The Impact of Both Individual and Contextual Factors on the Acceptance of Personalized Dietary Advice
Abstract
:1. Introduction
1.1. Within-Person Drivers of the Acceptance of Personalized Dietary Advice
1.2. Between-Person Drivers of the Acceptance of Personalized Dietary Advice
1.3. Current Research
2. Materials and Methods
2.1. Design and Procedure
2.2. Sample
2.3. Measurements
2.3.1. Baseline Measurement
2.3.2. Repeated Measurement
2.4. Data Analysis
3. Results
3.1. Sample
3.2. Within- and between-Individual Differences
3.3. Within-Person and Between-Person Predictors of the Acceptance of Personalized Dietary Advice
3.4. Model Comparison
4. Discussion
4.1. Within-Person Predictors of the Acceptance of Personalized Dietary Advice
4.2. Between-Person Predictors of the Acceptance of Personalized Dietary Advice
4.3. Implications
4.4. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fox, A.; Feng, W.; Asal, V. What is driving global obesity trends? Globalization or “modernization”? Glob. Health 2019, 15, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branca, F.; Lartey, A.; Oenema, S.; Aguayo, V.; Stordalen, G.A.; Richardson, R.; Arvelo, M.; Afshin, A. Transforming the food system to fight non-communicable diseases. BMJ 2019, 364, 24–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennessy, E.A.; Johnson, B.T.; Acabchuk, R.L.; McCloskey, K.; Stewart-James, J. Self-regulation mechanisms in health behavior change: A systematic meta-review of meta-analyses, 2006–2017. Health Psychol. Rev. 2020, 14, 6–42. [Google Scholar] [CrossRef] [PubMed]
- Rankin, A.; Kuznesof, S.; Frewer, L.J.; Orr, K.; Davison, J.; De Almeida, M.D.; Stewart-Knox, B. Public perceptions of personalised nutrition through the lens of Social Cognitive Theory. J. Health Psychol. 2017, 22, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Personalised nutrition and health. BMJ 2018, 361, bmj.k2173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinnette, R.; Narita, A.; Manning, B.; McNaughton, S.A.; Mathers, J.C.; Livingstone, K.M. Does personalized nutrition advice improve dietary intake in healthy adults? A systematic review of randomized controlled trials. Adv. Nutr. 2021, 12, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Brug, J.; Campbell, M.; Van Assema, P. The application and impact of computer-generated personalized nutrition education: A review of the literature. Patient Educ. Couns. 1999, 36, 145–156. [Google Scholar] [CrossRef]
- De Roos, B.; Brennan, L. Personalised interventions—a precision approach for the next generation of dietary intervention studies. Nutrients 2017, 9, 847. [Google Scholar] [CrossRef] [Green Version]
- Reinders, M.J.; Bouwman, E.P.; Van Den Puttelaar, J.; Verain, M.C.D. Consumer acceptance of personalised nutrition: The role of ambivalent feelings and eating context. PLoS ONE 2020, 15, e0231342. [Google Scholar] [CrossRef] [Green Version]
- Berezowska, A.; Fischer, A.R.H.; Ronteltap, A.; Van Der Lans, I.A.; Van Trijp, H.C.M. Consumer adoption of personalised nutrition services from the perspective of a risk–benefit trade-off. Genes Nutr. 2015, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Stewart-Knox, B.; Kuznesof, S.; Robinson, J.; Rankin, A.; Orr, K.; Duffy, M.; Poínhos, R.; Vaz de Almeida, M.D.; Macready, A.; Gallaghere, C.; et al. Factors influencing European consumer uptake of personalised nutrition. Results of a qualitative analysis. Appetite 2013, 66, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Scholz, U. It’s time to think about time in health psychology. Appl. Psychol. Health Well-Being 2019, 11, 173–186. [Google Scholar] [CrossRef]
- Betts, J.A.; Gonzalez, J.T. Personalised nutrition: What makes you so special? Nutr. Bull. 2016, 41, 353–359. [Google Scholar] [CrossRef]
- Rothschild, M.L. Carrots, sticks, and promises: A conceptual framework for the management of public health and social issue behaviors. J. Mark. 1999, 63, 24–37. [Google Scholar] [CrossRef]
- Verstuyf, J.; Patrick, H.; Vansteenkiste, M.; Teixeira, P.J. Motivational dynamics of eating regulation: A self-determination theory perspective. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Stewart-Knox, B.J.; Bunting, B.P.; Gilpin, S.; Parr, H.J.; Pinhao, S.; Strain, J.J.; De Almeida, M.D.V.; Gibney, M. Attitudes toward genetic testing and personalised nutrition in a representative sample of European consumers. Br. J. Nutr. 2009, 101, 982–989. [Google Scholar] [CrossRef]
- Berezowska, A.; Fischer, A.R.H.; Van Trijp, H.C.M. The moderating effect of motivation on health-related decision-making. Psychol. Health 2017, 32, 665–685. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Reinders, M.J.; Verain, M.C.D.; Snoek, H.M. The development of a single-item Food Choice Questionnaire. Food Qual. Prefer. 2019, 71, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Rankin, A.; Bunting, B.P.; Poínhos, R.; Van Der Lans, I.A.; Fischer, A.R.H.; Kuznesof, S.; Almeida, M.D.V.; Markovina, J.; Frewer, L.J.; Stewart-Knox, B.J. Food choice motives, attitude towards and intention to adopt personalised nutrition. Public Health Nutr. 2018, 21, 2606–2616. [Google Scholar] [CrossRef] [Green Version]
- Phan, U.T.; Chambers, I.V.E. Application of an eating motivation survey to study eating occasions. J. Sens. Stud. 2016, 31, 114–123. [Google Scholar] [CrossRef]
- Verain, M.C.D.; Van Den Puttelaar, J.; Zandstra, E.H.; Lion, R.; De Vogel-Van Den Bosch, J.; Hoonhout, H.C.M.; Onwezen, M.C. Variability of Food Choice Motives: Two Dutch studies showing variation across meal moment, location and social context. Food Qual. Prefer. 2022, 98, 104505. [Google Scholar] [CrossRef]
- Stewart-Knox, B.J.; Markovina, J.; Rankin, A.; Bunting, B.P.; Kuznesof, S.; Fischer, A.R.H.; van der Lans, I.A.; Poínhos, R.; De Almeida, M.D.V.; Gibney, M.; et al. Making personalised nutrition the easy choice: Creating policies to break down the barriers and reap the benefits. Food Policy 2016, 63, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Forman, E.M.; Goldstein, S.P.; Zhang, F.; Evans, B.C.; Manasse, S.M.; Butryn, M.L.; Juarascio, A.S.; Abichandani, P.; Martin, G.J.; Foster, G.D. OnTrack: Development and feasibility of a smartphone app designed to predict and prevent dietary lapses. Transl. Behav. Med. 2019, 9, 236–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart-Knox, B.; Gibney, E.R.; Abrahams, M.; Rankin, A.; Bryant, E.; Oliveira, B.M.; Poínhos, R. Chapter 10 - Personalized Nutrition: Making It Happen. In Trends in Personalized Nutrition; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 261–276. [Google Scholar]
- Bouwman, E.P.; Reinders, M.J.; Galama, J.; Verain, M.C.D. Context matters: Self-regulation of healthy eating at different eating occasions. Appl. Psychol. Health Well-Being 2021, 14, 140–157. [Google Scholar] [CrossRef]
- Millar, B.M. Clocking self-regulation: Why time of day matters for health psychology. Health Psychol. Rev. 2017, 11, 345–357. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Poínhos, R.; Van Der Lans, I.A.; Rankin, A.; Fischer, A.R.H.; Bunting, B.; Kuznesof, S.; Stewart-Knox, B.; Frewer, L.J. Psychological determinants of consumer acceptance of personalised nutrition in 9 European countries. PLoS ONE 2014, 9, e110614. [Google Scholar] [CrossRef] [Green Version]
- Boland, W.A.; Connell, P.M.; Vallen, B. Time of day effects on the regulation of food consumption after activation of health goals. Appetite 2013, 70, 47–52. [Google Scholar] [CrossRef]
- Francis, Z.; Mata, J.; Flückiger, L.; Job, V. Morning resolutions, evening disillusions: Theories of willpower affect how health behaviours change across the day. Eur. J. Personal. 2020, 35, 398–415. [Google Scholar] [CrossRef]
- Berezowska, A.; Fischer, A.R.H.; Ronteltap, A.; Kuznesof, S.; Macready, A.; Fallaize, R.; Van Trijp, H.C.M. Understanding consumer evaluations of personalised nutrition services in terms of the privacy calculus: A qualitative study. Public Health Genom. 2014, 17, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Ronteltap, A.; Van Trijp, H.C.M.; Renes, R.J.; Frewer, L.J. Consumer acceptance of technology-based food innovations: Lessons for the future of nutrigenomics. Appetite 2007, 49, 1–17. [Google Scholar] [CrossRef]
- Lee, J.M.; Rha, J.Y. Ambivalence toward personalized technology and intention to use location-based mobile commerce: The moderating role of gender. Int. J. Electron. Commer. Stud. 2017, 8, 197–218. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; Van Dijk, H.; De Jonge, J.; Rowe, G.; Frewer, L.J. Attitudes and attitudinal ambivalence change towards nanotechnology applied to food production. Public Underst. Sci. 2013, 22, 817–831. [Google Scholar] [CrossRef]
- Jonas, K.; Broemer, P.; Diehl, M. Attitudinal ambivalence. Eur. Rev. Soc. Psychol. 2000, 11, 35–74. [Google Scholar] [CrossRef]
- Fischer, A.R.H.; Berezowska, A.; Van Der Lans, I.A.; Ronteltap, A.; Rankin, A.; Kuznesof, A.; Poínhos, R.; Stewart-Knox, B.; Frewer, L.J. Willingness to pay for personalized nutrition across Europe. Eur. J. Public Health 2016, 26, 640–644. [Google Scholar] [CrossRef]
- Alford, S.H.; McBride, C.M.; Reid, R.J.; Larson, E.B.; Baxevanis, A.D.; Brody, L.C. Participation in genetic testing research varies by social group. Public Health Genom. 2011, 14, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Trull, T.J.; Ebner-Priemer, U.W. Ambulatory assessment in psychopathology research: A review of recommended reporting guidelines and current practices. J. Abnorm. Psychol. 2020, 129, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Berndsen, M.; Van Der Pligt, J. Ambivalence towards meat. Appetite 2004, 42, 71–78. [Google Scholar] [CrossRef]
- Steptoe, A.; Pollard, T.M.; Wardle, J. Development of a measure of the motives underlying the selection of food: The food choice questionnaire. Appetite 1995, 25, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Wilson-Barlow, L.; Hollins, T.R.; Clopton, J.R. Construction and validation of the healthy eating and weight self-efficacy (HEWSE) scale. Eat. Behav. 2014, 15, 490–492. [Google Scholar] [CrossRef]
- Hoffman, L. Longitudinal Analysis: Modeling Within-Person Fluctuation and Change, 1st ed.; Routledge: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Schneider, S.; Junghaenel, D.U.; Keefe, F.J.; Schwartz, J.E.; Stone, A.A.; Broderick, J.E. Individual differences in the day-to-day variability of pain, fatigue, and well-being in patients with rheumatic disease: Associations with psychological variables. Pain® 2012, 153, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inauen, J.; Shrout, P.E.; Bolger, N.; Stadler, G.; Scholz, U. Mind the gap? An intensive longitudinal study of between-person and within-person intention-behavior relations. Ann. Behav. Med. 2016, 50, 516–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verain, M.C.D.; Bouwman, E.P.; Galama, J.; Reinders, M.J. Healthy eating strategies: Individually different or context-dependent? Appetite 2021, 168, 105759. [Google Scholar] [CrossRef] [PubMed]
- Van’t Riet, J.; Sijtsema, S.J.; Dagevos, H.; De Bruijn, G.J. The importance of habits in eating behaviour. An overview and recommendations for future research. Appetite 2011, 57, 585–596. [Google Scholar] [CrossRef]
- Sheeran, P.; Maki, A.; Montanaro, E.; Avishai-Yitshak, A.; Bryan, A.; Klein, W.M.P.; Miles, E.; Rothman, A.J. The impact of changing attitudes, norms, and self-efficacy on health-related intentions and behavior: A meta-analysis. Health Psychol. 2016, 35, 1178–1188. [Google Scholar] [CrossRef]
- Chung, A.; Rimal, R.N. Social norms: A review. Rev. Commun. Res. 2016, 4, 1–28. [Google Scholar] [CrossRef]
- Prestwich, A.; Kellar, I.; Parker, R.; MacRae, S.; Learmonth, M.; Sykes, B.; Taylor, N.; Castle, H. How can self-efficacy be increased? Meta-analysis of dietary interventions. Health Psychol. Rev. 2014, 8, 270–285. [Google Scholar] [CrossRef]
- Machín, L.; Giménez, A.; Vidal, L.; Ares, G. Influence of context on motives underlying food choice. J. Sens. Stud. 2014, 29, 313–324. [Google Scholar] [CrossRef]
- An, R. Weekend-weekday differences in diet among US adults, 2003–2012. Ann. Epidemiol. 2016, 26, 57–65. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Bonnet, C.; Bouamra-Mechemache, Z.; Réquillart, V.; Treich, N. Regulating meat consumption to improve health, the environment and animal welfare. Food Policy 2020, 97, 101847. [Google Scholar] [CrossRef]
- Campbell, T.C. A plant-based diet and animal protein: Questioning dietary fat and considering animal protein as the main cause of heart disease. J. Geriatr. Cardiol. 2017, 14, 331–337. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-based diets for personal, population, and planetary health. Adv. Nutr. 2019, 10, S275–S283. [Google Scholar] [CrossRef]
- Medawar, E.; Huhn, S.; Villringer, A.; Veronica Witte, A. The effects of plant-based diets on the body and the brain: A systematic review. Transl. Psychiatry 2019, 9, 226. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2022, 14, 29. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemp. Educ. Psychol. 2020, 61, 101860. [Google Scholar] [CrossRef]
- Poelman, M.P.; Gillebaart, M.; Schlinkert, C.; Dijkstra, S.C.; Derksen, E.; Mensink, F.; Hermans, R.C.J.; Aardening, P.; de Ridder, D.; de Vet, E. Eating behavior and food purchases during the COVID-19 lockdown: A cross-sectional study among adults in the Netherlands. Appetite 2021, 157, 105002. [Google Scholar] [CrossRef]
- Dijksterhuis, G.B.; van Bergen, G.; de Wijk, R.A.; Zandstra, E.H.; Kaneko, D.; Vingerhoeds, M. Exploring impact on eating behaviour, exercise and well-being during COVID-19 restrictions in the Netherlands. Appetite 2022, 168, 105720. [Google Scholar] [CrossRef]
Week 1 | Week 2 | Week 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Condition | Monday | Tuesday | Thursday | Monday | Tuesday | Thursday | Monday | Tuesday | Thursday |
1 | Breakfast | Lunch | Dinner | Dinner | Breakfast | Lunch | Lunch | Dinner | Breakfast |
2 | Breakfast | Dinner | Lunch | Lunch | Breakfast | Dinner | Dinner | Lunch | Breakfast |
3 | Lunch | Breakfast | Dinner | Dinner | Lunch | Breakfast | Breakfast | Dinner | Lunch |
4 | Lunch | Dinner | Breakfast | Breakfast | Lunch | Dinner | Dinner | Breakfast | Lunch |
5 | Dinner | Breakfast | Lunch | Lunch | Dinner | Breakfast | Breakfast | Lunch | Dinner |
6 | Dinner | Lunch | Breakfast | Breakfast | Dinner | Lunch | Lunch | Breakfast | Dinner |
Mean | Standard Deviation | Within-Person Variance (%) | Intra Class Coefficient | ||
---|---|---|---|---|---|
Between-Person | Within-Person | ||||
Acceptance of personalized dietary advice | 4.4 | 1.28 | 1.09 | 42 | 0.58 |
Self-Regulation | |||||
---|---|---|---|---|---|
Estimate | SE | t | Confidence Intervals | ||
Fixed effects | 2.5% | 97.5% | |||
Intercept | −0.04 | 0.53 | 0.74 | −0.64 | 1.43 |
First level | |||||
Mealtime1 (lunch, breakfast) a | −0.14 | 0.05 ** | −2.79 | −0.23 | −0.04 |
Mealtime2 (lunch, dinner) a | −0.11 | 0.05 * | −2.13 | −0.22 | −0.0 |
Social Environment (alone, with others) b | −0.01 | 0.05 | −0.29 | −0.11 | 0.08 |
Physical Environment (at home, out of home) c | −0.28 | 0.06 *** | −4.80 | −0.40 | −0.17 |
Intention to eat healthily | 0.26 | 0.03 *** | 8.07 | 0.20 | 0.33 |
Health motive | 0.08 | 0.05 | 1.70 | −0.01 | 0.18 |
Weight control motive | 0.15 | 0.04 *** | 4.10 | 0.08 | 0.23 |
Healthy-eating self-efficacy | 0.27 | 0.04 *** | 7.12 | 0.19 | 0.34 |
Second level | |||||
Ambivalence | −0.03 | 0.05 | −0.58 | −0.13 | 0.07 |
Eating context as barrier | −0.16 | 0.06 ** | −2.79 | −0.26 | −0.05 |
Social rejection as barrier | 0.08 | 0.05 | 1.54 | −0.02 | 0.18 |
Risk-benefit Perception | 0.21 | 0.05 *** | 4.08 | 0.11 | 0.31 |
Sex (male, female) d | 0.04 | 0.12 | 0.34 | −0.19 | 0.27 |
Age | −0.01 | 0.004 * | −2.24 | −0.02 | −0.001 |
Education1 (low, medium) e | −0.03 | 0.15 | −0.18 | −0.32 | 0.27 |
Education2 (low, high) e | 0.01 | 0.16 | 0.06 | −0.31 | 0.32 |
Grouping | Effect | Variance | SD | Correlation | |||||
---|---|---|---|---|---|---|---|---|---|
Username | Intercept | 2.41 | 1.55 | ||||||
Mealtime1 (lunch, breakfast) | 0.07 | 0.26 | −0.39 | ||||||
Mealtime2 (lunch, dinner) | 0.15 | 0.39 | 0.11 | −0.25 | |||||
Intention to eat healthily | 0.09 | 0.30 | −0.04 | 0.42 | 0.52 | ||||
Health motive | 0.14 | 0.37 | −0.31 | −0.16 | −0.08 | −0.46 | |||
Weight control motive | 0.08 | 0.28 | −0.83 | 0.64 | 0.10 | 0.37 | −0.15 | ||
Healthy-eating self-efficacy | 0.09 | 0.30 | 0.01 | −0.34 | −0.77 | −0.58 | −0.03 | −0.32 | |
Residual | 0.63 | 0.79 |
Model | df | AIC | BIC | Loglik | Deviance | X2 | X2 df | p |
---|---|---|---|---|---|---|---|---|
model 1 (no predictors) | 3 | 8129 | 8146 | −4061 | 8123 | |||
model 2 (level 1 predictors) | 38 | 7177 | 7398 | −3551 | 7101 | 1022.5 | 35 | <0.001 |
model 3 (level 1 and level 2 predictors) | 46 | 7153 | 7419 | −3530 | 7061 | 40.65 | 8 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouwman, E.P.; Reinders, M.J.; Galama, J.; Verain, M.C.D. The Impact of Both Individual and Contextual Factors on the Acceptance of Personalized Dietary Advice. Nutrients 2022, 14, 1866. https://doi.org/10.3390/nu14091866
Bouwman EP, Reinders MJ, Galama J, Verain MCD. The Impact of Both Individual and Contextual Factors on the Acceptance of Personalized Dietary Advice. Nutrients. 2022; 14(9):1866. https://doi.org/10.3390/nu14091866
Chicago/Turabian StyleBouwman, Emily P., Machiel J. Reinders, Joris Galama, and Muriel C.D. Verain. 2022. "The Impact of Both Individual and Contextual Factors on the Acceptance of Personalized Dietary Advice" Nutrients 14, no. 9: 1866. https://doi.org/10.3390/nu14091866
APA StyleBouwman, E. P., Reinders, M. J., Galama, J., & Verain, M. C. D. (2022). The Impact of Both Individual and Contextual Factors on the Acceptance of Personalized Dietary Advice. Nutrients, 14(9), 1866. https://doi.org/10.3390/nu14091866