K.K.; Katzman, D.K.; Ebrahimi, S.; Lee, H.; Mendes, N.; Snelgrove, D.; Meenaghan, E.; Misra, M.; et al. Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int. J. Eat. Disord. 2014, 47, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Bredella, M.A.; Misra, M.; Miller, K.K.; Klibanski, A.; Gupta, R. Trabecular structure analysis of the distal radius in adolescent patients with anorexia nervosa using ultra high resolution flat panel based volume CT. J. Musculoskelet. Neuronal Interact. 2008, 8, 315. [Google Scholar]
- Lawson, E.A.; Miller, K.K.; Bredella, M.A.; Phan, C.; Misra, M.; Meenaghan, E.; Rosenblum, L.; Donoho, D.; Gupta, R.; Klibanski, A. Hormone predictors of abnormal bone microarchitecture in women with anorexia nervosa. Bone 2010, 46, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Misra, M.; Klibanski, A. Bone metabolism in adolescents with anorexia nervosa. J. Endocrinol. Investig. 2011, 34, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Fazeli, P.K.; Klibanski, A. Effects of Anorexia Nervosa on Bone Metabolism. Endocr. Rev. 2018, 39, 895–910. [Google Scholar] [CrossRef]
- Robinson, L.; Micali, N.; Misra, M. Eating disorders and bone metabolism in women. Curr. Opin. Pediatr. 2017, 29, 488–496. [Google Scholar] [CrossRef]
- Tomoda, K.; Yoshikawa, M.; Itoh, T.; Tamaki, S.; Fukuoka, A.; Komeda, K.; Kimura, H. Elevated circulating plasma adiponectin in underweight patients with COPD. Chest 2007, 132, 135–140. [Google Scholar] [CrossRef]
- Tural, U.; Iosifescu, D.V. Adiponectin in anorexia nervosa and its modifiers: A meta-regression study. Int. J. Eat. Disord. 2022, 55, 1279–1290. [Google Scholar] [CrossRef]
- Tyszkiewicz-Nwafor, M.; Jowik, K.; Paszynska, E.; Dutkiewicz, A.; Słopien, A.; Dmitrzak-Weglarz, M. Expression of immune-related proteins and their association with neuropeptides in adolescent patients with anorexia nervosa. Neuropeptides 2022, 91, 102214. [Google Scholar] [CrossRef]
- Tyszkiewicz-Nwafor, M.; Slopien, A.; Dmitrzak-Węglarz, M.; Rybakowski, F. Adiponectin and resistin in acutely ill and weight-recovered adolescent anorexia nervosa: Association with psychiatric symptoms. World J. Biol. Psychiatry 2019, 20, 723–731. [Google Scholar] [CrossRef]
- Uzum, A.K.; Aydin, M.M.; Tutuncu, Y.; Omer, B.; Kiyan, E.; Alagol, F. Serum ghrelin and adiponectin levels are increased but serum leptin level is unchanged in low weight Chronic Obstructive Pulmonary Disease patients. Eur. J. Intern. Med. 2014, 25, 364–369. [Google Scholar] [CrossRef]
- Iwahashi, H.; Funahashi, T.; Kurokawa, N.; Sayama, K.; Fukuda, E.; Okita, K.; Imagawa, A.; Yamagata, K.; Shimomura, I.; Miyagawa, J.I.; et al. Plasma adiponectin levels in women with anorexia nervosa. Horm. Metab. Res. 2003, 35, 537–540. [Google Scholar] [CrossRef]
- Housova, J.; Anderlova, K.; Krizova, J.; Haluzikova, D.; Kremen, J.; Kumstyrova, T.; Papezova, H.; Haluzik, M. Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa. J. Clin. Endocrinol. Metab. 2005, 90, 1366–1370. [Google Scholar] [CrossRef] [Green Version]
- Pannacciulli, N.; Vettor, R.; Milan, G.; Granzotto, M.; Catucci, A.; Federspil, G.; De Giacomo, P.; Giorgino, R.; De Pergola, G. Anorexia nervosa is characterized by increased adiponectin plasma levels and reduced nonoxidative glucose metabolism. J. Clin. Endocrinol. Metab. 2003, 88, 1748–1752. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.; Zhang, X.; Chen, D.; Li, Z. The controversial role of adiponectin in appetite regulation of animals. Nutrients 2021, 13, 3387. [Google Scholar] [CrossRef]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Hebebrand, J.; van der Heyden, J.; Devos, R.; Kopp, W.; Herpertz, S.; Remschmidt, H.; Herzog, W. Plasma concentrations of obese protein in anorexia nervosa. Lancet 1995, 346, 1624–1625. [Google Scholar] [CrossRef]
- Herpertz, S.; Wagner, R.; Albers, N.; Blum, W.F.; Pelz, B.; Langkafel, M.; Kopp, W.; Henning, A.; Oberste-Berghaus, C.; Mann, K.; et al. Circadian plasma leptin levels in patients with anorexia nervosa: Relation to insulin and cortisol. Horm. Res. 1998, 50, 197–204. [Google Scholar] [CrossRef]
- Haluzik, M.; Papezova, M.; Nedvidkova, J.; Kabrt, J. Serum leptin levels in patients with anorexia nervosa before and after partial refeeding, relationships to serum lipids and biochemical nutritional parameters. Physiol. Res. 1999, 48, 197–202. [Google Scholar]
- Exner, C.; Hebebrand, J.; Remschmidt, H.; Wewetzer, C.; Ziegler, A.; Herpertz, S.; Schweiger, U.; Blum, W.F.; Preibisch, G.; Heldmaier, G.; et al. Leptin suppresses semi-starvation induced hyperactivity in rats: Implications for anorexia nervosa. Mol. Psychiatry 2000, 5, 476–481. [Google Scholar]
- Hebebrand, J.; Exner, C.; Hebebrand, K.; Holtkamp, C.; Casper, R.C.; Remschmidt, H.; Herpertz-Dahlmann, B.; Klingenspor, M. Hyperactivity in patients with anorexia nervosa and in semistarved rats: Evidence for a pivotal role of hypoleptinemia. Physiol. Behav. 2003, 79, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Dalle Grave, R.; Calugi, S.; Marchesini, G. Compulsive exercise to control shape or weight in eating disorders: Prevalence, associated features, and treatment outcome. Compr. Psychiatry 2008, 49, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Katzman, D.K.; Kirsh, C. Compulsive physical activity in adolescents with anorexia nervosa: A psychobehavioral spiral of pathology. J. Nerv. Ment. Dis. 1999, 187, 336–342. [Google Scholar] [CrossRef]
- El Ghoch, M.; Calugi, S.; Pellegrini, M.; Milanese, C.; Busacchi, M.; Battistini, N.C.; Bernabe, J.; Dalle Grave, R. Measured physical activity in anorexia nervosa: Features and treatment outcome. Int. J. Eat. Disord. 2013, 46, 709–712. [Google Scholar] [CrossRef]
- Hechler, T.; Rieger, E.; Touyz, S.; Beumont, P.; Plasqui, G.; Westerterp, K. Physical activity and body composition in outpatients recovering from anorexia nervosa and healthy controls. Adapt. Phys. Act. Q. 2008, 25, 159–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gummer, R.; Giel, K.E.; Schag, K.; Resmark, G.; Junne, F.P.; Becker, S.; Zipfel, S.; Teufel, M. High Levels of Physical Activity in Anorexia Nervosa: A Systematic Review. Eur. Eat. Disord. Rev. 2015, 23, 333–344. [Google Scholar] [CrossRef]
- Kopp, W.; Blum, W.F.; von Prittwitz, S.; Ziegler, A.; Lubbert, H.; Emons, G.; Herzog, W.; Herpertz, S.; Deter, H.C.; Remschmidt, H.; et al. Low leptin levels predict amenorrhea in underweight and eating disordered females. Mol. Psychiatry 1997, 2, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Matejek, N.; Weimann, E.; Witzel, C.; Molenkamp, G.; Schwidergall, S.; Bohles, H. Hypoleptinaemia in patients with anorexia nervosa and in elite gymnasts with anorexia athletica. Int. J. Sports Med. 1999, 20, 451–456. [Google Scholar] [CrossRef]
- Antel, J.; Tan, S.; Grabler, M.; Ludwig, C.; Lohkemper, D.; Brandenburg, T.; Barth, N.; Hinney, A.; Libuda, L.; Remy, M.; et al. Rapid amelioration of anorexia nervosa in a male adolescent during metreleptin treatment including recovery from hypogonadotropic hypogonadism. Eur. Child Adolesc. Psychiatry 2022, 31, 1573–1579. [Google Scholar] [CrossRef]
- Kim, Y.; Hersch, J.; Bodell, L.P.; Schebendach, J.; Hildebrandt, T.; Walsh, B.T.; Mayer, L.E.S. The association between leptin and weight maintenance outcome in anorexia nervosa. Int. J. Eat. Disord. 2021, 54, 527–534. [Google Scholar] [CrossRef]
- Milos, G.; Antel, J.; Kaufmann, L.K.; Barth, N.; Koller, A.; Tan, S.; Wiesing, U.; Hinney, A.; Libuda, L.; Wabitsch, M.; et al. Short-term metreleptin treatment of patients with anorexia nervosa: Rapid on-set of beneficial cognitive, emotional, and behavioral effects. Transl. Psychiatry 2020, 10, 303. [Google Scholar] [CrossRef] [PubMed]
- Gradl-Dietsch, G.; Milos, G.; Wabitsch, M.; Bell, R.; Tschöpe, F.; Antel, J.; Hebebrand, J. Rapid Emergence of Appetite and Hunger Resulting in Weight Gain and Improvement of Eating Disorder Symptomatology during and after Short-Term Off-Label Metreleptin Treatment of a Patient with Anorexia Nervosa. Obes. Facts 2023, 16, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Hebebrand, J.; Milos, G.; Wabitsch, M.; Teufel, M.; Führer, D.; Bühlmeier, J.; Libuda, L.; Ludwig, C.; Antel, J. Clinical Trials Required to Assess Potential Benefits and Side Effects of Treatment of Patients with Anorexia Nervosa with Recombinant Human Leptin. Front. Psychol. 2019, 10, 769. [Google Scholar] [CrossRef] [Green Version]
- Achamrah, N.; Coëffier, M.; Déchelotte, P. Physical activity in patients with anorexia nervosa. Nutr. Rev. 2016, 74, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Gianini, L.M.; Klein, D.A.; Call, C.; Walsh, B.T.; Wang, Y.; Wu, P.; Attia, E. Physical activity and post-treatment weight trajectory in anorexia nervosa. Int. J. Eat. Disord. 2016, 49, 482–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizk, M.; Mattar, L.; Kern, L.; Berthoz, S.; Duclos, J.; Viltart, O.; Godart, N. Physical Activity in Eating Disorders: A Systematic Review. Nutrients 2020, 12, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toutain, M.; Gauthier, A.; Leconte, P. Exercise therapy in the treatment of anorexia nervosa: Its effects depending on the type of physical exercise—A systematic review. Front. Psychiatry 2022, 13, 939856. [Google Scholar] [CrossRef]
- Dittmer, N.; Voderholzer, U.; Mönch, C.; Cuntz, U.; Jacobi, C.; Schlegl, S. Efficacy of a specialized group intervention for compulsive exercise in inpatients with anorexia nervosa: A randomized controlled trial. Psychother. Psychosom. 2020, 89, 161–173. [Google Scholar] [CrossRef]
- Harty, R.F.; Pearson, P.H.; Solomon, T.E.; McGuigan, J.E. Cholecystokinin, vasoactive intestinal peptide and peptide histidine methionine responses to feeding in anorexia nervosa. Regul. Pept. 1991, 36, 141–150. [Google Scholar] [CrossRef]
- Pirke, K.M.; Kellner, M.B.; Friess, E.; Krieg, J.C.; Fichter, M.M. Satiety and cholecystokinin. Int. J. Eat. Disord. 1994, 15, 63–69. [Google Scholar] [CrossRef]
- Geracioti, T.D., Jr.; Liddle, R.A.; Altemus, M.; Demitrack, M.A.; Gold, P.W. Regulation of appetite and cholecystokinin secretion in anorexia nervosa. Am. J. Psychiatry 1992, 149, 958–961. [Google Scholar] [CrossRef]
- Cuntz, U.; Enck, P.; Fruhauf, E.; Lehnert, P.; Riepl, R.L.; Fichter, M.M.; Otto, B. Cholecystokinin revisited: CCK and the hunger trap in anorexia nervosa. PLoS ONE 2013, 8, e54457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, M.; Klibanski, A. Anorexia nervosa and bone. J. Endocrinol. 2014, 221, R163–R176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, F.I.; Seidel, M.; Boehm, I.; Ritschel, F.; Bahnsen, K.; Biemann, R.; Weidner, K.; Roessner, V.; Ehrlich, S. Peptide YY(3-36) concentration in acute- and long-term recovered anorexia nervosa. Eur. J. Nutr. 2020, 59, 3791–3799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.R.; Mancuso, C.; Dreier, M.J.; Asanza, E.; Breithaupt, L.; Slattery, M.; Plessow, F.; Micali, N.; Thomas, J.J.; Eddy, K.T.; et al. Ghrelin and PYY in low-weight females with avoidant/restrictive food intake disorder compared to anorexia nervosa and healthy controls. Psychoneuroendocrinology 2021, 129, 105243. [Google Scholar] [CrossRef]
- Otto, B.; Cuntz, U.; Otto, C.; Heldwein, W.; Riepl, R.L.; Tschop, M.H. Peptide YY release in anorectic patients after liquid meal. Appetite 2007, 48, 301–304. [Google Scholar] [CrossRef]
- Pfluger, P.T.; Kampe, J.; Castaneda, T.R.; Vahl, T.; D’Alessio, D.A.; Kruthaupt, T.; Benoit, S.C.; Cuntz, U.; Rochlitz, H.J.; Moehlig, M.; et al. Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36. J. Clin. Endocrinol. Metab. 2007, 92, 583–588. [Google Scholar] [CrossRef]
- Nakahara, T.; Kojima, S.; Tanaka, M.; Yasuhara, D.; Harada, T.; Sagiyama, K.-I.; Muranaga, T.; Nagai, N.; Nakazato, M.; Nozoe, S.-I. Incomplete restoration of the secretion of ghrelin and PYY compared to insulin after food ingestion following weight gain in anorexia nervosa. J. Psychiatr. Res. 2007, 41, 814–820. [Google Scholar] [CrossRef]
- Otto, B.; Cuntz, U.; Fruehauf, E.; Wawarta, R.; Folwaczny, C.; Riepl, R.L.; Heiman, M.L.; Lehnert, P.; Fichter, M.; Tschop, M. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol. 2001, 145, 669–673. [Google Scholar] [CrossRef] [Green Version]
- Dostalova, I.; Haluzik, M. The role of ghrelin in the regulation of food intake in patients with obesity and anorexia nervosa. Physiol. Res. 2009, 58, 159–170. [Google Scholar] [CrossRef]
- Krsek, M.; Rosicka, M.; Papezova, H.; Krizova, J.; Kotrlikova, E.; Haluz’k, M.; Justova, V.; Lacinova, Z.; Jarkovska, Z. Plasma ghrelin levels and malnutrition: A comparison of two etiologies. Eat. Weight Disord. 2003, 8, 207–211. [Google Scholar] [CrossRef]
- Otto, B.; Tschop, M.; Fruhauf, E.; Heldwein, W.; Fichter, M.; Otto, C.; Cuntz, U. Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology 2005, 30, 577–581. [Google Scholar] [CrossRef]
- Hotta, M.; Ohwada, R.; Akamizu, T.; Shibasaki, T.; Takano, K.; Kangawa, K. Ghrelin increases hunger and food intake in patients with restricting-type anorexia nervosa: A pilot study. Endocr. J. 2009, 56, 1119–1128. [Google Scholar]
- Hotta, M.; Ohwada, R.; Akamizu, T.; Shibasaki, T.; Kangawa, K. Therapeutic potential of ghrelin in restricting-type anorexia nervosa. Methods Enzymol. 2012, 514, 381–398. [Google Scholar] [CrossRef]
- Estour, B.; Marouani, N.; Sigaud, T.; Lang, F.; Fakra, E.; Ling, Y.; Diamonde, A.; Minnion, J.S.; Galusca, B.; Germain, N. Differentiating constitutional thinness from anorexia nervosa in DSM 5 era. Psychoneuroendocrinology 2017, 84, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Pehlivantürk Kızılkan, M.; Akgül, S.; Derman, O.; Kanbur, N. Bone mineral density comparison of adolescents with constitutional thinness and anorexia nervosa. J. Pediatr. Endocrinol. Metab. 2018, 31, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Galusca, B.; Germain, N.; Estour, B. Bone abnormalities in constitutional thinness. Br. J. Nutr. 2009, 102, 1698–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailly, M.; Boscaro, A.; Pereira, B.; Courteix, D.; Germain, N.; Galusca, B.; Boirie, Y.; Thivel, D.; Verney, J. Underweight but not underfat: Is fat-free mass a key factor in constitutionally thin women? Eur. J. Clin. Nutr. 2021, 75, 1764–1770. [Google Scholar] [CrossRef]
- Bailly, M.; Boscaro, A.; Pereira, B.; Féasson, L.; Boirie, Y.; Germain, N.; Galusca, B.; Courteix, D.; Thivel, D.; Verney, J. Is constitutional thinness really different from anorexia nervosa? A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2021, 22, 913–971. [Google Scholar] [CrossRef]
- Bailly, M.; Germain, N.; Galusca, B.; Courteix, D.; Thivel, D.; Verney, J. Definition and diagnosis of constitutional thinness: A systematic review. Br. J. Nutr. 2020, 124, 531–547. [Google Scholar] [CrossRef]
- Tolle, V.; Kadem, M.; Bluet-Pajot, M.T.; Frere, D.; Foulon, C.; Bossu, C.; Dardennes, R.; Mounier, C.; Zizzari, P.; Lang, F.; et al. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J. Clin. Endocrinol. Metab. 2003, 88, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Hormone | Target(s) | Function |
---|---|---|
ACTH | Adrenals | Stimulates the adrenal gland to produce a hormone called cortisol. ACTH is also known as corticotrophin. |
TSH | Thyroid | Stimulates the thyroid gland to secrete its own hormone, which is called thyroxine. TSH is also known as thyrotrophin. |
LH and FSH | Ovaries (women) Testes (men) | Controls reproductive functioning and sexual characteristics. Stimulates the ovaries to produce oestrogen and progesterone and the testes to produce testosterone and sperm. LH and FSH are known collectively as gonadotrophins. LH is also referred to as interstitial cell-stimulating hormone (ICSH) in males. |
PRL | Breasts | Stimulates the breasts to produce milk. This hormone is secreted in large amounts during pregnancy and breastfeeding, but is present at all times in both men and women. |
GH | All cells in the body | Stimulates growth and repair. Research is currently being carried out to identify the functions of GH in adult life. |
MSH | Exact role in humans is unknown. | |
ADH | Kidneys | Controls the blood fluid and mineral levels in the body by affecting water retention by the kidneys. This hormone is also known as vasopressin or arginine vasopressin (AVP). |
Oxytocin | Uterus, breasts | Affects uterine contractions in pregnancy and birth and subsequent release of breast milk. |
Parameters | Comparison |
---|---|
Fat-free mass (FFM) | AN = CT < Control |
Bone mass density (BMD) | AN = CT < Control |
Fat mass (FM) | AN < CT < Control |
Body mass index (BMI) | AN < CT < Control |
Leptin (fasting and 24 h mean) | AN < CT < Control |
Resting metabolic rate (RMR) | AN < CT < Control |
Total energy intake | AN < CT = Control |
Estradiol | AN < CT = Control |
FSH and LH | AN < CT = Control |
IGF-1 | AN < CT = Control |
GH (fasting and mean) | AN > CT = Control |
fT3 | AN < Control < CT |
Mean cortisol | AN > Control > CT |
Fasting cortisol | AN > Control > CT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fricke, C.; Voderholzer, U. Endocrinology of Underweight and Anorexia Nervosa. Nutrients 2023, 15, 3509. https://doi.org/10.3390/nu15163509
Fricke C, Voderholzer U. Endocrinology of Underweight and Anorexia Nervosa. Nutrients. 2023; 15(16):3509. https://doi.org/10.3390/nu15163509
Chicago/Turabian StyleFricke, Christian, and Ulrich Voderholzer. 2023. "Endocrinology of Underweight and Anorexia Nervosa" Nutrients 15, no. 16: 3509. https://doi.org/10.3390/nu15163509
APA StyleFricke, C., & Voderholzer, U. (2023). Endocrinology of Underweight and Anorexia Nervosa. Nutrients, 15(16), 3509. https://doi.org/10.3390/nu15163509