Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital—Preliminary Report
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oláh, C.; Schwartz, N.; Denton, C.; Kardos, Z.; Putterman, C.; Szekanecz, Z. Cognitive dysfunction in autoimmune rheumatic diseases. Arthritis Res. Ther. 2020, 22, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yohannes, A.M.; Chen, W.; Moga, A.M.; Leroi, I.; Connolly, M.J. Cognitive Impairment in Chronic Obstructive Pulmonary Disease and Chronic Heart Failure: A Systematic Review and Meta-analysis of Observational Studies. J. Am. Med. Dir. Assoc. 2017, 18, 451.e1–451.e11. [Google Scholar] [CrossRef] [PubMed]
- van Beers, M.; Janssen, D.J.; Gosker, H.R.; Schols, A.M. Cognitive impairment in chronic obstructive pulmonary disease: Dis-ease burden, determinants and possible future interventions. Expert Rev. Respir. Med. 2018, 12, 1061–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, E.M.; Nagaraja, S.; Ocampo, A.; Tam, L.T.; Wood, L.S.; Pallegar, P.N.; Greene, J.J.; Geraghty, A.C.; Goldstein, A.K.; Ni, L.; et al. Methotrexate chemotherapy in-duces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 2019, 176, 43–55.e13. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.C.; Glass, J.M.; Park, D.C. The relationship of pain and depression to cognitive function in rheumatoid arthritis pa-tients. Pain 2002, 96, 279–284. [Google Scholar] [CrossRef]
- Nys, G.M.S.; Van Zandvoort, M.J.E.; Van Der Worp, H.B.; De Haan, E.H.F.; de Kort, P.L.M.; Jansen, B.P.W.; Kappelle, L.J. Early cognitive impairment predicts long-term depressive symptoms and quality of life after stroke. J. Neurol. Sci. 2006, 247, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Dąbrowska, E.; Galińska-Skok, B.; Waszkiewicz, N. Depressive and Neurocognitive Disorders in the Context of the Inflam-matory Background of COVID-19. Life 2021, 11, 1056. [Google Scholar] [CrossRef]
- Helms, J.; Kremer, S.; Merdji, H.; Schenck, M.; Severac, F.; Clere-Jehl, R.; Studer, A.; Radosavljevic, M.; Kummerlen, C.; Monnier, A.; et al. Delirium and encephalopathy in se-vere COVID-19: A cohort analysis of ICU patients. Crit. Care 2020, 24, 1–11. [Google Scholar] [CrossRef]
- Martín-Jiménez, P.; Muñoz-García, M.I.; Seoane, D.; Roca-Rodríguez, L.; García-Reyne, A.; Lalueza, A.; Maestro, G.; Folgueira, D.; Blanco-Palmero, V.A.; Martín, A.H.-S.; et al. Cognitive Impairment Is a Common Comorbidity in Deceased COVID-19 Patients: A Hospital-Based Retrospective Cohort Study. J. Alzheimer’s Dis. 2020, 78, 1367–1372. [Google Scholar] [CrossRef]
- Ercoli, T.; Masala, C.; Pinna, I.; Orofino, G.; Solla, P.; Rocchi, L.; Defazio, G. Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurol. Sci. 2021, 42, 4921–4926. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.L.; Clark, J.R.; Orban, Z.S.; Lim, P.H.; Szymanski, A.L.; Taylor, C.; DiBiase, R.M.; Jia, D.T.; Balabanov, R.; Ho, S.U.; et al. Persistent neurologic symptoms and cognitive dysfunction in non -Hospitalized Covid-19 “long haulers”. Ann. Clin. Transl. Neurol. 2021, 8, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Jaywant, A.; Vanderlind, W.M.; Alexopoulos, G.S.; Fridman, C.B.; Perlis, R.H.; Gunning, F.M. Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology 2021, 46, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, R.; Dini, M.; Groppo, E.; Rosci, C.; Reitano, M.R.; Bai, F.; Poletti, B.; Brugnera, A.; Silani, V.; Monforte, A.D.; et al. Long-Lasting Cognitive Abnormalities after COVID-19. Brain Sci. 2021, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.G.; Palladini, M.; De Lorenzo, R.; Magnaghi, C.; Poletti, S.; Furlan, R.; Fabio, C.; The COVID-19 BioB Outpatient Clinic Study Group; Patrizia, R.Q.; Francesco, B. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory bi-omarkers at three-month follow-up. Brain. Behav. Immun. 2021, 94, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; et al. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef]
- Bougakov, D.; Podell, K.; Goldberg, E. Multiple Neuroinvasive Pathways in COVID-19. Mol. Neurobiol. 2021, 58, 564–575. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Li, X.-L.; Yan, Z.-R.; Sun, X.-P.; Han, J.; Zhang, B.-W. Potential neurological symptoms of COVID-19. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420917830. [Google Scholar] [CrossRef] [Green Version]
- Miners, S.; Kehoe, P.G.; Love, S. Cognitive impact of COVID-19: Looking beyond the short term. Alzheimer’s Res. Ther. 2020, 12, 1–16. [Google Scholar] [CrossRef]
- Wang, F.; Kream, R.M.; Stefano, G.B. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med. Sci. Monit. 2020, 26, e928996-1–e928996-10. [Google Scholar] [CrossRef]
- Dey, J.; Alam, M.T.; Chandra, S.; Gupta, J.; Ray, U.; Srivastava, A.K.; Tripathi, P.P. Neuroinvasion of SARS-CoV-2 may play a role in the breakdown of the respiratory center of the brain. J. Med. Virol. 2021, 93, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun. 2020, 9, 100163. [Google Scholar] [CrossRef] [PubMed]
- Kremer, S.; Lersy, F.; De Sèze, J.; Ferré, J.-C.; Maamar, A.; Carsin-Nicol, B.; Collange, O.; Bonneville, F.; Adam, G.; Martin-Blondel, G.; et al. Brain MRI Findings in Severe COVID-19: A Retrospective Observational Study. Radiology 2020, 297, E242–E251. [Google Scholar] [CrossRef] [PubMed]
- Rudroff, T.; Workman, C.D.; Ponto, L.L.B. 18F-FDG-PET Imaging for Post-COVID-19 Brain and Skeletal Muscle Alterations. Viruses 2021, 13, 2283. [Google Scholar] [CrossRef] [PubMed]
- Ortelli, P.; Ferrazzoli, D.; Sebastianelli, L.; Engl, M.; Romanello, R.; Nardone, R.; Bonini, I.; Koch, G.; Saltuari, L.; Quartarone, A.; et al. Neuropsychological and neu-rophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. J. Neurol. Sci. 2021, 420, 117271. [Google Scholar] [CrossRef] [PubMed]
- Licastro, F.; Pedrini, S.; Caputo, L.; Annoni, G.; Davis, L.J.; Ferri, C.; Casadei, A.; Grimaldi, L.M.E. Increased plasma levels of inter-leukin-1, interleukin-6 and α-1-antichymotrypsin in patients with Alzheimer’s disease: Peripheral inflammation or signals from the brain? J. Neuroimmunol. 2000, 103, 97–102. [Google Scholar] [CrossRef]
- Dhouib, I.E. Does coronaviruses induce neurodegenerative diseases? A systematic review on the neurotropism and neu-roinvasion of SARS-CoV-2. Drug Discov. Ther. 2020, 14, 262–272. [Google Scholar] [CrossRef]
- Yu, W.; Yu, W.; Liu, X.; Wan, T.; Chen, C.; Xiong, L.; Zhang, W.; Lü, Y. Associations between malnutrition and cognitive impairment in an elderly Chinese population: An analysis based on a 7-year database. Psychogeriatrics 2021, 21, 80–88. [Google Scholar] [CrossRef]
- James, P.T.; Ali, Z.; Armitage, A.E.; Bonell, A.; Cerami, C.; Drakesmith, H.; Jobe, M.; Jones, K.S.; Liew, Z.; Moore, S.E.; et al. The Role of Nutrition in COVID-19 Susceptibility and Severity of Disease: A Systematic Review. J. Nutr. 2021, 151, 1854–1878. [Google Scholar] [CrossRef]
- Lobo, D.N.; Gianotti, L.; Adiamah, A.; Barazzoni, R.; Deutz, N.E.; Dhatariya, K.; Greenhaff, P.L.; Hiesmayr, M.; Jakobsen, D.H.; Klek, S.; et al. Perioperative nutrition: Recommendations from the ESPEN expert group. Clin. Nutr. 2020, 39, 3211–3227. [Google Scholar] [CrossRef]
- Schuetz, P.; Seres, D.; Lobo, D.N.; Gomes, F.; Kaegi-Braun, N.; Stanga, Z. Management of disease-related malnutrition for patients being treated in hospital. Lancet 2021, 398, 1927–1938. [Google Scholar] [CrossRef]
- Gierus, J.; Mosiołek, A.; Koweszko, T.; Kozyra, O.; Wnukiewicz, P.; Łoza, B.; Szulc, A. The Montreal Cognitive Assessment 7.2-Polish Adaptation and research on equivalency. Psychiatr. Pol. 2015, 49, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Ruscio, J. A probability-based measure of effect size: Robustness to base rates and other factors. Psychol. Methods 2008, 13, 19–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoth, K.F.; Haley, A.P.; Gunstad, J.; Paul, R.H.; Poppas, A.; Jefferson, A.L.; Tate, D.F.; Ono, M.; Jerskey, B.A.; Cohen, R.A. Elevated C-Reactive Protein Is Related to Cognitive Decline in Older Adults with Cardiovascular Disease. J. Am. Geriatr. Soc. 2008, 56, 1898–1903. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, S.; Chen, J.; Wei, N.; Wang, D.; Lyu, H.; Shi, C.; Hu, S. The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 2020, 129, 98–102. [Google Scholar] [CrossRef]
- Mathews, S.B.; Arnold, S.E.; Epperson, C.N. Hospitalization and cognitive decline: Can the nature of the relationship be deci-phered? Am. J. Geriatr Psychiatry 2014, 22, 465–480. [Google Scholar] [CrossRef] [Green Version]
- Llewellyn, D.J.; Langa, K.M.; Friedland, R.P.; Lang, I.A. Serum Albumin Concentration and Cognitive Impairment. Curr. Alzheimer Res. 2010, 7, 91–96. [Google Scholar] [CrossRef]
- Ng, T.-P.; Feng, L.; Niti, M.; Yap, K.B. Albumin, haemoglobin, BMI and cognitive performance in older adults. Age Ageing 2008, 37, 423–429. [Google Scholar] [CrossRef] [Green Version]
- van Vliet, P. Cholesterol and late-life cognitive decline. J Alzheimers Dis. 2012, 30 (Suppl. S2), S147–S162. [Google Scholar] [CrossRef]
- Atzmon, G.; Gabriely, I.; Greiner, W.; Davidson, D.; Schechter, C.; Barzilai, N. Plasma HDL Levels Highly Correlate With Cognitive Function in Exceptional Longevity. J. Gerontol. Ser. A 2002, 57, M712–M715. [Google Scholar] [CrossRef] [Green Version]
- Crichton, G.E.; Elias, M.F.; Davey, A.; Sullivan, K.J.; Robbins, M.A. Higher HDL Cholesterol Is Associated with Better Cognitive Function: The Maine-Syracuse Study. J. Int. Neuropsychol. Soc. 2014, 20, 961–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakeberg, M.C.; Gorecki, A.M.; Kenna, J.E.; Jefferson, A.; Byrnes, M.; Ghosh, S.; Horne, M.K.; McGregor, S.; Stell, R.; Walters, S.; et al. Elevated HDL Levels Linked to Poorer Cognitive Ability in Females with Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 656623. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.M.; Bading, H. Calcium signaling in cognition and aging-dependent cognitive decline. BioFactors 2011, 37, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Schram, M.; Trompet, S.; Kamper, A.M.; De Craen, A.J.M.; Hofman, A.; Euser, S.M.; Breteler, M.M.B.; Westendorp, R.G.J. Serum Calcium and Cognitive Function in Old Age. J. Am. Geriatr. Soc. 2007, 55, 1786–1792. [Google Scholar] [CrossRef]
- Sato, K.; Mano, T.; Ihara, R.; Suzuki, K.; Tomita, N.; Arai, H.; Ishii, K.; Senda, M.; Ito, K.; Ikeuchi, T.; et al. Alzheimer’s Disease Neuroimaging Initiative, and Japanese Alzheimer’s Disease Neuroimaging Initia-tive. Lower Serum Calcium as a Potentially Associated Factor for Conversion of Mild Cognitive Impairment to Early Alzhei-mer’s Disease in the Japanese Alzheimer’s Disease Neuroimaging Initiative. J. Alzheimers Dis. 2019, 68, 777–788. [Google Scholar]
- Persaud-Sharma, D.; Saha, S.; Trippensee, A.W. Refeeding Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Wang, R.; He, M.; Kang, Y. Hypophosphatemia at Admission is Associated with Increased Mortality in COVID-19 Patients. Int. J. Gen. Med. 2021, 14, 5313–5322. [Google Scholar] [CrossRef]
- Hill, N.L.; McDermott, C.; Mogle, J.; Muñoz, E.; DePasquale, N.; Wion, R.; Whitaker, E. Subjective cognitive impairment and quality of life: A systematic review. Int. Psychogeriatr. 2017, 29, 1965–1977. [Google Scholar] [CrossRef]
Variable | Mean | Standard Deviation | Median | Minimum | Maximum |
---|---|---|---|---|---|
Drawing figure and joining points test | 0.88 | 0.86 | 1.00 | 0.00 | 2.00 |
Clock drawing test | 2.35 | 0.70 | 2.00 | 1.00 | 3.00 |
Visuospatial function * | 0.65 | 0.26 | 0.60 | 0.20 | 1.00 |
Naming skills | 2.53 | 0.62 | 3.00 | 1.00 | 3.00 |
Attention—digits | 1.41 | 0.62 | 1.00 | 0.00 | 2.00 |
Attention—letters | 0.71 | 0.47 | 1.00 | 0.00 | 1.00 |
Attention—subtraction | 2.06 | 1.09 | 3.00 | 0.00 | 3.00 |
Attention function * | 0.70 | 0.25 | 0.67 | 0.17 | 1.00 |
Repetition | 1.59 | 0.62 | 2.00 | 0.00 | 2.00 |
Fluency | 0.65 | 0.49 | 1.00 | 0.00 | 1.00 |
Language function * | 0.75 | 0.32 | 1.00 | 0.00 | 1.00 |
Abstraction | 1.35 | 0.79 | 2.00 | 0.00 | 2.00 |
Short-term memory | 1.82 | 1.13 | 2.00 | 0.00 | 3.00 |
Allopsychic orientation | 5.76 | 0.56 | 6.00 | 4.00 | 6.00 |
MoCA total score | 21.59 | 5.23 | 21.00 | 10.00 | 29.00 |
Age (years) | 65.00 | 14.01 | 63.00 | 43.00 | 86.00 |
Hospitalization length (days) | 20.18 | 15.71 | 13.00 | 5.00 | 63.00 |
Highest CRP (mg/dL) | 10.26 | 8.50 | 10.90 | 0.30 | 27.30 |
Lowest SatO2 (%) | 86.47 | 6.73 | 87.00 | 75.00 | 97.00 |
Respiratory support (1–5) | 1.88 | 1.45 | 1.00 | 0.00 | 4.00 |
Total protein (g/dL) | 5.80 | 0.73 | 5.85 | 4.90 | 6.60 |
Albumin (g/dL) | 3.58 | 0.73 | 3.60 | 2.50 | 4.30 |
Total cholesterol (mg/dL) | 104.80 | 16.63 | 106.00 | 84.00 | 125.00 |
LDL cholesterol (mg/dL) | 65.43 | 22.68 | 57.00 | 42.00 | 112.00 |
HDL cholesterol (mg/dL) | 34.29 | 10.18 | 30.00 | 27.00 | 56.00 |
Triglycerides (mg/dL) | 111.50 | 39.97 | 105.50 | 72.00 | 187.00 |
Calcium (mg/dL) | 8.29 | 0.57 | 8.40 | 7.30 | 8.90 |
Phosphate (mg/dL) | 3.65 | 0.66 | 3.55 | 3.10 | 4.40 |
Urea (mg/dL) | 38.38 | 17.92 | 36.00 | 18.00 | 68.00 |
Creatinine (mg/dL) | 0.98 | 0.24 | 0.95 | 0.60 | 1.40 |
Sodium (mmol/L) | 137.75 | 1.83 | 137.50 | 135.00 | 140.00 |
Red blood count (mln/mcL) | 4.21 | 0.71 | 4.29 | 2.61 | 5.33 |
Hemoglobin (g/dL) | 12.25 | 2.10 | 12.00 | 8.00 | 15.30 |
Test/Function | Hospitalization Length | CRP Max. | SpO2 Min. | Respiratory Support |
---|---|---|---|---|
Drawing figure and joining points test | 0.08 | −0.26 | 0.34 | −0.17 |
Clock drawing test | −0.04 | −0.31 | 0.22 | 0.01 |
Naming test | −0.20 | 0.10 | 0.06 | −0.07 |
Attention—digits test | −0.15 | 0.40 | −0.06 | 0.08 |
Attention—letters test | 0.13 | 0.40 | −0.19 | 0.55 * |
Attention—subtraction test | 0.43 | −0.08 | −0.20 | 0.17 |
Repetition test | −0.13 | −0.13 | 0.49 | −0.09 |
Fluency test | −0.08 | 0.23 | 0.15 | 0.19 |
Abstraction test | 0.10 | −0.17 | 0.26 | −0.20 |
Short-term memory test | 0.06 | 0.05 | −0.08 | 0.11 |
Orientation test | 0.36 | 0.25 | −0.28 | −0.01 |
Visuospatial functions | −0.08 | −0.25 | 0.39 | −0.16 |
Attention functions | 0.32 | 0.28 | −0.28 | 0.41 |
Language functions | −0.11 | −0.07 | 0.40 | 0.08 |
MoCA total score | 0.13 | 0.00 | 0.12 | 0.06 |
Test/Function | RBC | HGB | Sod | Calc | Phos | Crea | Urea | TProt | Alb | Chol | HDL | LDL | Tgc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Drawing figure and joining points test | −0.23 | −0.05 | 0.22 | −0.15 | −0.45 | 0.18 | 0.17 | −0.19 | 0.14 | −0.52 | −0.00 | −0.43 | 0.32 |
Clock drawing test | −0.54 * | −0.48 | 0.59 * | −0.21 | −0.11 | −0.21 | −0.07 | −0.05 | −0.10 | −0.03 | −0.46 | 0.53 | 0.23 |
Naming test | −0.17 | −0.14 | 0.27 | −0.03 | 0.16 | 0.03 | −0.21 | 0.22 | 0.14 | 0.58 | 0.19 | 0.05 | 0.56 |
Attention—digits test | −0.09 | 0.12 | 0.44 | 0.33 | −0.07 | −0.61 * | −0.38 | −0.01 | −0.20 | 0.17 | 0.17 | −0.15 | −0.41 |
Attention—letters test | 0.03 | 0.24 | 0.21 | −0.68 * | −0.50 | −0.32 | −0.17 | −0.75 * | −0.71 * | −0.14 | 0.23 | −0.13 | −0.80 * |
Attention—subtraction test | −0.33 | −0.35 | 0.21 | −0.09 | −0.20 | 0.04 | 0.04 | 0.14 | −0.41 | −0.59 | 0.19 | −0.48 | −0.01 |
Repetition test | −0.05 | 0.06 | −0.15 | 0.14 | −0.54 | 0.15 | 0.47 | −0.08 | 0.22 | −0.25 | 0.00 | −0.32 | 0.35 |
Fluency test | −0.12 | 0.02 | 0.21 | 0.06 | −0.60 | −0.04 | 0.29 | 0.01 | 0.25 | −0.63 | −0.23 | −0.53 | 0.05 |
Abstraction test | 0.24 | 0.25 | −0.13 | 0.15 | −0.54 | 0.15 | 0.20 | 0.10 | 0.42 | −0.47 | 0.09 | −0.58 | 0.21 |
Short-term memory test | 0.41 | 0.32 | 0.11 | 0.15 | −0.48 | 0.12 | 0.00 | 0.32 | 0.73 * | −0.62 | 0.14 | −0.95 * | −0.14 |
Orientation test | −0.40 | −0.44 | 0.33 | 0.17 | −0.15 | −0.11 | −0.18 | 0.01 | −0.02 | 0.23 | 0.19 | 0.05 | 0.40 |
Visuospatial functions | −0.45 | −0.36 | 0.41 | −0.31 | −0.29 | 0.05 | 0.30 | −0.14 | 0.05 | −0.41 | −0.71 | 0.23 | 0.30 |
Attention functions | −0.33 | −0.17 | 0.53 * | −0.31 | −0.54 | 0.49 | 0.14 | −0.23 | −0.04 | −0.64 | 0.29 | −0.79 | −0.65 |
Language functions | −0.06 | 0.09 | 0.04 | −0.13 | −0.57 | 0.07 | 0.28 | −0.05 | 0.29 | −0.38 | 0.40 | 0.31 | 0.09 |
MoCA total score | −0.16 | −0.06 | 0.36 | −0.04 | −0.60 | −0.04 | 0.05 | 0.03 | 0.47 * | −0.60 | 0.12 | −0.74 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimkiewicz, J.; Pankowski, D.; Wytrychiewicz-Pankowska, K.; Klimkiewicz, A.; Siwik, P.; Klimczuk, J.; Lubas, A. Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital—Preliminary Report. Nutrients 2022, 14, 1580. https://doi.org/10.3390/nu14081580
Klimkiewicz J, Pankowski D, Wytrychiewicz-Pankowska K, Klimkiewicz A, Siwik P, Klimczuk J, Lubas A. Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital—Preliminary Report. Nutrients. 2022; 14(8):1580. https://doi.org/10.3390/nu14081580
Chicago/Turabian StyleKlimkiewicz, Jakub, Daniel Pankowski, Kinga Wytrychiewicz-Pankowska, Anna Klimkiewicz, Paulina Siwik, Joanna Klimczuk, and Arkadiusz Lubas. 2022. "Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital—Preliminary Report" Nutrients 14, no. 8: 1580. https://doi.org/10.3390/nu14081580
APA StyleKlimkiewicz, J., Pankowski, D., Wytrychiewicz-Pankowska, K., Klimkiewicz, A., Siwik, P., Klimczuk, J., & Lubas, A. (2022). Analysis of the Relationship among Cognitive Impairment, Nutritional Indexes and the Clinical Course among COVID-19 Patients Discharged from Hospital—Preliminary Report. Nutrients, 14(8), 1580. https://doi.org/10.3390/nu14081580