Total 25(OH)D Concentration Moderates the Association between Caffeine Consumption and the Alkaline Phosphatase Level in Pregnant Women
Abstract
:1. Introduction
2. Method
2.1. Study Design and Participants
2.2. Measures
2.2.1. Biochemical Outcomes
2.2.2. Caffeine Intake
2.2.3. Supplementation Intake
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Lamy, S.; Houivet, E.; Benichou, J.; Marret, S.; Thibaut, F. Caffeine use during pregnancy: Prevalence of use and newborn consequences in a cohort of French pregnant women. Eur. Arch. Psychiatry Neurol. Sci. 2021, 271, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Pray, L.; Yaktine, A.L.; Pankevich, D. Caffeine in Food and Dietary Supplements: Examining Safety—Workshop Summary; The National Academies Press: Washington, DC, USA, 2014; Volume 5, pp. 585–586. [Google Scholar]
- Gleason, J.L.; Tekola-Ayele, F.; Sundaram, R.; Hinkle, S.N.; Vafai, Y.; Louis, G.M.B.; Gerlanc, N.; Amyx, M.; Bever, A.M.; Smarr, M.M. Association Between Maternal Caffeine Consumption and Metabolism and Neonatal Anthropometry: A Secondary Analysis of the NICHD Fetal Growth Studies–Singletons. JAMA Netw. Open 2021, 4, e21323. [Google Scholar] [CrossRef] [PubMed]
- Mejia, E.G.d.; Ramirez-Mares, M.V. Impact of caffeine and coffee on our health. Trends Endocrinol. Metab. 2014, 25, 489–492. [Google Scholar] [CrossRef]
- Okubo, H.; Miyake, Y.; Tanaka, K.; Sasaki, S.; Hirota, Y. Maternal total caffeine intake, mainly from Japanese and Chinese tea, during pregnancy was associated with risk of preterm birth: The Osaka Maternal and Child Health Study. Nutr. Res. 2015, 35, 309–316. [Google Scholar] [CrossRef]
- Wolde, T. Effects of caffeine on health and nutrition: A Review. Food Sci. Qual. Manag. 2014, 30, 59–65. [Google Scholar]
- Kuo, T.-R.; Chen, C.-H. Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark. Res. 2017, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.L.; Nandyal, R.R.; Anderson, M.P.; Escobedo, M.B. Relationship of caffeine dosing with serum alkaline phosphatase levels in extremely low-birth-weight infants. J. Pediatric Pharmacol. Ther. 2012, 17, 58–66. [Google Scholar] [CrossRef]
- Pereira, M.A.; Parker, E.D.; Folsom, A.R. Coffee consumption and risk of type 2 diabetes mellitus: An 11-year prospective study of 28812 postmenopausal women. Arch. Intern. Med. 2006, 166, 1311–1316. [Google Scholar] [CrossRef] [Green Version]
- Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.; O’Brien, C.; Peck, J.; et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 2017, 109, 585–648. [Google Scholar] [CrossRef]
- Wagner, C.L.; Taylor, S.N.; Johnson, D.D.; Hollis, B.W. The role of vitamin D in pregnancy and lactation: Emerging concepts. Womens Health 2012, 8, 323–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapuri, P.B.; Gallagher, J.C.; Kinyamu, H.; Ryschon, K.L. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am. J. Clin. Nutr. 2001, 74, 694–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.; Lam, C.W.K.; Leung, J.; Lau, W.Y.; Lau, E.; Ling, X.; Xing, X.; Zhao, X.H.; Skeaff, C.M.; Bacon, C.; et al. Very high rates of vitamin D insufficiency in women of child-bearing age living in Beijing and Hong Kong. Br. J. Nutr. 2008, 99, 1330–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, R.-X.; Meng, D.-H.; Li, J.-J.; Tong, S.-L.; Hao, J.-H.; Huang, K.; Tao, F.-B.; Zhu, P. Current Recommended Vitamin D Prenatal Supplementation and Fetal Growth: Results From the China-Anhui Birth Cohort Study. J. Clin. Endocrinol. Metab. 2017, 103, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Vitamin D Status: Measurement, Interpretation, and Clinical Application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Carter, G.; Berry, J.; Durazo-Arvizu, R.; Gunter, E.; Jones, G.; Jones, J.; Makin, H.; Pattni, P.; Phinney, K.; Sempos, C.; et al. Quality assessment of vitamin D metabolite assays used by clinical and research laboratories. J. Steroid Biochem. Mol. Biol. 2017, 173, 100–104. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Yip, K.; Fung, M.; Cheung, C.; Lee, A.; So, H.; Wong, W.; Chan, R.; Ip, P. Validity and Reliability of Semi-Quantitative eFFQ for Hong Kong Chinese Pregnant Women. Austin J. Nutr. Metab. 2020, 7, 1093. [Google Scholar]
- Wilkof-Segev, R.; Hallak, M.; Gabbay-Benziv, R. Extremely high levels of alkaline phosphatase and pregnancy outcome: Case series and review of the literature. J. Périnat. Med. 2021, 49, 191–194. [Google Scholar] [CrossRef]
- Okesina, A.; Donaldson, D.; Lascelles, P.; Morris, P. Effect of gestational age on levels of serum alkaline phosphatase isoenzymes in healthy pregnant women. Int. J. Gynecol. Obstet. 1995, 48, 25–29. [Google Scholar] [CrossRef]
- Casiglia, E.; Spolaore, P.; Inocchio, G.; Ambrosio, G.B. Unexpected effects of coffee consumption on liver enzymes. Eur. J. Epidemiol. 1993, 9, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Sinha, R.; Graubard, B.I.; Freedman, N.D. Inverse associations of total and decaffeinated coffee with liver enzyme levels in National Health and Nutrition Examination Survey 1999–2010. Hepatology 2014, 60, 2091–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, E.S.; Jeong, S.-H.; Hwang, S.H.; Kim, H.Y.; Ahn, S.Y.; Lee, J.; Lee, S.H.; Park, Y.S.; Hwang, J.H.; Kim, J.-W.; et al. Effects of coffee, smoking, and alcohol on liver function tests: A comprehensive cross-sectional study. BMC Gastroenterol. 2012, 12, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choy, O.; Raine, A. Vitamin D sufficiency attenuates the effect of early social adversity on child antisocial behavior. Psychol. Med. 2021, 1–10. [Google Scholar] [CrossRef]
- Bikle, D.D.; Bouillon, R. Vitamin D and bone and beyond. Bone Rep. 2018, 9, 120–121. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.A.; Kovacs, C.S. Maternal and fetal vitamin D and their roles in mineral homeostasis and fetal bone development. J. Endocrinol. Investig. 2021, 44, 643–659. [Google Scholar] [CrossRef]
- Gowda, S.; Desai, P.B.; Hull, V.V.; Math, A.A.K.; Vernekar, S.N.; Kulkarni, S.S. A review on laboratory liver function tests. Pan Afr. Med. J. 2009, 3, 17. [Google Scholar]
Mothers with Sufficient Vitamin D Level (n = 131) | Mothers with Insufficient Vitamin D Level (n = 50) | Comparison p | |
---|---|---|---|
Demographic characteristics | |||
Maternal age, mean (SD) | 32.82 (3.74) | 33.02 (0.59) | 0.894 |
Family income, mean (SD) | 53564.4 (33925.8) | 52619.5 (33341.7) | 0.779 |
Vitamin D supplementation duration, n (%) | 0.122 | ||
Never | 25 (19.08) | 16 (32.00) | |
Less than 1 month | 13 (9.92) | 1 (2.00) | |
1–4 months | 25 (19.08) | 14 (28.00) | |
5–9 months | 61 (46.56) | 17 (34.00) | |
Whole pregnancy period | 7 (5.34) | 2 (4.00) | |
Sun exposure average UV (blood collection month), mean (SD) | 2.44 (0.34) | 2.44 (0.34) | 0.870 |
Biochemical outcomes | |||
Total 25(OH)D (nmol/L), median (IQR) | 101.09 (28.22) | 62.08 (10.60) | <0.001 |
Albumin (g/L), mean (SD) | 30.91 (2.15) | 30.80 (2.29) | 0.723 |
Alkaline Phosphatase (IU/L), median (IQR) | 66.00 (22.00) | 64.66 (15.70) | 0.878 |
Calcium (mmol/L), mean (SD) | 2.21 (0.07) | 2.20 (0.08) | 0.298 |
Adjusted calcium (mmol/L), mean (SD) | 2.28 (0.07) | 2.26 (0.07) | 0.288 |
Phosphate (mmol/L), mean (SD) | 0.95 (0.12) | 0.96 (0.13) | 0.434 |
Ferritin (pmol/L), median (IQR) | 65.00 (59.00) | 43.00 (36.00) | 0.100 |
Dietary intake | |||
Caffeine intake (mg/d), median (IQR) | 6.89 (39.21) | 10.46 (62.32) | 0.553 |
(a) | ||||||
Sufficient vitamin D | Model A | Model B | Model C | |||
β | p | β | p | β | p | |
Albumin | −0.04 | 0.692 | −0.01 | 0.930 | 0.01 | 0.930 |
Alkaline Phosphatase | −0.24 | 0.006 | −0.23 | 0.009 | −0.24 | 0.006 |
Calcium | −0.03 | 0.770 | 0.003 | 0.977 | 0.00 | 0.985 |
Adjusted calcium | −0.02 | 0.821 | 0.00 | 0.999 | −0.01 | 0.937 |
Phosphate | 0.13 | 0.155 | 0.13 | 0.147 | 0.14 | 0.125 |
Ferritin | −0.05 | 0.611 | −0.04 | 0.665 | −0.02 | 0.826 |
(b) | ||||||
Insufficient Vitamin D | Model A | Model B | Model C | |||
β | p | β | p | β | p | |
Albumin | 0.05 | 0.741 | −0.01 | 0.927 | −0.01 | 0.935 |
Alkaline Phosphatase | 0.04 | 0.811 | −0.02 | 0.914 | −0.02 | 0.917 |
Calcium | −0.03 | 0.833 | −0.10 | 0.470 | −0.10 | 0.479 |
Adjusted calcium | −0.07 | 0.646 | −0.12 | 0.384 | −0.12 | 0.392 |
Phosphate | 0.02 | 0.883 | −0.02 | 0.904 | −0.02 | 0.917 |
Ferritin | 0.03 | 0.863 | 0.01 | 0.963 | 0.01 | 0.963 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tung, K.T.S.; Wong, R.S.; Cheung, C.K.M.; Ko, J.K.Y.; Chan, B.N.K.; Lee, A.; So, H.-K.; Wong, W.H.S.; Leung, W.-C.; Ip, P. Total 25(OH)D Concentration Moderates the Association between Caffeine Consumption and the Alkaline Phosphatase Level in Pregnant Women. Nutrients 2022, 14, 1616. https://doi.org/10.3390/nu14081616
Tung KTS, Wong RS, Cheung CKM, Ko JKY, Chan BNK, Lee A, So H-K, Wong WHS, Leung W-C, Ip P. Total 25(OH)D Concentration Moderates the Association between Caffeine Consumption and the Alkaline Phosphatase Level in Pregnant Women. Nutrients. 2022; 14(8):1616. https://doi.org/10.3390/nu14081616
Chicago/Turabian StyleTung, Keith T. S., Rosa S. Wong, Calvin K. M. Cheung, Jennifer K. Y. Ko, Bianca N. K. Chan, Albert Lee, Hung-Kwan So, Wilfred H. S. Wong, Wing-Cheong Leung, and Patrick Ip. 2022. "Total 25(OH)D Concentration Moderates the Association between Caffeine Consumption and the Alkaline Phosphatase Level in Pregnant Women" Nutrients 14, no. 8: 1616. https://doi.org/10.3390/nu14081616
APA StyleTung, K. T. S., Wong, R. S., Cheung, C. K. M., Ko, J. K. Y., Chan, B. N. K., Lee, A., So, H. -K., Wong, W. H. S., Leung, W. -C., & Ip, P. (2022). Total 25(OH)D Concentration Moderates the Association between Caffeine Consumption and the Alkaline Phosphatase Level in Pregnant Women. Nutrients, 14(8), 1616. https://doi.org/10.3390/nu14081616