Dietary Phosphorus, Its Sources, and Mortality in Adults on Haemodialysis: The DIET-HD Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Study Population
2.3. Dietary Assessment of Phosphorus Intake
2.4. Outcomes
2.5. Statistical Analysis
2.6. Missing Data Handling
2.7. Main Analysis
2.8. Subgroup Analysis
2.9. Sensitivity Analysis
3. Results
3.1. Baseline Characteristics
3.2. Total Phosphorus Intake and Mortality
3.3. Proportion of Phosphorus Intake from Different Sources and Mortality
3.3.1. Plant Sources
3.3.2. Animal Sources
3.3.3. Processed and Other Sources
3.4. Subgroup Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.; Toussaint, N.D.; et al. Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder: Synopsis of the Kidney Disease: Improving Global Outcomes 2017 Clinical Practice Guideline Update. Ann. Intern. Med. 2018, 168, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Block, G.A.; Kilpatrick, R.D.; Lowe, K.A.; Wang, W.; Danese, M.D. CKD–Mineral and Bone Disorder and Risk of Death and Cardiovascular Hospitalization in Patients on Hemodialysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 2132–2140. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.R.; Anderson, C. Dietary Phosphorus Intake and the Kidney. Annu. Rev. Nutr. 2017, 37, 321–346. [Google Scholar] [CrossRef]
- Vervloet, M.G.; van Ballegooijen, A.J. Prevention and treatment of hyperphosphatemia in chronic kidney disease. Kidney Int. 2018, 93, 1060–1072. [Google Scholar] [CrossRef]
- Slinin, Y.; Foley, R.N.; Collins, A.J. Calcium, Phosphorus, Parathyroid Hormone, and Cardiovascular Disease in Hemodialysis Patients: The USRDS Waves 1, 3, and 4 Study. J. Am. Soc. Nephrol. 2005, 16, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Kuwae, N.; Regidor, D.; Kovesdy, C.; Kilpatrick, R.; Shinaberger, C.; McAllister, C.; Budoff, M.; Salusky, I.; Kopple, J. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006, 70, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Fouque, D.; Horne, R.; Cozzolino, M.; Kalantar-Zadeh, K. Balancing Nutrition and Serum Phosphorus in Maintenance Dialysis. Am. J. Kidney Dis. 2014, 64, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What's changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. 1), S1–S107. [Google Scholar] [CrossRef]
- Karp, H.; Ekholm, P.; Kemi, V.; Itkonen, S.; Hirvonen, T.; Närkki, S.; Lamberg-Allardt, C. Differences among Total and In Vitro Digestible Phosphorus Content of Plant Foods and Beverages. J. Ren. Nutr. 2012, 22, 416–422. [Google Scholar] [CrossRef]
- Noori, N.; Kalantar-Zadeh, K.; Kovesdy, C.P.; Bross, R.; Benner, D.; Kopple, J.D. Association of Dietary Phosphorus Intake and Phosphorus to Protein Ratio with Mortality in Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2010, 5, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.E.; Lynch, R.; Curhan, G.C.; Brunelli, S.M. Prescribed Dietary Phosphate Restriction and Survival among Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2010, 6, 620–629. [Google Scholar] [CrossRef]
- Palmer, S.C.; Ruospo, M.; Campbell, K.L.; Larsen, V.G.; Saglimbene, V.; Natale, P.; Gargano, L.; Craig, J.C.; Johnson, D.W.; Tonelli, M.; et al. Nutrition and dietary intake and their association with mortality and hospitalisation in adults with chronic kidney disease treated with haemodialysis: Protocol for DIET-HD, a prospective multinational cohort study. BMJ Open 2015, 5, e006897. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Garcia-Larsen, V.; Luczynska, M.; Kowalski, M.L.; Voutilainen, H.; Ahlström, M.; Haahtela, T.; Toskala, E.; Bockelbrink, A.; Lee, H.-H.; Vassilopoulou, E.; et al. Use of a common food frequency questionnaire (FFQ) to assess dietary patterns and their relation to allergy and asthma in Europe: Pilot study of the GA2LEN FFQ. Eur. J. Clin. Nutr. 2011, 65, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Food Standards Agency, Food Portion Sizes (Maff Handbook). 1994. Available online: https://wwwamazoncouk/Food-Portion-Sizes-Maff-Handbook/dp/0112429610 (accessed on 21 April 2022).
- Chandy, S.J.; Naik, G.S.; Balaji, V.; Jeyaseelan, V.; Thomas, K.; Lundborg, C.S. High cost burden and health consequences of antibiotic resistance: The price to pay. J. Infect. Dev. Ctries 2014, 8, 1096–1102. [Google Scholar] [CrossRef]
- Gutiérrez, O.M.; Januzzi, J.L.; Isakova, T.; Laliberte, K.; Smith, K.; Collerone, G.; Sarwar, A.; Hoffmann, U.; Coglianese, E.; Christenson, R.; et al. Fibroblast Growth Factor 23 and Left Ventricular Hypertrophy in Chronic Kidney Disease. Circulation 2009, 119, 2545–2552. [Google Scholar] [CrossRef]
- Parker, B.D.; Schurgers, L. The Associations of Fibroblast Growth Factor 23 and Uncarboxylated Matrix Gla Protein With Mortality in Coronary Artery Disease: The Heart and Soul Study. Ann. Intern. Med. 2010, 152, 640–648. [Google Scholar] [CrossRef]
- Canziani, M.; Tomiyama, C.; Higa, A.; Draibe, S.; Carvalho, A. Fibroblast Growth Factor 23 in Chronic Kidney Disease: Bridging the Gap between Bone Mineral Metabolism and Left Ventricular Hypertrophy. Blood Purif. 2010, 31, 26–32. [Google Scholar] [CrossRef]
- Stevens, K.K.; Denby, L.; Patel, R.K.; Mark, P.B.; Kettlewell, S.; Smith, G.L.; Clancy, M.J.; Delles, C.; Jardine, A.G. Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway. Nephrol. Dial. Transplant. 2016, 32, 1617–1627. [Google Scholar] [CrossRef] [Green Version]
- Moe, S.M.; Zidehsarai, M.P.; Chambers, M.A.; Jackman, L.A.; Radcliffe, J.S.; Trevino, L.L.; Donahue, S.E.; Asplin, J.R. Vegetarian Compared with Meat Dietary Protein Source and Phosphorus Homeostasis in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Moorthi, R.N.; Armstrong, C.L.; Janda, K.; Ponsler-Sipes, K.; Asplin, J.R.; Moe, S.M. The Effect of a Diet Containing 70% Protein from Plants on Mineral Metabolism and Musculoskeletal Health in Chronic Kidney Disease. Am. J. Nephrol. 2014, 40, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Saglimbene, V.M.; Wong, G.; Ruospo, M.; Palmer, S.C.; Garcia-Larsen, V.; Natale, P.; Teixeira-Pinto, A.; Campbell, K.L.; Carrero, J.-J.; Stenvinkel, P.; et al. Fruit and Vegetable Intake and Mortality in Adults undergoing Maintenance Hemodialysis. Clin. J. Am. Soc. Nephrol. 2019, 14, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Cases, A.; Cigarrán-Guldrís, S.; Mas, S.; Gonzalez-Parra, E. Vegetable-Based Diets for Chronic Kidney Disease? It Is Time to Reconsider. Nutrients 2019, 11, 1263. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Gutekunst, L.; Mehrotra, R.; Kovesdy, C.P.; Bross, R.; Shinaberger, C.S.; Noori, N.; Hirschberg, R.; Benner, D.; Nissenson, A.R.; et al. Understanding Sources of Dietary Phosphorus in the Treatment of Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 519–530. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Liao, W.; Huang, J.; Xu, J.; Yang, J.; Chen, C.; He, Z. Hyperphosphatemia rather than hypophosphatemia indicates a poor prognosis in patients with sepsis. Clin. Biochem. 2021, 91, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Takeda, E.; Yamamoto, H.; Yamanaka-Okumura, H.; Taketani, Y. Increasing Dietary Phosphorus Intake from Food Additives: Potential for Negative Impact on Bone Health. Adv. Nutr. Int. Rev. J. 2014, 5, 92–97. [Google Scholar] [CrossRef]
- Sapio, L.; Naviglio, S. Inorganic phosphate in the development and treatment of cancer: A Janus Bifrons? World J. Clin. Oncol. 2015, 6, 198–201. [Google Scholar] [CrossRef]
- Sherman, R.A.; Ravella, S.; Kapoian, T. A dearth of data: The problem of phosphorus in prescription medications. Kidney Int. 2015, 87, 1097–1099. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Overall (n = 8110) | Lowest Tertile (154–1100 mg/Day) (n = 2704) | Middle Tertile (1101–1747 g/Day) (n = 2703) | Highest Tertile (1748–8179 g/day) (n = 2703) | p for Trend |
---|---|---|---|---|---|
Demographics | |||||
Age, years, mean (SD) | 63 (15) | 63 (15) | 64 (15) | 62 (15) | 0.77 |
Women, n (%) | 3419 (42) | 1209 (45) | 1156 (43) | 1054 (39) | <0.01 |
Education: Secondary level or above, n (%) | 2699 (44) | 1158 (43) | 1253 (46) | 1314 (49) | <0.01 |
Never smoker, n (%) | 4212 (67) | 1854 (69) | 1807 (67) | 1796 (66) | 0.1 |
Irregular physical activity or more, n (%) | 3249 (52) | 1391 (51) | 1369 (51) | 1559 (58) | <0.01 |
Never drinking alcohol, n (%) | 4116 (51) | 1455 (54) | 1376 (51) | 1282 (47) | <0.01 |
Body mass index, n (%) | 26 (5) | 26(5) | 26(5) | 26 (6) | 0.9 |
Diet | |||||
Energy intake, kcal/d, median (IQR) | 1900 (1404–2520) | 1260 (992–1552) | 1971 (1682–2286) | 2762 (2228–3450) | <0.01 |
Potassium intake, g/d, median (IQR) | 1388 (961–1994) | 882 (654–961) | 1389 (1243–1557) | 2324(1995–2858) | <0.01 |
Mediterranean score, median (IQR) | 4 (3–5) | 3 (2–4) | 4 (3–5) | 5 (4–6) | <0.01 |
Clinical characteristics | |||||
Weight change in kg (3 months prior), median (IQR) | 0.1 (−0.9–1) | 0.1 (−1–1) | 0.0 (−0.9–1) | 0 (−0.1–1) | 0.45 |
Hypertension, n (%) | 6219 (85) | 2272 (84) | 2323 (86) | 2301 (85) | 0.26 |
Diabetes mellitus, n (%) | 2332 (32) | 834 (31) | 895 (33) | 848 (31) | 0.68 |
Cardiovascular disease, n (%) | 2973 (37) | 880 (33) | 1033 (38) | 1060 (39) | <0.01 |
Chronic pulmonary disease, n (%) | 940 (12) | 276 (10) | 312 (12) | 352 (13) | <0.01 |
Cancer, n (%) | 1045 (13) | 285 (10) | 381 (14) | 379 (14) | <0.01 |
Laboratory variables | |||||
Normalised protein catabolic rate, g/kg/d, median (IQR) | 1.1 (0.9–1.3) | 1.1 (0.9–1.3) | 1.1 (0.9–1.3) | 1.1 (0.9–1.3) | 0.45 |
Serum phosphorus, mg/dl, mean (SD) | 4.7 (1.4) | 4.7 (1.4) | 4.6 (1.4) | 4.8 (1.5) | <0.01 |
Haemoglobin, g/dl, mean (SD) | 11.1 (1.3) | 11.1 (1.3) | 11.1 (1.3) | 11.0 (1.3) | 0.15 |
Albumin, g/l, mean (SD) | 39.8 (3.8) | 39.7 (3.8) | 39.9 (3.7) | 39.8 (3.8) | 0.31 |
Calcium, mg/dl, mean (SD) | 8.9 (0.7) | 8.9 (0.7) | 9.0 (0.7) | 8.9 (0.7) | 0.37 |
Dialysis characteristics | |||||
Arteriovenous fistula, n (%) | 6481 (81) | 2157 (80) | 2168 (80) | 2208 (82) | 0.08 |
Dialysis vintage, years, median (IQR) | 3.6 (1.7–6.8) | 3.8 (1.8–7.1) | 3.6 (1.7–6.8) | 3.5 (1.7–6.5) | 0.19 |
Kt/V, mean (SD) | 1.7 (0.3) | 1.8 (0.4) | 1.8 (0.3) | 1.7 (0.3) | <0.01 |
Medications | |||||
Antihypertensives, n (%) | 6136 (76) | 2039 (75) | 2036 (75) | 2061 (76) | 0.47 |
Phosphate binders, n (%) | 3263 (40) | 895 (33) | 1065 (39) | 1303 (48) | <0.01 |
Statin, n (%) | 2316 (37) | 960 (36) | 1025 (38) | 961 (36) | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, G.; Saglimbene, V.; Wong, G.; Bernier-Jean, A.; Carrero, J.J.; Natale, P.; Ruospo, M.; Hegbrant, J.; Craig, J.C.; Strippoli, G.F.M. Dietary Phosphorus, Its Sources, and Mortality in Adults on Haemodialysis: The DIET-HD Study. Nutrients 2022, 14, 4064. https://doi.org/10.3390/nu14194064
Su G, Saglimbene V, Wong G, Bernier-Jean A, Carrero JJ, Natale P, Ruospo M, Hegbrant J, Craig JC, Strippoli GFM. Dietary Phosphorus, Its Sources, and Mortality in Adults on Haemodialysis: The DIET-HD Study. Nutrients. 2022; 14(19):4064. https://doi.org/10.3390/nu14194064
Chicago/Turabian StyleSu, Guobin, Valeria Saglimbene, Germaine Wong, Amélie Bernier-Jean, Juan Jesus Carrero, Patrizia Natale, Marinella Ruospo, Jorgen Hegbrant, Jonathan C. Craig, and Giovanni F. M. Strippoli. 2022. "Dietary Phosphorus, Its Sources, and Mortality in Adults on Haemodialysis: The DIET-HD Study" Nutrients 14, no. 19: 4064. https://doi.org/10.3390/nu14194064
APA StyleSu, G., Saglimbene, V., Wong, G., Bernier-Jean, A., Carrero, J. J., Natale, P., Ruospo, M., Hegbrant, J., Craig, J. C., & Strippoli, G. F. M. (2022). Dietary Phosphorus, Its Sources, and Mortality in Adults on Haemodialysis: The DIET-HD Study. Nutrients, 14(19), 4064. https://doi.org/10.3390/nu14194064