Breast Milk Iodine Concentration (BMIC) as a Biomarker of Iodine Status in Lactating Women and Children <2 Years of Age: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction
2.3. Quality Assessment
2.4. Definitions and Outcomes
3. Results
3.1. Studies Measuring Both UIC and BMIC of Lactating Women
BMIC Cut Off of ≥100 µg/L to Indicate Iodine Sufficiency
3.2. Studies Measuring UIC of Infants and BMIC of Lactating Women
BMIC Cut Off of ≥100 µg/L to Indicate Iodine Sufficiency
4. Discussion
4.1. Factors Influencing BMIC
4.2. BMIC as a Biomarker to Assess Iodine Status in Lactating Women and Children <2 Years of Age
4.3. Why Did Some Lactating Women Classified as Iodine Sufficient by UIC Have a BMIC Less Than the Proposed BMIC Cut Offs (i.e., BMIC Considered Iodine Deficient)?
4.4. Why Did Some Lactating Women Classified as Iodine Deficient by UIC Have a BMIC Equivalent or Higher Than the Proposed BMIC Cut Offs (i.e., BMIC Considered Iodine Sufficient)?
4.5. What Is an Appropriate BMIC Cut Off to Categorise Iodine Sufficiency in Lactating Women and Children <2 Years of Age?
Supplementary Materials
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmermann, M.B.; Boelaert, K. Iodine deficiency and thyroid disorders. Lancet Diabetes Endocrinol. 2015, 3, 286–295. [Google Scholar] [CrossRef]
- Zimmermann, M.B. The role of iodine in human growth and development. Semin. Cell Dev. Biol. 2011, 22, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.N.; Lazarus, J.H.; Moreno-Reyes, R.; Zimmermann, M.B. Consequences of iodine deficiency and excess in pregnant women: An overview of current knowns and unknowns. Am. J. Clin. Nutr. 2016, 104, 918S–923S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candido, A.C.; Morais, N.D.S.D.; Dutra, L.V.; Pinto, C.A.; Franceschini, S.D.C.; Alfenas, R.D.C.G. Insufficient iodine intake in pregnant women in different regions of the world: A systematic review. Arch. Endocrinol. Metab. 2019, 63, 306–311. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Assessment of Iodine Deficiency Disorders And monitoring Their Elimination: A Guide for Programme Managers; World Health Organization (WHO): Geneva, Switzerland, 2007.
- Ma, Z.F.; Skeaff, S.A. Assessment of population iodine status. In Iodine Deficiency Disorders and Their Elimination; Springer: Berlin/Heidelberg, Germany, 2017; pp. 15–28. [Google Scholar]
- Semba, R.D.; Delange, F. Iodine in human milk: Perspectives for infant health. Nutr. Rev. 2001, 59, 269–278. [Google Scholar] [CrossRef]
- Dorea, J.G. Iodine nutrition and breast feeding. J. Trace Elem. Med. Biol. 2002, 16, 207–220. [Google Scholar] [CrossRef]
- Delange, F. Iodine requirements during pregnancy, lactation and the neonatal period and indicators of optimal iodine nutrition. Public Health Nutr. 2007, 10, 1571–1580. [Google Scholar] [CrossRef]
- Redman, K.; Ruffman, T.; Fitzgerald, P.; Skeaff, S. Iodine deficiency and the brain: Effects and mechanisms. Crit. Rev. Food Sci. Nutr. 2016, 56, 2695–2713. [Google Scholar] [CrossRef]
- van den Hove, M.F.; Beckers, C.; Devlieger, H.; de Zegher, F.; De Nayer, P. Hormone synthesis and storage in the thyroid of human preterm and term newborns: Effect of thyroxine treatment. Biochimie 1999, 81, 563–570. [Google Scholar] [CrossRef]
- Andersson, M.; De Benoist, B.; Delange, F.; Zupan, J. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: Conclusions and recommendations of the Technical Consultation. Public Health Nutr. 2007, 10, 1606–1611. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 7 June 2021).
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jüni, P.; Witschi, A.; Bloch, R.; Egger, M. The hazards of scoring the quality of clinical trials for meta-analysis. JAMA 1999, 282, 1054–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulrine, H.M.; Skeaff, S.A.; Ferguson, E.L.; Gray, A.R.; Valeix, P. Breast-milk iodine concentration declines over the first 6 mo postpartum in iodine-deficient women. Am. J. Clin. Nutr. 2010, 92, 849–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henjum, S.; Lilleengen, A.M.; Aakre, I.; Dudareva, A.; Gjengedal, E.L.F.; Meltzer, H.M.; Brantsæter, A.L. Suboptimal iodine concentration in breastmilk and inadequate iodine intake among lactating women in Norway. Nutrients 2017, 9, 643. [Google Scholar] [CrossRef] [Green Version]
- Dold, S.; Zimmermann, M.B.; Aboussad, A.; Cherkaoui, M.; Jia, Q.; Jukic, T.; Kusic, Z.; Quirino, A.; Sang, Z.; San Luis, T.O. Breast milk iodine concentration is a more accurate biomarker of iodine status than urinary iodine concentration in exclusively breastfeeding women. J. Nutr. 2017, 147, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Aakre, I.; Bjøro, T.; Norheim, I.; Strand, T.A.; Barikmo, I.; Henjum, S. Excessive iodine intake and thyroid dysfunction among lactating Saharawi women. J. Trace Elem. Med. Biol. 2015, 31, 279–284. [Google Scholar] [CrossRef]
- Aakre, I.; Strand, T.A.; Bjøro, T.; Norheim, I.; Barikmo, I.; Ares, S.; Alcorta, M.D.; Henjum, S. Thyroid function among breastfed children with chronically excessive iodine intakes. Nutrients 2016, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.L.; Møller, M.; Laurberg, P. Iodine concentrations in milk and in urine during breastfeeding are differently affected by maternal fluid intake. Thyroid 2014, 24, 764–772. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Aeberli, I.; Wüst, N.; Piacenza, A.M.; Bucher, T.; Henschen, I.; Haldimann, M.; Zimmermann, M.B. The Swiss iodized salt program provides adequate iodine for school children and pregnant women, but weaning infants not receiving iodine-containing complementary foods as well as their mothers are iodine deficient. J. Clin. Endocrinol. Metab. 2010, 95, 5217–5224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizi, F. Iodine nutrition in pregnancy and lactation in Iran. Public Health Nutr. 2007, 10, 1596–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazrafshan, H.R.; Mohammadian, S.; Ordookhani, A.; Abedini, A.; Davoudy, R.; Pearce, E.N.; Hedayati, M.; Azizi, F.; Braverman, L.E. An assessment of urinary and breast milk iodine concentrations in lactating mothers from Gorgan, Iran, 2003. Thyroid 2005, 15, 1165–1168. [Google Scholar] [CrossRef] [Green Version]
- Böhles, H.; Aschenbrenner, M.; Roth, M.; Loewenich, V.V.; Usadel, K.H. Development of thyroid gland volume during the first 3 months of life in breast-fed versus iodine-supplemented and iodine-free formula-fed infants. Clin. Investig. 1993, 71, 13. [Google Scholar] [CrossRef]
- Budak, N.; Şahin, U.; Kurtoğlu, S.; Ülgen, A.; Akçakuş, M.; Kurtoğlu, S.; Patıroğlu, T. Nutritional iodine status of breast-feeding mothers and their neonates in Kayseri. Erciyes Med. J. 2009, 31, 208–212. [Google Scholar]
- Chan, S.S.; Hams, G.; Wiley, V.; Wilcken, B.; McElduff, A. Postpartum maternal iodine status and the relationship to neonatal thyroid function. Thyroid 2003, 13, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, M.; Bai, Y.; Hao, Y.; Chen, W.; Cui, T.; Guo, W.; Pan, Z.; Lin, L.; Wang, C.; et al. Variation of iodine concentration in breast milk and urine in exclusively breastfeeding women and their infants during the first 24 wk after childbirth. Nutrition 2020, 71, 110599. [Google Scholar] [CrossRef]
- Chung, H.R.; Shin, C.H.; Yang, S.W.; Choi, C.W.; Kim, B.I. Subclinical hypothyroidism in Korean preterm infants associated with high levels of iodine in breast milk. J. Clin. Endocrinol. Metab. 2009, 94, 4444–4447. [Google Scholar] [CrossRef] [Green Version]
- Costeira, M.J.; Oliveira, P.; Ares, S.; de Escobar, G.M.; Palha, J.A. Iodine status of pregnant women and their progeny in the Minho Region of Portugal. Thyroid 2009, 19, 157–163. [Google Scholar] [CrossRef] [Green Version]
- de Lima, L.F.; Barbosa, F., Jr.; Navarro, A.M. Excess iodinuria in infants and its relation to the iodine in maternal milk. J. Trace Elem. Med. Biol. 2013, 27, 221–225. [Google Scholar] [CrossRef]
- Dumrongwongsiri, O.; Chatvutinun, S.; Phoonlabdacha, P.; Sangcakul, A.; Chailurkit, L.O.; Siripinyanond, A.; Suthutvoravut, U.; Chongviriyaphan, N. High Urinary Iodine Concentration Among Breastfed Infants and the Factors Associated with Iodine Content in Breast Milk. Biol. Trace Elem. Res. 2018, 186, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Groufh-Jacobsen, S.; Mosand, L.M.; Bakken, K.S.; Solvik, B.S.; Oma, I.; Gjengedal, E.L.F.; Brantsæter, A.L.; Strand, T.A.; Henjum, S. Mild to moderate iodine deficiency and inadequate iodine intake in lactating women in the inland area of Norway. Nutrients 2020, 12, 630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Repiso, C.; Velasco, I.; Garcia-Escobar, E.; Garcia-Serrano, S.; Rodríguez-Pacheco, F.; Linares, F.; Ruiz de Adana, M.S.; Rubio-Martin, E.; Garrido-Sanchez, L.; Cobos-Bravo, J.F.; et al. Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk? Antioxid. Redox Signal. 2014, 20, 847–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henjum, S.; Kjellevold, M.; Ulak, M.; Chandyo, R.K.; Shrestha, P.S.; Frøyland, L.; Strydom, E.E.; Dhansay, M.A.; Strand, T.A. Iodine concentration in breastmilk and urine among lactating women of Bhaktapur, Nepal. Nutrients 2016, 8, 255. [Google Scholar] [CrossRef] [Green Version]
- Huynh, D.; Condo, D.; Gibson, R.; Muhlhausler, B.; Ryan, P.; Skeaff, S.; Makrides, M.; Zhou, S.J. Iodine status of postpartum women and their infants in Australia after the introduction of mandatory iodine fortification. Br. J. Nutr. 2017, 117, 1656–1662. [Google Scholar] [CrossRef] [Green Version]
- Isiklar Ozberk, D.; Kutlu, R.; Kilinc, I.; Kilicaslan, A.O. Effects of mandatory salt iodization on breast milk, urinary iodine concentrations, and thyroid hormones: Is iodine deficiency still a continuing problem? J. Endocrinol. Investig. 2019, 42, 411–418. [Google Scholar] [CrossRef]
- Jin, Y.; Coad, J.; Zhou, S.J.; Skeaff, S.; Benn, C.; Brough, L. Use of Iodine Supplements by Breastfeeding Mothers Is Associated with Better Maternal and Infant Iodine Status. Biol. Trace Elem. Res. 2021, 199, 2893–2903. [Google Scholar] [CrossRef]
- Kart, P.; Türkmen, M.K.; Anık, A.; Anık, A.; Ünüvar, T. The association of lactating mothers’ urinary and breast milk iodine levels with iodine nutrition status and thyroid hormone levels of newborns. Turk. Arch. Pediatr. 2021, 56, 207–212. [Google Scholar] [CrossRef]
- Kirk, A.B.; Kroll, M.; Dyke, J.V.; Ohira, S.; Dias, R.A.; Dasgupta, P.K. Perchlorate, iodine supplements, iodized salt and breast milk iodine content. Sci. Total Environ. 2012, 420, 73–78. [Google Scholar] [CrossRef]
- Kurtoglu, S.; Akcakus, M.; Kocaoglu, C.; Gunes, T.; Budak, N.; Atabek, M.E.; Karakucuk, I.; Delange, F. Iodine status remains critical in mother and infant in Central Anatolia (Kayseri) of Turkey. Eur. J. Nutr. 2004, 43, 297–303. [Google Scholar] [CrossRef]
- Laurberg, P.; Nøhr, S.B.; Pedersen, K.M.; Fuglsang, E. Iodine nutrition in breast-fed infants is impaired by maternal smoking. J. Clin. Endocrinol. Metab. 2004, 89, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wang, D.; Liu, P.; Meng, F.; Wen, D.; Jia, Q.; Liu, J.; Zhang, X.; Jiang, P.; Shen, H. The relationship between iodine nutrition and thyroid disease in lactating women with different iodine intakes. Br. J. Nutr. 2015, 114, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Liu, J.; Wang, D.; Shen, H.; Jia, Q. Effect of Urinary Iodine Concentration in Pregnant and Lactating Women, and in Their Infants Residing in Areas with Excessive Iodine in Drinking Water in Shanxi Province, China. Biol. Trace Elem. Res. 2020, 193, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Mobasseri, M.; Roshanravan, N.; Mesri Alamdari, N.; Ostadrahimi, A.; Asghari Jafarabadi, M.; Anari, F.; Hedayati, M. Urinary and Milk Iodine Status in Neonates and Their Mothers during Congenital Hypothyroidism Screening Program in Eastern Azerbaijan: A Pilot Study. Iran J. Public Health 2014, 43, 1380–1384. [Google Scholar] [PubMed]
- Nazeri, P.; Dalili, H.; Mehrabi, Y.; Hedayati, M.; Mirmiran, P.; Azizi, F. Is there any difference between the iodine statuses of breast-fed and formula-fed infants and their mothers in an area with iodine deficiency? Br. J. Nutr. 2018, 119, 1012–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nøhr, S.B.; Lawberg, P.; Børlum, K.G.; Pedersen, K.M.; Johannesen, P.L.; Damm, P.; Fuglsang, E.; Johansen, A. Iodine status in neonates in Denmark: Regional variations and dependency on maternal iodine supplementation. Acta Paediatr. 1994, 83, 578–582. [Google Scholar] [CrossRef]
- Ordookhani, A.; Pearce, E.N.; Hedayati, M.; Mirmiran, P.; Salimi, S.; Azizi, F.; Braverman, L.E. Assessment of thyroid function and urinary and breast milk iodine concentrations in healthy newborns and their mothers in Tehran. Clin. Endocrinol. 2007, 67, 175–179. [Google Scholar] [CrossRef]
- Osei, J.; Andersson, M.; van der Reijden, O.; Dold, S.; Smuts, C.M.; Baumgartner, J. Breast-milk iodine concentrations, iodine status, and thyroid function of breastfed infants aged 2–4 months and their mothers residing in a south African township. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 381. [Google Scholar] [CrossRef]
- Osei, J.; Baumgartner, J.; Rothman, M.; Matsungo, T.M.; Covic, N.; Faber, M.; Smuts, C.M. Iodine status and associations with feeding practices and psychomotor milestone development in six-month-old South African infants. Matern. Child. Nutr. 2017, 13, e12408. [Google Scholar] [CrossRef]
- Pal, N.; Samanta, S.K.; Chakraborty, A.; Chandra, N.K.; Chandra, A.K. Interrelationship between iodine nutritional status of lactating mothers and their absolutely breast-fed infants in coastal districts of Gangetic West Bengal in India. Eur. J. Pediatr. 2018, 177, 39–45. [Google Scholar] [CrossRef]
- Pearce, E.N.; Leung, A.M.; Blount, B.C.; Bazrafshan, H.R.; He, X.; Pino, S.; Valentin-Blasini, L.; Braverman, L.E. Breast milk iodine and perchlorate concentrations in lactating Boston-area women. J. Clin. Endocrinol. Metab. 2007, 92, 1673–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, E.; Thorisdottir, B.; Thorsdottir, I.; Gunnlaugsson, G.; Arohonka, P.; Erlund, I.; Gunnarsdottir, I. Iodine status of breastfed infants and their mothers’ breast milk iodine concentration. Matern. Child. Nutr. 2020, 16, e12993. [Google Scholar] [CrossRef] [PubMed]
- Pongpaew, P.; Supawan, V.; Tungtrongchitr, R.; Phonrat, B.; Vudhivai, N.; Chantaranipapong, Y.; Kitjaroentham, A.; Jintaridhi, P.; Intarakhao, C.; Mahaweerawat, U. Urinary iodine excretion as a predictor of the iodine content of breast milk. J. Med. Assoc. Thail. 1999, 82, 284–289. [Google Scholar]
- Prpić, M.; Franceschi, M.; Vidranski, V.; Andersson, M.; Zimmermann, M.B.; Hunziker, S.; Milošević, M.; Kusić, Z.; Jukić, T. Iodine status and thyroid function in lactating women and infants—A survey in the Zagreb area, Croatia. Acta Clin. Croat. 2021, 60, 259–266. [Google Scholar] [CrossRef]
- Samson, L.; Hircsu, I.; Katko, M.; Bodor, M.; Nagy, E.V. Lower educational status interferes with maternal iodine intake during both pregnancy and lactation. Endocr. Connect. 2021, 10, 742–749. [Google Scholar] [CrossRef]
- Skeaff, S.A.; Ferguson, E.L.; McKenzie, J.E.; Valeix, P.; Gibson, R.S.; Thomson, C.D. Are breast-fed infants and toddlers in New Zealand at risk of iodine deficiency? Nutrition 2005, 21, 325–331. [Google Scholar] [CrossRef]
- Stinca, S.; Andersson, M.; Herter-Aeberli, I.; Chabaa, L.; Cherkaoui, M.; El Ansari, N.; Aboussad, A.; Weibel, S.; Zimmermann, M.B.J. Moderate-to-severe iodine deficiency in the “first 1000 days” causes more thyroid hypofunction in infants than in pregnant or lactating women. J. Nutr. 2017, 147, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Sukkhojaiwaratkul, D.; Mahachoklertwattana, P.; Poomthavorn, P.; Panburana, P.; Chailurkit, L.O.; Khlairit, P.; Pongratanakul, S. Effects of maternal iodine supplementation during pregnancy and lactation on iodine status and neonatal thyroid-stimulating hormone. J. Perinatol. 2014, 34, 594–598. [Google Scholar] [CrossRef]
- Vermiglio, F.; Presti, V.L.; Finocchiaro, M.; Battiato, S.; Grasso, L.; Ardita, R.; Mancuso, A.; Trimarchi, F. Enhanced iodine concentrating capacity by the mammary gland in iodine deficient lactating women of an endemic goiter region in Sicily. J. Endocrinol. Investig. 1992, 15, 137–142. [Google Scholar] [CrossRef]
- Wang, W.; Sun, Y.; Zhang, M.; Zhang, Y.; Chen, W.; Tan, L.; Shen, J.; Zhao, Z.; Lan, S.; Zhang, W. Breast milk and infant iodine status during the first 12 weeks of lactation in Tianjin City, China. Asia Pac. J. Clin. Nutr. 2018, 27, 393–398. [Google Scholar]
- Wang, Y.; Zhang, Z.; Ge, P.; Wang, Y.; Wang, S. Iodine status and thyroid function of pregnant, lactating women and infants (0–1 yr) residing in areas with an effective Universal Salt Iodization program. Asia Pac. J. Clin. Nutr. 2009, 18, 34–40. [Google Scholar] [PubMed]
- Yan, Y.Q.; Chen, Z.P.; Yang, X.M.; Liu, H. Attention to the hiding iodine deficiency in pregnant and lactating women after universal salt iodization: A multi-community study in China. J. Endocrinol. Investig. 2005, 28, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Bouhouch, R.R.; Bouhouch, S.; Cherkaoui, M.; Aboussad, A.; Stinca, S.; Haldimann, M.; Andersson, M.; Zimmermann, M.B. Direct iodine supplementation of infants versus supplementation of their breastfeeding mothers: A double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014, 2, 197–209. [Google Scholar] [CrossRef]
- Eriksen, K.G.; Andersson, M.; Hunziker, S.; Zimmermann, M.B.; Moore, S.E. Effects of an Iodine-Containing Prenatal Multiple Micronutrient on Maternal and Infant Iodine Status and Thyroid Function: A Randomized Trial in the Gambia. Thyroid 2020, 30, 1355–1365. [Google Scholar] [CrossRef]
- Gebreegziabher, T.; Stoecker, B.J. Comparison of two sources of iodine delivery on breast milk iodine and maternal and infant urinary iodine concentrations in southern Ethiopia: A randomized trial. Food Sci. Nutr. 2017, 5, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, P.; Mirmiran, P.; Tahmasebinejad, Z.; Hedayati, M.; Delshad, H.; Azizi, F. The effects of iodine fortified milk on the iodine status of lactating mothers and infants in an area with a successful salt iodization program: A randomized controlled trial. Nutrients 2017, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Stoutjesdijk, E.; Schaafsma, A.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. Iodine status during pregnancy and lactation: A pilot study in the Netherlands. Neth. J. Med. 2018, 76, 210–217. [Google Scholar]
- Dunn, J.T.; Crutchfield, H.E.; Gutekunst, R.; Dunn, A. Methods for Measuring Iodine in Urine. Thyroid 1993, 3, 119–123. [Google Scholar] [CrossRef]
- Dold, S.; Baumgartner, J.; Zeder, C.; Krzystek, A.; Osei, J.; Haldimann, M.; Zimmermann, M.B.; Andersson, M. Optimization of a new mass spectrometry method for measurement of breast milk iodine concentrations and an assessment of the effect of analytic method and timing of within-feed sample collection on breast milk iodine concentrations. Thyroid 2016, 26, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Azizi, F.; Smyth, P. Breastfeeding and maternal and infant iodine nutrition. Clin. Endocrinol. 2009, 70, 803–809. [Google Scholar] [CrossRef]
- Leung, A.M.; Braverman, L.E.; He, X.; Heeren, T.; Pearce, E.N. Breastmilk iodine concentrations following acute dietary iodine intake. Thyroid 2012, 22, 1176–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etling, N.; Padovani, E.; Fouque, F.; Tato, L. First-month variations in total iodine content of human breast milks. Early Hum. Dev. 1986, 13, 81–85. [Google Scholar] [CrossRef]
- Kirk, A.B.; Dyke, J.V.; Martin, C.F.; Dasgupta, P.K. Temporal patterns in perchlorate, thiocyanate, and iodide excretion in human milk. Environ. Health Perspect. 2007, 115, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Ning, Y.; Zhang, Y.; Yang, X.; Wang, J.; Li, W.; Wang, P. Mineral compositions in breast milk of healthy Chinese lactating women in urban areas and its associated factors. Chin. Med. J. 2014, 127, 2643–2648. [Google Scholar]
- Dohan, O.; De la Vieja, A.; Paroder, V.; Riedel, C.; Artani, M.; Reed, M.; Ginter, C.S.; Carrasco, N. The sodium/iodide symporter (NIS): Characterization, regulation, and medical significance. Endocr. Rev. 2003, 24, 48–77. [Google Scholar] [CrossRef] [Green Version]
- Manousou, S.; Augustin, H.; Eggertsen, R.; Hulthén, L.; Filipsson Nyström, H. Inadequate iodine intake in lactating women in Sweden: A pilot 1-year, prospective, observational study. Acta Obstet. Gynecol. Scand. 2021, 100, 48–57. [Google Scholar] [CrossRef]
- Nazeri, P.; Kabir, A.; Dalili, H.; Mirmiran, P.; Azizi, F. Breast-milk iodine concentrations and iodine levels of infants according to the iodine status of the country of residence: A systematic review and meta-analysis. Thyroid 2018, 28, 124–138. [Google Scholar] [CrossRef]
- Siro, S.S.; Baumgartner, J.; Schoonen, M.; Ngounda, J.; Malan, L.; Symington, E.A.; Smuts, C.M.; Zandberg, L. Characterization of genetic variants in the SLC5A5 gene and associations with breast milk iodine concentration in lactating women of African descent: The NUPED Study. Front. Nutr. 2021, 8, 692504. [Google Scholar] [CrossRef]
- Zimmermann, M.; Braverman, L.; Cooper, S. Iodine deficiency and endemic cretinism. In Werner Ingbar’s the Thyroid: A Fundamental Clinical Text; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 217–241. [Google Scholar]
- Fisher, W.; Wang, J.; George, N.I.; Gearhart, J.M.; McLanahan, E.D. Dietary iodine sufficiency and moderate insufficiency in the lactating mother and nursing infant: A computational perspective. PLoS ONE 2016, 11, e0149300. [Google Scholar]
- Leung, A.M.; Pearce, E.N.; Braverman, L.E. Iodine nutrition in pregnancy and lactation. Endocrinol. Metab. Clin. 2011, 40, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Bruhn, J.C.; Franke, A.A. Iodine in human milk. J. Dairy Sci. 1983, 66, 1396–1398. [Google Scholar] [CrossRef]
Reference | Adapted Newcastle–Ottawa Scale | ||||
---|---|---|---|---|---|
Association between BMIC and UIC | Selection (Maximum 5 *) | Comparability (Maximum 4 *) | Assessment (Maximum 4 *) | Total Scores (Maximum 13 *) 1 | |
Observational/Non-randomised intervention studies | |||||
Aakre et al., 2015 [21] | + 2 | *** | ** | ** | 7 |
Aakre et al., 2016 [22] | + 3 | *** | ** | *** | 8 |
Anderson et al., 2014 [23] | + 2 | **** | *** | ** | 9 |
Anderson et al., 2010 [24] | + | **** | ** | ** | 8 |
Azizi, 2007 [25] | − 2 | **** | **** | 8 | |
Bazrafshan et al., 2005 [26] | − 2 | **** | ** | 6 | |
Böhles et al., 1993 [27] | − 2 | **** | **** | 8 | |
Budak et al., 2009 [28] | + | **** | **** | 8 | |
Chan et al., 2003 [29] | + 2 | **** | * | **** | 9 |
Chen et al., 2020 [30] | + | **** | ** | *** | 9 |
Chung et al., 2009 [31] | + 3 | **** | *** | 7 | |
Costeira et al., 2009 [32] | + | **** | ** | *** | 9 |
de Lima et al., 2013 [33] | + 3 | **** | ** | **** | 10 |
Dold et al., 2017 [20] | + | **** | *** | *** | 10 |
Dumrongwongsiri et al., 2018 [34] | + | **** | *** | **** | 11 |
Groufh-Jacobsen et al., 2020 [35] | + 2 | **** | **** | *** | 11 |
Gutierrez-Repiso et al., 2014 [36] | + 3 | **** | * | **** | 9 |
Henjum et al., 2016 [37] | + 2 | **** | * | *** | 8 |
Huynh et al., 2017 [38] | + | **** | *** | *** | 10 |
Isiklar Ozberk et al., 2018 [39] | + | **** | ** | **** | 10 |
Jin et al., 2021 [40] | + | **** | ** | **** | 10 |
Kart et al., 2021 [41] | + | **** | *** | **** | 11 |
Kirk et al., 2012 [42] | − 3 | **** | ** | **** | 10 |
Kurtoglu et al., 2004 [43] | + | **** | * | **** | 9 |
Laurberg et al., 2004 [44] | + 2 | **** | ** | *** | 9 |
Liu et al., 2015 [45] | + | **** | ** | **** | 10 |
Liu et al., 2020 [46] | + | **** | * | **** | 9 |
Mobasseri et al., 2014 [47] | − | **** | * | *** | 8 |
Nazeri et al., 2018 [48] | − | **** | *** | **** | 11 |
Nøhr et al., 1994 [49] | + 3 | **** | * | *** | 8 |
Ordookhani et al., 2007 [50] | + | **** | * | **** | 9 |
Osei et al., 2016 [51] | + | **** | **** | **** | 12 |
Osei et al., 2017 [52] | + | **** | ** | *** | 9 |
Pal et al., 2018 [53] | + | **** | ** | **** | 10 |
Pearce et al., 2007 [54] | + 2 | **** | * | **** | 9 |
Petersen et al., 2020 [55] | − 2 | **** | *** | **** | 11 |
Pongpaew et al., 1999 [56] | + 2 | **** | * | **** | 9 |
Prpić et al., 2021 [57] | − | **** | *** | **** | 11 |
Samson et al., 2021 [58] | − 2 | **** | **** | *** | 11 |
Skeaff et al., 2005 [59] | + 3 | **** | ** | *** | 9 |
Stinca et al., 2017 [60] | + | **** | ** | **** | 10 |
Sukkhojaiwaratkul et al., 2014 [61] | − 2 | **** | *** | 7 | |
Vermiglio et al., 1992 [62] | + | **** | **** | 8 | |
Wang et al., 2018 [63] | + | **** | ** | *** | 9 |
Wang et al., 2009 [64] | + | **** | **** | 8 | |
Yan et al., 2005 [65] | − | **** | *** | 7 | |
Jadad Scale | |||||
The Jadad Scores (Maximum 5) | |||||
Randomised interventional studies | |||||
Bouhouch et al., 2014 [66] | + | 5 | |||
Eriksen et al., 2020 [67] | + 2 | 4 | |||
Gebreegziabher et al., 2017 [68] | + | 3 | |||
Nazeri et al., 2017 [69] | − | 3 | |||
Stoutjesdijk et al., 2018 [70] | + 2 | 2 |
Studies | Year | BMIC Method | UIC Method |
---|---|---|---|
Vermiglio et al. [62] | 1992 | S-K 2 | S-K 2 |
Böhles et al. [27] | 1993 | S-K 1 | S-K 3 |
Nøhr et al. [49] | 1994 | S-K 3 | S-K 3 |
Pongpaew et al. [56] | 1999 | S-K | S-K |
Chan et al. [29] | 2003 | ICP-MS | ICP-MS |
Kurtoglu et al. [43] | 2004 | HPLC | HPLC |
Laurberg et al. [44] | 2004 | S-K | S-K |
Bazrafshan et al. [26] | 2005 | S-K | S-K |
Skeaff et al. [59] | 2005 | S-K | S-K |
Yan et al. [65] | 2005 | S-K | S-K |
Azizi [25] | 2007 | S-K | S-K |
Ordookhani et al. [50] | 2007 | S-K | S-K |
Pearce et al. [54] | 2007 | S-K | S-K |
Budak et al. [28] | 2009 | S-K | S-K |
Costeira et al. [32] | 2009 | S-K 2 | S-K |
Chung et al. [31] | 2009 | S-K | S-K |
Wang et al. [64] | 2009 | S-K | S-K |
Anderson et al. [24] | 2010 | ICP-MS | S-K |
Kirk et al. [42] | 2012 | ICP-MS | ICP-MS |
de Lima et al. [33] | 2013 | ICP-MS | ICP-MS |
Anderson et al. [23] | 2014 | S-K 3 | S-K 3 |
Bouhouch et al. [66] | 2014 | ICP-MS | S-K |
Gutierrez-Repiso et al. [36] | 2014 | S-K 3 | S-K 3 |
Mobasseri et al. [47] | 2014 | S-K | S-K |
Sukkhojaiwaratkul et al. [61] | 2014 | S-K | S-K |
Aakre et al. [22] | 2015 | ICP-MS | S-K |
Liu et al. [37] | 2015 | S-K 3 | S-K 3 |
Aakre et al. [22] | 2016 | ICP-MS | S-K |
Henjum et al. [37] | 2016 | ICP-MS | S-K |
Osei et al. [51] | 2016 | ICP-MS | S-K |
Osei et al. [52] | 2016 | ICP-MS | S-K |
Dold et al. [20] | 2017 | ICP-MS | S-K |
Gebreegziabher et al. [68] | 2017 | ICP-MS | ICP-MS |
Huynh et al. [38] | 2017 | ICP-MS | S-K |
Nazeri et al. [69] | 2017 | S-K | S-K |
Pal et al. [53] | 2017 | S-K 3 | S-K 3 |
Stinca et al. [60] | 2017 | ICP-MS | S-K |
Dumrongwongsiri et al. [34] | 2018 | ICP-MS | S-K |
Isiklar Ozberk et al. [39] | 2018 | S-K | S-K |
Nazeri et al. [48] | 2018 | S-K | S-K |
Stoutjesdijk et al. [70] | 2018 | ICP-MS | ICP-MS |
Wang et al. [63] | 2018 | ICP-MS | S-K |
Chen et al. [30] | 2020 | ICP-MS | S-K |
Eriksen et al. [67] | 2020 | ICP-MS | ICP-MS |
Groufh-Jacobsen et al. [35] | 2020 | ICP-MS 4 | ICP-MS 4 |
Petersen et al. [55] | 2020 | ICP-MS | ICP-MS |
Liu et al. [46] | 2020 | S-K 3 | S-K 3 |
Jin et al. [40] | 2021 | ICP-MS | ICP-MS |
Kart et al. [41] | 2021 | S-K | S-K |
Prpić et al. [57] | 2021 | ICP-MS | S-K |
Samson et al. [58] | 2021 | ICP-MS | ICP-MS |
Author, Year | Country | Sample Size of Lactating Women | Time of Postpartum (Days/Weeks/Months) | BMIC 1 (µg/L) | UIC 1 (µg/L) | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Observational study | |||||||||||||
Aakre et al., 2015 [21] | Algeria | 111 | 0–7 months | 479 | 350 | ||||||||
Anderson et al., 2014 [23] | Denmark | 127 | 31 days 1 | Total | 83 | Total | 72 | ||||||
Iodine-supplemented | 112 | Iodine-supplemented | 83 | ||||||||||
Non-supplemented | 72 | Non-supplemented | 65 | ||||||||||
Anderson et al., 2010 [24] | Switzerland | 507 | 6–12 months | 49 | 67 | ||||||||
Azizi, 2007 [25] | Iran | 100 | NS | 93 | 259 | ||||||||
Bazrafshan et al., 2005 [26] | Iran | 100 | 30–180 days | 94 | 259 | ||||||||
Böhles et al., 1993 [27] | Germany | 10 | 5–7 days | 55 2 | 134 3 | Small sample size | |||||||
Budak et al., 2009 [28] | Turkey | 35 | 18 days | 33 2 | 70 | ||||||||
Chan et al., 2003 [29] | Australia | 50 | 4 days | 84 | 47 | ||||||||
Chen et al., 2020 [30] | China | 634 | 1–24 weeks | 165 | 122 | ||||||||
Costeira et al., 2009 [32] | Portugal | 140 | 3 months | 3 days | 95 | 3 days | 35 | ||||||
3 months | 70 | 3 months | 50 | ||||||||||
Dold et al., 2017 [20] | China, Philippines, Croatia and Morocco | 866 | 3 month | China (n = 298) | 170 | China (n = 298) | 107 | ||||||
Philippines (n = 281) | 185 | Philippines (n = 281) | 89 | ||||||||||
Croatia (n = 73) | 124 | Croatia (n = 73) | 35 | ||||||||||
Morocco (n = 74) | 30 | Morocco (n = 74) | 33 | ||||||||||
Dumrongwongsiri et al., 2018 [34] | Thailand | 71 | NS | 255 | 149 | ||||||||
Groufh-Jacobsen et al., 2020 [35] | Norway | 133 | 1–12 months | 71 | 80 | ||||||||
Henjum et al., 2016 [37] | Nepal | 500 | 2–12 months | 250 | 230 | ||||||||
Huynh et al., 2017 [38] | Australia | 696 | 3 months | 127 | 125 | ||||||||
Isiklar Ozberk et al., 2018 [39] | Turkey | 107 | NS | 97 | 135 | ||||||||
Jin et al., 2021 [40] | New Zealand | 87 | 3 months | 69 | 82 | ||||||||
Kart et al., 2021 [41] | Turkey | 334 | 4–6 days | 138 | 125 | ||||||||
Kurtoglu et al., 2004 [43] | Turkey | 70 | 5 days | 73 | 30 | ||||||||
Laurberg et al., 2004 [44] | Denmark | 140 | 5 days | Smokers (n = 50) | 26 2 | Smokers (n = 50) | 41 2 | ||||||
Non-smokers (n = 90) | 54 2 | Non-smokers (n = 90) | 40 2 | ||||||||||
Liu et al., 2015 [45] | China | 343 | 1 year | Beihai (I-deficient areas) (n = 103) | 41 | Beihai (I-deficient areas) (n = 113) | 51 | ||||||
Yangcheng and Jiajiazhuang (I-sufficient areas) (n = 91) | 346 | Yangcheng and Jiajiazhuang (I-sufficient areas) (n = 98) | 282 | ||||||||||
Pingyao and Jicun (I-excess areas) (n = 99) | 942 | Pingyao and Jicun (I-excess areas) (n = 125) | 823 | ||||||||||
Liu et al., 2020 [46] | China | 218 | 0–12 months | Suitable water iodine content areas (n = 97) | 312 | Suitable water iodine content areas (n = 97) | 284 | ||||||
High water iodine content areas (n = 121) | 1006 | High water iodine content areas (n = 121) | 823 | ||||||||||
Mobasseri et al., 2014 [47] | Azerbaijan | 106 | NS | 58 | 142 | ||||||||
Nazeri et al., 2018 [48] | Iran | 124 | <3 months | 100 | 78 | ||||||||
Ordookhani et al., 2007 [50] | Iran | 48 | 37 to 42 weeks | 148 | 107 | ||||||||
Osei et al., 2016 [51] | South Africa | 100 | 2–4 months | 179 | 118 | ||||||||
Osei et al., 2016 [52] | South Africa | 371 | 6 months | 180 | 128 | ||||||||
Pal et al., 2017 [53] | India | 128 | 1–3 months | 230 | 185 | ||||||||
Pearce et al., 2007 [54] | United States | 57 | 48 days 1 | 155 | 114 | ||||||||
Petersen et al., 2020 [55] | Iceland | 60 | 25 weeks | 84 | 152 | ||||||||
Pongpaew et al., 1999 [56] | Thailand | 75 | 233 days 1 | 51 | 90 | ||||||||
Prpić et al., 2021 [57] | Croatia | 133 | 2–96 weeks | 121 | 75 | ||||||||
Samson et al., 2021 [58] | Hungary | 100 | NS | 188 | 49 | ||||||||
Stinca et al., 2017 [60] | Morocco | 239 | ≤8 weeks | 42 | 35 | ||||||||
Vermiglio et al., 1992 [62] | Italy | 27 | 5–7 days | Endemic group (n = 11) | 33 2 | Endemic group (n = 11) | 12 2 | Small sample size | |||||
Control group (n = 16) | 43 2 | Control group (n = 16) | 63 2 | ||||||||||
Wang et al., 2018 [63] | China | 106 | 4–12 weeks | 4 weeks | 222 2 | 4 weeks | 152 | ||||||
8 weeks | 175 2 | 8 weeks | 112 | ||||||||||
12 weeks | 148 2 | 12 weeks | 109 | ||||||||||
Wang et al., 2009 [64] | China | 100 | 0–1 year | 163 | 136 | ||||||||
Yan et al., 2005 [65] | China | 2554 | 0–2 year | Urban | 136 | Urban | 189 | Huge study in 11 provinces of China | |||||
Rural | 158 | Rural | 192 | ||||||||||
Interventional study | |||||||||||||
Bouhouch et al., 2014 [66] | Morocco | 241 | 0–9 months | Indirect infant supplementation | Direct infant supplementation | Indirect infant supplementation | Direct infant supplementation | One dose of 400 mg iodine as oral iodised oil soon after delivery | |||||
Baseline | 41 | 43 | Baseline | 37 | 30 | ||||||||
3-month | 61 | 33 | 3-month | 58 | 34 | ||||||||
6-month | 49 | 36 | 6-month | 67 | 44 | ||||||||
9-month | 39 | 26 | 9-month | 58 | 39 | ||||||||
Eriksen et al., 2020 [67] | The Gambia | 219 | 12 weeks | Baseline (<20 weeks of gestation) | - | Baseline (<20 weeks of gestation) | 51 | A daily supplement of multiple micronutrient containing 300 µg of iodine was taken starting from baseline (<20 weeks of gestation) until delivery. Only both BMIC and UIC data of lactating women at 12 weeks were available. | |||||
12 weeks | 51 | 12 weeks | 39 | ||||||||||
Gebreegziabher et al., 2017 [68] | Ethiopia | 101 | 6 month | Capsule group | I-salt group | Capsule group | I-salt group | 225 μg iodine as potassium iodide capsule daily for 6 months or 450 g of appropriately iodized salt (30–40 μg I as KIO3/g of salt) weekly for household consumption for 6 months | |||||
Baseline | 149 | 157 | Baseline | 136 | 95 | ||||||||
6 months | 104 | 111 | 6 months | 150 | 110 | ||||||||
Nazeri et al., 2017 [69] | Iran | 84 | 1 month | Iodine fortified milk group (n = 40) | Control group (n = 40) | Iodine fortified milk group (n = 40) | Control group (n = 40) | 200 mL iodine fortified milk of which provided 150 µg iodine/day, started at the sixth day postpartum and lasted for four weeks | |||||
3–5 days (baseline) | 176 | 215 | 3–5 days (baseline) | 70 | 97 | ||||||||
7 days | 191 | 176 | 7 days | 119 | 51 | ||||||||
10 days | 217 | 162 | 10 days | 131 | 103 | ||||||||
14 days | 242 | 160 | 14 days | 123 | 48 | ||||||||
1 month | 210 | 142 | 1 month | 104 | 41 | ||||||||
Stoutjesdijk et al., 2018 [70] | Netherlands | 36 | 4 weeks | 20 gestational weeks (baseline) | - | 20 gestational weeks (baseline) | 102 | Multivitamin supplement containing 150 μg/day of iodine were given during 20 gestational weeks | |||||
4 weeks | 152 | 4 weeks | 112 | ||||||||||
Sukkhojaiwaratkul et al., 2014 [61] | Thailand | 87 | 2 months | 3rd trimesters (baseline) | - | 3rd trimesters (baseline) | 204 | Multivitamin supplement containing 200 μg/day of iodine were given during 2-month postpartum | |||||
Total | 91 | Total | 138 | ||||||||||
Iodine-supplemented (200 µg) | 109 | Iodine-supplemented (200 µg) | 199 | ||||||||||
non-supplemented | 70 | non-supplemented | 120 |
Author, Year | Country | Sample Size of Infants | Time of Postpartum (Days/Weeks/Months) | BMIC 1 (µg/L) | UIC 1 (µg/L) | Comments | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Observational study | |||||||||||
Aakre et al., 2016 [22] | Algeria | 289 | 31.4 days 1 | 479 | 722 | ||||||
Anderson et al., 2010 [24] | Switzerland | 875 | 6–12 months | 49 | 82 | ||||||
Budak et al., 2009 [28] | Turkey | 35 | 5–28 days | 33 2 | 100 | ||||||
Chen et al., 2020 [30] | China | 634 | 24 weeks | 165 | 216 | ||||||
Costeira et al., 2009 [32] | Portugal | 142 | 3 months | 3 days | 95 | 3 days | 65 | ||||
3 months | 70 | 3 months | 96 | ||||||||
Chung et al., 2009 [31] | Korea | 31 | 6 weeks | 3rd week | 1153 | 3rd week | 1651 | Small sample size | |||
6th week | 822 | 6th week | 1832 | ||||||||
de Lima et al., 2013 [33] | Brazil | 33 | ≤6 months | 206 | 293 | Small sample size | |||||
Dold et al., 2017 [20] | China, Philippines and Croatia | 866 | 3 months | China (n = 298) | 170 | China (n = 298) | 278 | ||||
Philippines (n = 281) | 185 | Philippines (n = 281) | 352 | ||||||||
Croatia (n = 73) | 124 | Croatia (n = 73) | 239 | ||||||||
Dumrongwongsiri et al., 2018 [34] | Thailand | 71 | NS | 255 | 282 | ||||||
Huynh et al., 2017 [38] | Australia | 696 | 3 months | 127 | 198 | ||||||
Isiklar Ozberk et al., 2018 [39] | Turkey | 107 | NS | 97 | 95 | ||||||
Jin et al., 2021 [40] | New Zealand | 87 | 3 months | 69 | 115 | ||||||
Kart et al., 2021 [41] | Turkey | 334 | 4–6 days | 138 | 142 | ||||||
Kurtoglu et al., 2004 [43] | Turkey | 70 | 5 days | 73 | 24 | ||||||
Liu et al., 2015 [45] | China | 343 | 1 year | Beihai (I-deficient areas) (n = 103) | 41 | Beihai (I-deficient areas) (n = 28) | 65 | ||||
Yangcheng and Jiajiazhuang (I-sufficient areas) (n = 91) | 346 | Yangcheng and Jiajiazhuang (I-sufficient areas) (n = 90) | 427 | ||||||||
Pingyao and Jicun (I-excess areas) (n = 99) | 942 | Pingyao and Jicun (I-excess areas) (n = 124) | 1222 | ||||||||
Liu et al., 2020 [46] | China | 218 | 0–12 months | Suitable water iodine content areas (n = 97) | 312 | Suitable water iodine content areas (n = 97) | 427 | ||||
High water iodine content areas (n = 121) | 1006 | High water iodine content areas (n = 121) | 1222 | ||||||||
Mobasseri et al., 2014 [47] | Azerbaijan | 106 | NS | 58 | 307 | ||||||
Nazeri et al., 2018 [48] | Iran | 124 | <3 months | 100 | 183 | ||||||
Ordookhani et al., 2007 [50] | Iran | 27 | 37 to 42 weeks | 148 | 271 | Small sample size | |||||
Osei et al., 2016 [51] | South Africa | 100 | 2–4 months | 179 | 373 | ||||||
Osei et al., 2016 [52] | South Africa | 386 | 6 months | 180 | 345 | ||||||
Pal et al., 2017 [53] | India | 128 | 1–3 months | 230 | 250 | ||||||
Prpić et al., 2021 [57] | Croatia | 133 | 2–96 weeks | 121 | 2–26 weeks (n = 101) | 234 | |||||
27–96 weeks (n = 32) | 209 | ||||||||||
Skeaff et al., 2005 [59] | New Zealand | 230 | 6–24-month | 22 | 67 | ||||||
Stinca et al., 2017 [60] | Morocco | 239 | ≤8 weeks | 42 | 73 | ||||||
Vermiglio et al., 1992 [62] | Italy | 27 | 5–7 days | Endemic group (n = 11) | 33 2 | Endemic group (n = 11) | 34 2 | Small sample size | |||
Control group (n = 16) | 43 2 | Control group (n = 16) | 43 2 | ||||||||
Wang et al., 2018 [63] | China | 106 | 4–12 weeks | 4-week | 222 2 | 4-week | 251 | ||||
8-week | 175 2 | 8-week | 183 | ||||||||
12-week | 148 2 | 12-week | 164 | ||||||||
Wang et al., 2009 [64] | China | 61 | 0–1 year | 163 | 233 | ||||||
Yan et al., 2005 [65] | China | 2537 | 0–2 years | Urban | 136 | Urban | 236 | Huge study in 11 provinces of China | |||
Rural | 158 | Rural | 247 | ||||||||
Interventional study | |||||||||||
Bouhouch et al., 2014 [66] | Morocco | 241 | 0–9 months | Indirect infant supplementation | Direct infant supplementation | Indirect infant supplementation | Direct infant supplementation | One dose of 400 mg iodine as oral iodised oil soon after delivery | |||
Baseline | 41 | 43 | Baseline | 73 | 74 | ||||||
3-month | 61 | 33 | 3-month | 132 | 99 | ||||||
6-month | 49 | 36 | 6-month | 142 | 122 | ||||||
9-month | 39 | 26 | 9-month | 97 | 90 | ||||||
Gebreegziabher et al., 2017 [68] | Ethiopia | 101 | 6 months | Capsule group | I-salt group | Capsule group | I-salt group | 225 μg iodine as potassium iodide capsule daily for 6 months or 450 g of appropriately iodized salt (30–40 μg I as KIO3/g of salt) weekly for household consumption for 6 months | |||
Baseline | 149 | 157 | Baseline | 234 | 193 | ||||||
6-month | 104 | 111 | 6-month | 254 | 195 | ||||||
Gutierrez-Repiso et al., 2014 [36] | Spain | 88 | NS | Control group (n = 21) | 109 | Control group (n = 21) | 112 | 300 µg of iodide (in the form of KI) were given from the first trimester of pregnancy (300 group) | |||
300 group (n = 67) (300 µg) | 178 | 300 group (n = 67) (300 µg) | 215 | ||||||||
Kirk et al., 2012 [42] | United States | 13 | 1–8 months | Pre supplementation | 53 2 | Pre supplementation | 239 | Small sample size | |||
PM supplementation | 57 2 | PM supplementation | 379 | ||||||||
AM supplementation | 57 2 | AM supplementation | 324 | ||||||||
Nazeri et al., 2017 [69] | Iran | 84 | 1 month | Iodine fortified milk group (n = 40) | Control group (n = 40) | Iodine fortified milk group (n = 40) | Control group (n = 40) | 200 mL iodine fortified milk of which provided 150 µg iodine/day, started at the sixth day postpartum and lasted for four weeks | |||
3–5 days (baseline) | 176 | 215 | 3–5 days (baseline) | 231 | 193 | ||||||
7 days | 191 | 176 | 7 days | 169 | 120 | ||||||
10 days | 217 | 162 | 10 days | 219 | 138 | ||||||
14 days | 242 | 160 | 14 days | 194 | 116 | ||||||
1 month | 210 | 142 | 1 month | 230 | 110 | ||||||
Nøhr et al., 1994 [49] | Denmark | 147 | 5 days | Baseline | 34 | Baseline | 32 | Vitamin-mineral preparations containing iodine (with a declared iodine content of 150 µg/tablet). | |||
Not received iodine supplementation group (n = 94) | 34 | Not received iodine supplementation group (n = 94) | 32 | ||||||||
Tablets containing iodine group (n = 53) | 57 | Tablets containing iodine group (n = 53) | 61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Sharp, A.; Villanueva, E.; Ma, Z.F. Breast Milk Iodine Concentration (BMIC) as a Biomarker of Iodine Status in Lactating Women and Children <2 Years of Age: A Systematic Review. Nutrients 2022, 14, 1691. https://doi.org/10.3390/nu14091691
Liu S, Sharp A, Villanueva E, Ma ZF. Breast Milk Iodine Concentration (BMIC) as a Biomarker of Iodine Status in Lactating Women and Children <2 Years of Age: A Systematic Review. Nutrients. 2022; 14(9):1691. https://doi.org/10.3390/nu14091691
Chicago/Turabian StyleLiu, Shuchang, Andrew Sharp, Elmer Villanueva, and Zheng Feei Ma. 2022. "Breast Milk Iodine Concentration (BMIC) as a Biomarker of Iodine Status in Lactating Women and Children <2 Years of Age: A Systematic Review" Nutrients 14, no. 9: 1691. https://doi.org/10.3390/nu14091691
APA StyleLiu, S., Sharp, A., Villanueva, E., & Ma, Z. F. (2022). Breast Milk Iodine Concentration (BMIC) as a Biomarker of Iodine Status in Lactating Women and Children <2 Years of Age: A Systematic Review. Nutrients, 14(9), 1691. https://doi.org/10.3390/nu14091691